root / CharacterizingPH / qpvbc.tex @ 148
Historique | Voir | Annoter | Télécharger (5,75 ko)
1 |
\documentclass{amsart} |
---|---|
2 |
\usepackage{amsthm} |
3 |
\usepackage{hyperref} |
4 |
\usepackage[dvipsnames]{xcolor} |
5 |
|
6 |
|
7 |
\input{macros} |
8 |
|
9 |
\begin{document} |
10 |
|
11 |
|
12 |
|
13 |
\section{Extending the basic BC framework} |
14 |
\begin{itemize} |
15 |
\item Any polynomial-time predicate can be conservatively added to BC with only safe inputs. |
16 |
\item Thus all logical connectives $\neg, \vee, \wedge$ and equality testing $=$ can be implemented as programs with only safe arguments. |
17 |
\item Can add G\"odel's $\beta$ functions with a safe input: |
18 |
\end{itemize} |
19 |
|
20 |
|
21 |
\section{QPVBC} |
22 |
|
23 |
\subsection{Bellantoni's system $\pvbci{}$} |
24 |
|
25 |
\begin{definition} |
26 |
[Hierarchies] |
27 |
We define the following: |
28 |
\begin{itemize} |
29 |
\item $\fphi i$: $i$th level of functional polynomial hierarchy. I.e.\ $\Box_1$ = $\fptime$. |
30 |
\item $\mubci{i}$: $\mu$BC programs with $i-1$ nested $\mu$s, i.e., corresponds to $\fphi i$. |
31 |
\item $\pvbci i$: defined as $\pvbci{} + \Sigma^\sigma_i$-induction. |
32 |
\end{itemize} |
33 |
\end{definition} |
34 |
|
35 |
\begin{definition} |
36 |
[Provably total function] |
37 |
\end{definition} |
38 |
|
39 |
|
40 |
\subsection{Extensions by induction principles} |
41 |
|
42 |
|
43 |
|
44 |
\section{Soundness} |
45 |
We show that provably total functions of $\pvbci i$ are in $\fphi i$. |
46 |
|
47 |
The following is our main result: |
48 |
\begin{theorem} |
49 |
If $\pvbci i \proves \forall \vec u^\normal , \vec x^\sigma . \exists \vec y^\sigma. A(\vec u , \vec x , \vec y)$, then there are $\mubci i $ programs $\vec f (\vec u ; \vec x)$ such that $\pvbci i \proves\forall \vec u^\normal , \vec x^\sigma . A(\vec u , \vec x , \vec f (\vec u ; \vec x) ) $. |
50 |
\end{theorem} |
51 |
|
52 |
\begin{definition} |
53 |
[Witness predicate] |
54 |
The \emph{witness predicate} is a $\mubci{}$ program $\wit{\vec a}{A}$, parametrised by variables $\vec a$ and a formula $A$ whose free variables are amongst $\vec a$, defined as follows. |
55 |
If $A$ is a $\Pi_{i}$ formula then: |
56 |
\[ |
57 |
\begin{array}{rcl} |
58 |
\wit{\vec u; \vec x}{s=t} (\vec u ; \vec x, w) & \dfn & =(;s,t) \\ |
59 |
\smallskip |
60 |
\wit{\vec u; \vec x}{s\neq t} (\vec u ; \vec x, w) & \dfn & \neg (;=(;s,t)) \\ |
61 |
\smallskip |
62 |
\wit{\vec u ; \vec x}{A\cor B} (\vec u ; \vec x , w) & \dfn & \cor (; \wit{\vec u , \vec x}{A} (\vec u ; \vec x , w), \wit{\vec u , \vec x}{B} (\vec u ;\vec x, w) ) \\ |
63 |
\smallskip |
64 |
\wit{\vec u ; \vec x}{A\cand B} (\vec u ; \vec x , w) & \dfn & \cand(; \wit{\vec u , \vec x}{A} (\vec u ; \vec x , w), \wit{\vec u , \vec x}{B} (\vec u ;\vec x, w) ) \\ |
65 |
\smallskip |
66 |
\wit{\vec u ; \vec x}{\exists x^\safe . A(x)} (\vec u ;\vec x, w) & \dfn & \begin{cases} |
67 |
1 & \exists x^\safe . \wit{\vec u; \vec x, x }{A(x)} (\vec u ;\vec x , x, w) = 1 \\ |
68 |
0 & \text{otherwise} |
69 |
\end{cases} \\ |
70 |
\smallskip |
71 |
\wit{\vec u; \vec x}{\forall x^\safe . A(x)} (\vec u ;\vec x , w) & \dfn & |
72 |
\begin{cases} |
73 |
0 & \exists x^\sigma. \wit{\vec u ; \vec x , x}{ A(x)} (\vec u; \vec x , x) = 0 \\ |
74 |
1 & \text{otherwise} |
75 |
\end{cases} |
76 |
\end{array} |
77 |
\] |
78 |
We now define $\Wit{\vec a}{A}$ for a $\Sigma_{i+1}$-formula $A$ with free variables amongst $\vec a$. |
79 |
\[ |
80 |
\begin{array}{rcl} |
81 |
\Wit{\vec u ; \vec x}{A} (\vec u ; \vec x , w) & \dfn & \wit{\vec u ; \vec x}{A} (\vec u ; \vec x) \text{ if $A$ is $\Pi_i$} \\ |
82 |
\smallskip |
83 |
\Wit{\vec u ; \vec x}{A \cor B} (\vec u ; \vec x , \vec w^A , \vec w^B) & \dfn & \cor ( ; \Wit{\vec u ; \vec x}{A} (\vec u ; \vec x , \vec w^A) ,\Wit{\vec u ; \vec x}{B} (\vec u ; \vec x , \vec w^B) ) \\ |
84 |
\smallskip |
85 |
\Wit{\vec u ; \vec x}{A \cand B} (\vec u ; \vec x , \vec w^A , \vec w^B) & \dfn & \cand ( ; \Wit{\vec u ; \vec x}{A} (\vec u ; \vec x , \vec w^A) ,\Wit{\vec u ; \vec x}{B} (\vec u ; \vec x , \vec w^B) ) \\ |
86 |
\smallskip |
87 |
\Wit{\vec u ; \vec x}{\exists x^\safe . A(x)} (\vec u ; \vec x , \vec w , w) & \dfn & \Wit{\vec u ; \vec x , x}{A(x)} ( \vec u ; \vec x , w , \vec w ) |
88 |
\end{array} |
89 |
\] |
90 |
|
91 |
|
92 |
\end{definition} |
93 |
|
94 |
\nb{use (de)pairing to make sure only $i$ $\mu$s are used to express a $\Pi_i$ predicate.} |
95 |
|
96 |
\begin{proposition} |
97 |
For $\Sigma_{i+1}$ formulae $A$, $\Wit{\vec u ; \vec x}{A}$ is a $\mubci{i} $ program. |
98 |
\end{proposition} |
99 |
|
100 |
Before proving the main theorem, we will need the following `witnessing lemma': |
101 |
|
102 |
\begin{lemma} |
103 |
If $\pvbci{i+1} $ proves a $\Sigma^\safe_{i+1}$-sequent $\Gamma \seqar \Delta$ with free variables $\vec u^\normal , \vec x^\safe$ then there are $\mubci {i}$ functions $\vec f$ such that |
104 |
\[ |
105 |
\pvbci {i+1} \proves \Wit{\vec u , \vec x}{\bigwedge \Gamma} (\vec u ; \vec x , \vec w) \cimp \Wit{\vec u , \vec x}{\bigvee \Delta } (\vec u ; \vec x, \vec f (\vec u ; \vec x , \vec w) ) |
106 |
\] |
107 |
(we simply write $\Wit{\vec u ; \vec x}{A}(\vec u ; \vec x , \vec w)$, instead of $\Wit{\vec u ; \vec x}{A}(\vec u ; \vec x , \vec w) =1 $. |
108 |
\end{lemma} |
109 |
\begin{proof} |
110 |
By induction on the size of a $\pvbci{i+1} $ proof. |
111 |
Interesting steps below: |
112 |
\begin{itemize} |
113 |
\item $\neg$-right. (Can assume only applies to atomic formulae, and so no effect.) |
114 |
\item $\exists$-right. |
115 |
\[ |
116 |
\dfrac{\Gamma \seqar \Delta , A(t^\safe )}{ \Gamma \seqar \Delta, \exists x^\safe . A(x) } |
117 |
\] |
118 |
By the inductive hypothesis, have functions $\vec f(\vec u ; \vec x), \vec g (\vec u ; \vec x)$ such that, |
119 |
\[ |
120 |
\pvbci{i+1} \proves |
121 |
\Wit{\vec u ; \vec x}{\bigwedge \Gamma } (\vec u ; \vec x , \vec w) |
122 |
\cimp |
123 |
\left( |
124 |
\Wit{\vec u ; \vec x}{\bigvee \Delta} (\vec u ; \vec x , \vec f (\vec u ; \vec x , \vec w) ) |
125 |
\cor |
126 |
\Wit{\vec u ; \vec x}{A(t)} (\vec u ; \vec x , \vec g (\vec u ; \vec x , \vec w)) |
127 |
\right) |
128 |
\] |
129 |
(just use $t$ as one of the witness functions) |
130 |
\item $\forall$-right. (Must be a $\Pi_i$ formula, so forget witness and compute $\wit{}{}$) |
131 |
\item Contraction-right: |
132 |
\[ |
133 |
\dfrac{\Gamma \seqar \Delta , A ,A}{\Gamma \seqar \Delta, A} |
134 |
\] |
135 |
By infuctive hypothesis have functions $\vec f, \vec g^1 , \vec g^2$ such that: |
136 |
\[ |
137 |
todo |
138 |
\] |
139 |
(just use conditional with a call to $\Wit{}{}$) |
140 |
\item induction |
141 |
\end{itemize} |
142 |
\end{proof} |
143 |
|
144 |
\section{Completeness} |
145 |
Here we show that every $\mubci{i}$ function is definable in $\pvbci {i+1}$ |
146 |
|
147 |
|
148 |
\end{document} |