Statistiques
| Révision :

root / CharacterizingPH / qpvbc.tex @ 148

Historique | Voir | Annoter | Télécharger (5,75 ko)

1
\documentclass{amsart}
2
\usepackage{amsthm}
3
	\usepackage{hyperref}
4
	\usepackage[dvipsnames]{xcolor}
5

    
6

    
7
\input{macros}
8

    
9
\begin{document}
10

    
11

    
12

    
13
	\section{Extending the basic BC framework}
14
\begin{itemize}
15
	\item 	Any polynomial-time predicate can be conservatively added to BC with only safe inputs.
16
	\item Thus all logical connectives $\neg, \vee, \wedge$ and equality testing $=$ can be implemented as programs with only safe arguments. 
17
	\item Can add G\"odel's $\beta$ functions with a safe input:
18
\end{itemize}	
19

    
20
	
21
\section{QPVBC}
22

    
23
\subsection{Bellantoni's system $\pvbci{}$}
24

    
25
\begin{definition}
26
	[Hierarchies]
27
	We define the following:
28
	\begin{itemize}
29
		\item $\fphi i$: $i$th level of functional polynomial hierarchy. I.e.\ $\Box_1$ = $\fptime$.
30
		\item $\mubci{i}$: $\mu$BC programs with $i-1$ nested $\mu$s, i.e., corresponds to $\fphi i$.
31
		\item $\pvbci i$: defined as $\pvbci{} + \Sigma^\sigma_i$-induction.
32
	\end{itemize}
33
\end{definition}
34

    
35
\begin{definition}
36
	[Provably total function]	
37
\end{definition}
38

    
39

    
40
\subsection{Extensions by induction principles}
41

    
42

    
43

    
44
\section{Soundness}
45
We show that provably total functions of $\pvbci i$ are in $\fphi i$.
46

    
47
The following is our main result:
48
\begin{theorem}
49
	If $\pvbci i \proves \forall \vec u^\normal , \vec x^\sigma . \exists \vec y^\sigma. A(\vec u , \vec x , \vec y)$, then there are $\mubci i $ programs $\vec f (\vec u ; \vec x)$ such that $\pvbci i \proves\forall \vec u^\normal , \vec x^\sigma . A(\vec u , \vec x , \vec f (\vec u ; \vec x) )  $.
50
\end{theorem}
51

    
52
\begin{definition}
53
	[Witness predicate]
54
	The \emph{witness predicate} is a $\mubci{}$ program $\wit{\vec a}{A}$, parametrised by variables $\vec a$ and a formula $A$ whose free variables are amongst $\vec a$, defined as follows.
55
	If $A$ is a $\Pi_{i}$ formula then:
56
	\[
57
		\begin{array}{rcl}
58
		\wit{\vec u; \vec x}{s=t} (\vec u ; \vec x, w) & \dfn & =(;s,t) \\
59
		\smallskip
60
				\wit{\vec u; \vec x}{s\neq t} (\vec u ; \vec x, w) & \dfn & \neg (;=(;s,t)) \\
61
				\smallskip
62
		\wit{\vec u ; \vec x}{A\cor B} (\vec u ; \vec x , w) & \dfn & \cor (; \wit{\vec u , \vec x}{A} (\vec u ; \vec x , w), \wit{\vec u , \vec x}{B} (\vec u ;\vec x, w) ) \\
63
		\smallskip
64
			\wit{\vec u ; \vec x}{A\cand B} (\vec u ; \vec x , w) & \dfn & \cand(; \wit{\vec u , \vec x}{A} (\vec u ; \vec x , w), \wit{\vec u , \vec x}{B} (\vec u ;\vec x, w) ) \\
65
			\smallskip
66
		\wit{\vec u ; \vec x}{\exists x^\safe . A(x)} (\vec u ;\vec x,  w) & \dfn & \begin{cases}
67
		1 & \exists x^\safe . \wit{\vec u; \vec x, x }{A(x)} (\vec u ;\vec x , x, w) = 1 \\
68
		0 & \text{otherwise} 
69
		\end{cases} \\
70
		\smallskip
71
		\wit{\vec u; \vec x}{\forall x^\safe . A(x)} (\vec u ;\vec x , w) & \dfn & 
72
		\begin{cases}
73
		0 & \exists x^\sigma. \wit{\vec u ; \vec x , x}{ A(x)} (\vec u; \vec x , x) = 0 \\
74
		1 & \text{otherwise}
75
		\end{cases}
76
		\end{array}
77
	\]
78
	We now define $\Wit{\vec a}{A}$ for a $\Sigma_{i+1}$-formula $A$ with free variables amongst $\vec a$.
79
	\[
80
	\begin{array}{rcl}
81
	\Wit{\vec u ; \vec x}{A} (\vec u ; \vec x , w) & \dfn & \wit{\vec u ; \vec x}{A} (\vec u ; \vec x)  \text{ if $A$ is $\Pi_i$} \\
82
	\smallskip
83
	\Wit{\vec u ; \vec x}{A \cor B} (\vec u ; \vec x , \vec w^A , \vec w^B) & \dfn & \cor ( ; \Wit{\vec u ; \vec x}{A} (\vec u ; \vec x , \vec w^A) ,\Wit{\vec u ; \vec x}{B} (\vec u ; \vec x , \vec w^B)  )  \\
84
	\smallskip
85
		\Wit{\vec u ; \vec x}{A \cand B} (\vec u ; \vec x , \vec w^A , \vec w^B) & \dfn & \cand ( ; \Wit{\vec u ; \vec x}{A} (\vec u ; \vec x , \vec w^A) ,\Wit{\vec u ; \vec x}{B} (\vec u ; \vec x , \vec w^B)  )  \\
86
	\smallskip
87
	\Wit{\vec u ; \vec x}{\exists x^\safe . A(x)} (\vec u ; \vec x , \vec w , w) & \dfn & \Wit{\vec u ; \vec x , x}{A(x)} ( \vec u ; \vec x , w , \vec w )
88
	\end{array}
89
	\]
90
	
91
	
92
\end{definition}
93

    
94
\nb{use (de)pairing to make sure only $i$ $\mu$s are used to express a $\Pi_i$ predicate.}
95

    
96
\begin{proposition}
97
	For $\Sigma_{i+1}$ formulae $A$, $\Wit{\vec u ; \vec x}{A}$ is a $\mubci{i} $ program.
98
\end{proposition}
99

    
100
Before proving the main theorem, we will need the following `witnessing lemma':
101

    
102
\begin{lemma}
103
	If $\pvbci{i+1} $ proves a $\Sigma^\safe_{i+1}$-sequent $\Gamma \seqar \Delta$ with free variables $\vec u^\normal , \vec x^\safe$ then there are $\mubci {i}$ functions $\vec f$ such that 
104
	\[
105
	\pvbci {i+1} \proves \Wit{\vec u , \vec x}{\bigwedge \Gamma} (\vec u ; \vec x , \vec w) \cimp \Wit{\vec u  , \vec x}{\bigvee \Delta } (\vec u ; \vec x, \vec f (\vec u ; \vec x , \vec w) )
106
	\]
107
	(we simply write $\Wit{\vec u ; \vec x}{A}(\vec u ; \vec x , \vec w)$, instead of $\Wit{\vec u ; \vec x}{A}(\vec u ; \vec x , \vec w) =1 $.
108
\end{lemma}
109
\begin{proof}
110
	By induction on the size of a $\pvbci{i+1} $ proof. 
111
	Interesting steps below:
112
	\begin{itemize}
113
		\item $\neg$-right. (Can assume only applies to atomic formulae, and so no effect.)
114
		\item $\exists$-right.
115
		\[
116
		\dfrac{\Gamma \seqar \Delta , A(t^\safe )}{ \Gamma \seqar \Delta, \exists x^\safe . A(x) }
117
		\]
118
		By the inductive hypothesis, have functions $\vec f(\vec u ; \vec x), \vec g (\vec u ; \vec x)$ such that,
119
		\[
120
		\pvbci{i+1} \proves 
121
		\Wit{\vec u ; \vec x}{\bigwedge \Gamma } (\vec u ; \vec x , \vec w)
122
		\cimp
123
		\left(
124
		\Wit{\vec u ; \vec x}{\bigvee \Delta} (\vec u ; \vec x , \vec f (\vec u ; \vec x , \vec w) )
125
		\cor
126
		\Wit{\vec u ; \vec x}{A(t)} (\vec u ; \vec x , \vec g (\vec u ; \vec x , \vec w))
127
		\right)
128
		\]
129
		(just use $t$ as one of the witness functions)
130
		\item $\forall$-right. (Must be a $\Pi_i$ formula, so forget witness and compute $\wit{}{}$)
131
		\item Contraction-right:
132
		\[
133
		\dfrac{\Gamma  \seqar \Delta , A ,A}{\Gamma \seqar \Delta, A}
134
		\]
135
		By infuctive hypothesis have functions $\vec f, \vec g^1 , \vec g^2$ such that:
136
		\[
137
		todo
138
		\]
139
		(just use conditional with a call to $\Wit{}{}$)
140
		\item induction
141
	\end{itemize}
142
\end{proof}
143

    
144
\section{Completeness}
145
Here we show that every $\mubci{i}$ function is definable in $\pvbci {i+1}$
146

    
147

    
148
\end{document}