Révision 148 CharacterizingPH/qpvbc.tex

qpvbc.tex (revision 148)
7 7
\input{macros}
8 8

  
9 9
\begin{document}
10

  
11

  
12

  
10 13
	\section{Extending the basic BC framework}
11 14
\begin{itemize}
12 15
	\item 	Any polynomial-time predicate can be conservatively added to BC with only safe inputs.
......
18 21
\section{QPVBC}
19 22

  
20 23
\subsection{Bellantoni's system $\pvbci{}$}
21
(give definition)
22 24

  
25
\begin{definition}
26
	[Hierarchies]
27
	We define the following:
28
	\begin{itemize}
29
		\item $\fphi i$: $i$th level of functional polynomial hierarchy. I.e.\ $\Box_1$ = $\fptime$.
30
		\item $\mubci{i}$: $\mu$BC programs with $i-1$ nested $\mu$s, i.e., corresponds to $\fphi i$.
31
		\item $\pvbci i$: defined as $\pvbci{} + \Sigma^\sigma_i$-induction.
32
	\end{itemize}
33
\end{definition}
23 34

  
24 35
\begin{definition}
25 36
	[Provably total function]	
......
27 38

  
28 39

  
29 40
\subsection{Extensions by induction principles}
30
We define the systems $\pvbci i$ as $\pvbci{} + \Sigma^\sigma_i$-induction.
31 41

  
42

  
43

  
32 44
\section{Soundness}
33 45
We show that provably total functions of $\pvbci i$ are in $\fphi i$.
34 46

  
......
130 142
\end{proof}
131 143

  
132 144
\section{Completeness}
145
Here we show that every $\mubci{i}$ function is definable in $\pvbci {i+1}$
133 146

  
134 147

  
135 148
\end{document}

Formats disponibles : Unified diff