root / CharacterizingPH / qpvbc.tex @ 146
Historique | Voir | Annoter | Télécharger (4,34 ko)
1 |
\documentclass{amsart} |
---|---|
2 |
\usepackage{amsthm} |
3 |
\usepackage{hyperref} |
4 |
\usepackage[dvipsnames]{xcolor} |
5 |
|
6 |
\input{macros} |
7 |
|
8 |
\begin{document} |
9 |
\section{Extending the basic BC framework} |
10 |
\begin{itemize} |
11 |
\item Any polynomial-time predicate can be conservatively added to BC with only safe inputs. |
12 |
\item Thus all logical connectives $\neg, \vee, \wedge$ and equality testing $=$ can be implemented as programs with only safe arguments. |
13 |
\item Can add G\"odel's $\beta$ functions with a safe input: |
14 |
\end{itemize} |
15 |
|
16 |
|
17 |
\section{QPVBC} |
18 |
|
19 |
\subsection{Bellantoni's system $\pvbci{}$} |
20 |
(give definition) |
21 |
|
22 |
|
23 |
\begin{definition} |
24 |
[Provably total function] |
25 |
\end{definition} |
26 |
|
27 |
|
28 |
\subsection{Extensions by induction principles} |
29 |
We define the systems $\pvbci i$ as $\pvbci{} + \Sigma^\sigma_i$-induction. |
30 |
|
31 |
\section{Soundness} |
32 |
We show that provably total functions of $\pvbci i$ are in $\fphi i$. |
33 |
|
34 |
The following is our main result: |
35 |
\begin{theorem} |
36 |
If $\pvbci i \proves \forall \vec u^\normal , \vec x^\sigma . \exists \vec y^\sigma. A(\vec u , \vec x , \vec y)$, then there are $\mubci i $ programs $\vec f (\vec u ; \vec x)$ such that $\pvbci i \proves\forall \vec u^\normal , \vec x^\sigma . A(\vec u , \vec x , \vec f (\vec u ; \vec x) ) $. |
37 |
\end{theorem} |
38 |
|
39 |
\begin{definition} |
40 |
[Witness predicate] |
41 |
The \emph{witness predicate} is a $\mubci{}$ program $\wit{\vec a}{A}$, parametrised by variables $\vec a$ and a formula $A$ whose free variables are amongst $\vec a$, defined as follows. |
42 |
If $A$ is a $\Pi_{i}$ formula then: |
43 |
\[ |
44 |
\begin{array}{rcl} |
45 |
\wit{\vec u; \vec x}{s=t} (\vec u ; \vec x, w) & \dfn & =(;s,t) \\ |
46 |
\smallskip |
47 |
\wit{\vec u; \vec x}{s\neq t} (\vec u ; \vec x, w) & \dfn & \neg (;=(;s,t)) \\ |
48 |
\smallskip |
49 |
\wit{\vec u ; \vec x}{A\cor B} (\vec u ; \vec x , w) & \dfn & \cor (; \wit{\vec u , \vec x}{A} (\vec u ; \vec x , w), \wit{\vec u , \vec x}{B} (\vec u ;\vec x, w) ) \\ |
50 |
\smallskip |
51 |
\wit{\vec u ; \vec x}{A\cand B} (\vec u ; \vec x , w) & \dfn & \cand(; \wit{\vec u , \vec x}{A} (\vec u ; \vec x , w), \wit{\vec u , \vec x}{B} (\vec u ;\vec x, w) ) \\ |
52 |
\smallskip |
53 |
\wit{\vec u ; \vec x}{\exists x^\safe . A(x)} (\vec u ;\vec x, w) & \dfn & \begin{cases} |
54 |
1 & \exists x^\safe . \wit{\vec u; \vec x, x }{A(x)} (\vec u ;\vec x , x, w) = 1 \\ |
55 |
0 & \text{otherwise} |
56 |
\end{cases} \\ |
57 |
\smallskip |
58 |
\wit{\vec u; \vec x}{\forall x^\safe . A(x)} (\vec u ;\vec x , w) & \dfn & |
59 |
\begin{cases} |
60 |
0 & \exists x^\sigma. \wit{\vec u ; \vec x , x}{ A(x)} (\vec u; \vec x , x) = 0 \\ |
61 |
1 & \text{otherwise} |
62 |
\end{cases} |
63 |
\end{array} |
64 |
\] |
65 |
We now define $\Wit{\vec a}{A}$ for a $\Sigma_{i+1}$-formula $A$ with free variables amongst $\vec a$. |
66 |
\[ |
67 |
\begin{array}{rcl} |
68 |
\Wit{\vec u ; \vec x}{A} (\vec u ; \vec x , w) & \dfn & \wit{\vec u ; \vec x}{A} (\vec u ; \vec x) \text{ if $A$ is $\Pi_i$} \\ |
69 |
\smallskip |
70 |
\Wit{\vec u ; \vec x}{A \cor B} (\vec u ; \vec x , \vec w^A , \vec w^B) & \dfn & \cor ( ; \Wit{\vec u ; \vec x}{A} (\vec u ; \vec x , \vec w^A) ,\Wit{\vec u ; \vec x}{B} (\vec u ; \vec x , \vec w^B) ) \\ |
71 |
\smallskip |
72 |
\Wit{\vec u ; \vec x}{A \cand B} (\vec u ; \vec x , \vec w^A , \vec w^B) & \dfn & \cand ( ; \Wit{\vec u ; \vec x}{A} (\vec u ; \vec x , \vec w^A) ,\Wit{\vec u ; \vec x}{B} (\vec u ; \vec x , \vec w^B) ) \\ |
73 |
\smallskip |
74 |
\Wit{\vec u ; \vec x}{\exists x^\safe . A(x)} (\vec u ; \vec x , \vec w , w) & \dfn & \Wit{\vec u ; \vec x , x}{A(x)} ( \vec u ; \vec x , w , \vec w ) |
75 |
\end{array} |
76 |
\] |
77 |
|
78 |
|
79 |
\end{definition} |
80 |
|
81 |
\nb{use (de)pairing to make sure only $i$ $\mu$s are used to express a $\Pi_i$ predicate.} |
82 |
|
83 |
\begin{proposition} |
84 |
For $\Sigma_{i+1}$ formulae $A$, $\Wit{\vec u ; \vec x}{A}$ is a $\mubci{i} $ program. |
85 |
\end{proposition} |
86 |
|
87 |
Before proving the main theorem, we will need the following `witnessing lemma': |
88 |
|
89 |
\begin{lemma} |
90 |
If $\pvbci{i+1} $ proves a $\Sigma^\safe_{i+1}$-sequent $\Gamma \seqar \Delta$ with free variables $\vec u^\normal , \vec x^\safe$ then there are $\mubci {i}$ functions $\vec f$ such that $\pvbci {i+1} \proves \Wit{\vec u , \vec x}{\bigwedge \Gamma} (\vec u ; \vec x , \vec y) \cimp \Wit{\vec u , \vec x}{\bigvee \Delta } (\vec u ; \vec x, \vec f (\vec u ; \vec x , \vec y) )$. |
91 |
\end{lemma} |
92 |
\begin{proof} |
93 |
By induction on the size of a $\pvbci{i+1} $ proof. |
94 |
Interesting steps below: |
95 |
\begin{itemize} |
96 |
\item $\neg$-right |
97 |
\item $\exists$-right |
98 |
\item $\forall$-right |
99 |
\item Contraction-right: |
100 |
\item induction |
101 |
\end{itemize} |
102 |
\end{proof} |
103 |
|
104 |
\section{Completeness} |
105 |
|
106 |
|
107 |
\end{document} |