Révision 146

CharacterizingPH/qpvbc.tex (revision 146)
1
\documentclass{amsart}
2
\usepackage{amsthm}
3
	\usepackage{hyperref}
4
	\usepackage[dvipsnames]{xcolor}
5

  
6
\input{macros}
7

  
8
\begin{document}
9
	\section{Extending the basic BC framework}
10
\begin{itemize}
11
	\item 	Any polynomial-time predicate can be conservatively added to BC with only safe inputs.
12
	\item Thus all logical connectives $\neg, \vee, \wedge$ and equality testing $=$ can be implemented as programs with only safe arguments. 
13
	\item Can add G\"odel's $\beta$ functions with a safe input:
14
\end{itemize}	
15

  
16
	
17
\section{QPVBC}
18

  
19
\subsection{Bellantoni's system $\pvbci{}$}
20
(give definition)
21

  
22

  
23
\begin{definition}
24
	[Provably total function]	
25
\end{definition}
26

  
27

  
28
\subsection{Extensions by induction principles}
29
We define the systems $\pvbci i$ as $\pvbci{} + \Sigma^\sigma_i$-induction.
30

  
31
\section{Soundness}
32
We show that provably total functions of $\pvbci i$ are in $\fphi i$.
33

  
34
The following is our main result:
35
\begin{theorem}
36
	If $\pvbci i \proves \forall \vec u^\normal , \vec x^\sigma . \exists \vec y^\sigma. A(\vec u , \vec x , \vec y)$, then there are $\mubci i $ programs $\vec f (\vec u ; \vec x)$ such that $\pvbci i \proves\forall \vec u^\normal , \vec x^\sigma . A(\vec u , \vec x , \vec f (\vec u ; \vec x) )  $.
37
\end{theorem}
38

  
39
\begin{definition}
40
	[Witness predicate]
41
	The \emph{witness predicate} is a $\mubci{}$ program $\wit{\vec a}{A}$, parametrised by variables $\vec a$ and a formula $A$ whose free variables are amongst $\vec a$, defined as follows.
42
	If $A$ is a $\Pi_{i}$ formula then:
43
	\[
44
		\begin{array}{rcl}
45
		\wit{\vec u; \vec x}{s=t} (\vec u ; \vec x, w) & \dfn & =(;s,t) \\
46
		\smallskip
47
				\wit{\vec u; \vec x}{s\neq t} (\vec u ; \vec x, w) & \dfn & \neg (;=(;s,t)) \\
48
				\smallskip
49
		\wit{\vec u ; \vec x}{A\cor B} (\vec u ; \vec x , w) & \dfn & \cor (; \wit{\vec u , \vec x}{A} (\vec u ; \vec x , w), \wit{\vec u , \vec x}{B} (\vec u ;\vec x, w) ) \\
50
		\smallskip
51
			\wit{\vec u ; \vec x}{A\cand B} (\vec u ; \vec x , w) & \dfn & \cand(; \wit{\vec u , \vec x}{A} (\vec u ; \vec x , w), \wit{\vec u , \vec x}{B} (\vec u ;\vec x, w) ) \\
52
			\smallskip
53
		\wit{\vec u ; \vec x}{\exists x^\safe . A(x)} (\vec u ;\vec x,  w) & \dfn & \begin{cases}
54
		1 & \exists x^\safe . \wit{\vec u; \vec x, x }{A(x)} (\vec u ;\vec x , x, w) = 1 \\
55
		0 & \text{otherwise} 
56
		\end{cases} \\
57
		\smallskip
58
		\wit{\vec u; \vec x}{\forall x^\safe . A(x)} (\vec u ;\vec x , w) & \dfn & 
59
		\begin{cases}
60
		0 & \exists x^\sigma. \wit{\vec u ; \vec x , x}{ A(x)} (\vec u; \vec x , x) = 0 \\
61
		1 & \text{otherwise}
62
		\end{cases}
63
		\end{array}
64
	\]
65
	We now define $\Wit{\vec a}{A}$ for a $\Sigma_{i+1}$-formula $A$ with free variables amongst $\vec a$.
66
	\[
67
	\begin{array}{rcl}
68
	\Wit{\vec u ; \vec x}{A} (\vec u ; \vec x , w) & \dfn & \wit{\vec u ; \vec x}{A} (\vec u ; \vec x)  \text{ if $A$ is $\Pi_i$} \\
69
	\smallskip
70
	\Wit{\vec u ; \vec x}{A \cor B} (\vec u ; \vec x , \vec w^A , \vec w^B) & \dfn & \cor ( ; \Wit{\vec u ; \vec x}{A} (\vec u ; \vec x , \vec w^A) ,\Wit{\vec u ; \vec x}{B} (\vec u ; \vec x , \vec w^B)  )  \\
71
	\smallskip
72
		\Wit{\vec u ; \vec x}{A \cand B} (\vec u ; \vec x , \vec w^A , \vec w^B) & \dfn & \cand ( ; \Wit{\vec u ; \vec x}{A} (\vec u ; \vec x , \vec w^A) ,\Wit{\vec u ; \vec x}{B} (\vec u ; \vec x , \vec w^B)  )  \\
73
	\smallskip
74
	\Wit{\vec u ; \vec x}{\exists x^\safe . A(x)} (\vec u ; \vec x , \vec w , w) & \dfn & \Wit{\vec u ; \vec x , x}{A(x)} ( \vec u ; \vec x , w , \vec w )
75
	\end{array}
76
	\]
77
	
78
	
79
\end{definition}
80

  
81
\nb{use (de)pairing to make sure only $i$ $\mu$s are used to express a $\Pi_i$ predicate.}
82

  
83
\begin{proposition}
84
	For $\Sigma_{i+1}$ formulae $A$, $\Wit{\vec u ; \vec x}{A}$ is a $\mubci{i} $ program.
85
\end{proposition}
86

  
87
Before proving the main theorem, we will need the following `witnessing lemma':
88

  
89
\begin{lemma}
90
	If $\pvbci{i+1} $ proves a $\Sigma^\safe_{i+1}$-sequent $\Gamma \seqar \Delta$ with free variables $\vec u^\normal , \vec x^\safe$ then there are $\mubci {i}$ functions $\vec f$ such that $\pvbci {i+1} \proves \Wit{\vec u , \vec x}{\bigwedge \Gamma} (\vec u ; \vec x , \vec y) \cimp \Wit{\vec u  , \vec x}{\bigvee \Delta } (\vec u ; \vec x, \vec f (\vec u ; \vec x , \vec y) )$.
91
\end{lemma}
92
\begin{proof}
93
	By induction on the size of a $\pvbci{i+1} $ proof. 
94
	Interesting steps below:
95
	\begin{itemize}
96
		\item $\neg$-right
97
		\item $\exists$-right
98
		\item $\forall$-right
99
		\item Contraction-right:
100
		\item induction
101
	\end{itemize}
102
\end{proof}
103

  
104
\section{Completeness}
105

  
106

  
107
\end{document}

Formats disponibles : Unified diff