Révision 145 CharacterizingPH/soundness.tex

soundness.tex (revision 145)
119 119
	\end{cases} 
120 120
	\end{array}
121 121
	\]
122
	\item Induction. NB: Can assume no side-formulae on the right!!
123
	\[
124
	\dfrac{\Box N(a), \Gamma, A(a) \seqar A(s_i a)}{\Box N(s), \Gamma , A(0) \seqar A(s)}
125
	\]
126
	We need to keep track of all the terms in the witness predicate.
127
	\[
128
%	\begin{array}{rl}
129
%	&\wit{a, t(a), t(s_i a), \vec t}{LHS} (u , \vec u ; \vec x , \vec y)
130
%	\\
131
%	\implies & 
132
%	\wit{a , t(a), t(s_i a), \vec t}{A(s_i a)} (; \vec f^A (u , \vec u ; \vec x , \vec y)  )
133
%	\vee
134
%	\wit{a , t(a), t(s_i a), \vec t}{\bigvee \Delta} (; \vec f^\Delta (u , \vec u ; \vec x , \vec y)  )
135
%	\end{array}
136
\wit{a, t(a), t(s_i a), \vec t}{LHS} (u , \vec u ; \vec x , \vec y)
137
\implies 
138
\wit{a , t(a), t(s_i a), \vec t}{A(s_i a)} (; \vec f^i (u , \vec u ; \vec x , \vec y)  )
139
	\]
140
	Define $\vec g$ by safe recursion as follows:
141
	\[
142
	\begin{array}{rcl}
143
	\vec g (0 , \vec u ; \vec x , \vec y) & \dfn & \vec y \\
144
	\vec g (s_i u, \vec u ; \vec x , \vec y) & \dfn & \vec f^i ( u, \vec u; \vec x, \vec g (u, \vec u ; \vec x , \vec y) )
145
	\end{array}
146
	\]
122 147
	\end{itemize}
123 148
	\subsection{Proof of correctness}
124 149
	

Formats disponibles : Unified diff