Révision 144 CharacterizingPH/soundness.tex
soundness.tex (revision 144) | ||
---|---|---|
24 | 24 |
\smallskip |
25 | 25 |
\wit{t}{N(t)} (;x) & \dfn & =(;x,t)\\ |
26 | 26 |
\smallskip |
27 |
\wit{t}{\Box N(t)} (u;) & \dfn & =(;u,t) \\ |
|
28 |
\smallskip |
|
27 | 29 |
\wit{\vec t}{A\star B} (;x) & \dfn & \star (; \wit{\vec t}{A} (;x), \wit{\vec t}{B} (;x) ) \\ |
28 | 30 |
\smallskip |
29 | 31 |
\wit{\vec t}{\exists x^N . A(x)} (;x) & \dfn & \begin{cases} |
... | ... | |
39 | 41 |
\end{array} |
40 | 42 |
\] |
41 | 43 |
|
44 |
(Notice that, by free-cut elimination, $\Box$-formulae are always of the form $\Box N(t)$, so any composite formulae can be assumed to have only safe arguments. |
|
45 |
We can also assume that they always occur on the LHS of a sequent.) |
|
42 | 46 |
\subsection{Witness predicate for $\Sigma_i$ formulae} |
43 | 47 |
% We give the witness predicate for $\Sigma_i$ formulae assumed to be in prenex form. |
44 | 48 |
When $A,B$ are $\Sigma_{i}$ we define: |
... | ... | |
65 | 69 |
We define the extracted programs inductively on a free-cut free proof. |
66 | 70 |
|
67 | 71 |
\begin{itemize} |
68 |
\item $\forall$ cases: auxiliary formula ($A$) must be $\Pi_{i-1}$ by free-cut elimination.
|
|
72 |
\item $\forall$ right case. Auxiliary formula $A$ must be $\Pi_{i-1}$ by free-cut elimination.
|
|
69 | 73 |
\[ |
70 | 74 |
\dfrac{N(a), \Gamma \seqar \Delta , A(a)}{\Gamma \seqar \Delta , \forall x^N. A(x)} |
71 | 75 |
\] |
72 |
|
|
76 |
By the inductive hypothesis we have functions $\vec f^\Delta , \vec f^A$ such that: |
|
77 |
\[ |
|
78 |
\wit{a , \vec t}{N(a)} (;x) |
|
79 |
\wedge |
|
80 |
\wit{a , \vec t}{\bigwedge \Gamma} (\vec u; \vec x) |
|
81 |
\implies |
|
82 |
\wit{a , \vec t}{\bigvee \Delta}{ (; \vec f^\Delta (\vec u ; x , \vec x))} |
|
83 |
\vee |
|
84 |
\wit{a , \vec t}{ A} (; \vec f^A (\vec u ; x , \vec x) ) |
|
85 |
\] |
|
86 |
Since $A$ is $\Pi_{i-1}$ we can forget about $\vec f^A$. |
|
87 |
We define $\vec g^\Delta , \vec g^{\forall x^N . A}$ as follows: |
|
88 |
\[ |
|
89 |
\begin{array}{rcl} |
|
90 |
\vec g^{\forall x^N . A} (\vec u ; \vec x) & \dfn & 0 \\ |
|
91 |
\vec g^\Delta (\vec u ; \vec x) & \dfn & |
|
92 |
\vec f^\Delta ( \vec u ; \mu a^N . ( \wit{a , \vec t}{A} (;0) = 0 ) , \vec x ) |
|
93 |
\end{array} |
|
94 |
\] |
|
95 |
(Notice that the minimisation program has the same complexity as the witness predicate for $\forall x^N . A(x)$, i.e.\ $\Pi_{i-1}$.) |
|
96 |
\item Contraction right case. Need to test the witness predicate using conditional. (No need for $\mu$s.). |
|
97 |
Given such a step, |
|
98 |
\[ |
|
99 |
\dfrac{\Gamma \seqar \Delta , A , A}{\Gamma \seqar \Delta , A} |
|
100 |
\] |
|
101 |
by the inductive hypothesis we have programs $\vec f^\Delta , \vec f^0 , \vec f^1$ such that: |
|
102 |
\[ |
|
103 |
\wit{\vec t}{\bigwedge \Gamma} (\vec u ; \vec x) |
|
104 |
\implies |
|
105 |
\wit{\vec t}{\bigvee \Delta} (; \vec f^\Delta (\vec u ; \vec x) ) |
|
106 |
\vee |
|
107 |
\wit{\vec t}{A} (;\vec f^0 (\vec u ; \vec x)) |
|
108 |
\vee |
|
109 |
\wit{\vec t}{A} (; \vec f^1 (\vec u ; \vec x)) |
|
110 |
\] |
|
111 |
Construct the programs $\vec g^\Delta, \vec g^A$ as follows: |
|
112 |
\[ |
|
113 |
\begin{array}{rcl} |
|
114 |
\vec g^\Delta (\vec u ; \vec x) & \dfn & \vec f^\Delta (\vec u ; \vec x) \\ |
|
115 |
\vec g^A (\vec u; \vec x) & \dfn & |
|
116 |
\begin{cases} |
|
117 |
\vec f^0 (\vec u ; \vec x) & \wit{\vec t}{A} (;\vec f^0(\vec u ; \vec x) =1 ) \\ |
|
118 |
\vec f^1 (\vec u ; \vec x) & \text{otherwise} |
|
119 |
\end{cases} |
|
120 |
\end{array} |
|
121 |
\] |
|
73 | 122 |
\end{itemize} |
74 | 123 |
\subsection{Proof of correctness} |
75 | 124 |
|
Formats disponibles : Unified diff