Révision 144 CharacterizingPH/soundness.tex

soundness.tex (revision 144)
24 24
	\smallskip
25 25
	\wit{t}{N(t)} (;x) & \dfn & =(;x,t)\\
26 26
	\smallskip
27
	\wit{t}{\Box N(t)} (u;) & \dfn & =(;u,t) \\
28
	\smallskip
27 29
	\wit{\vec t}{A\star B} (;x) & \dfn & \star (; \wit{\vec t}{A} (;x), \wit{\vec t}{B} (;x) ) \\
28 30
	\smallskip
29 31
	\wit{\vec t}{\exists x^N . A(x)} (;x) & \dfn & \begin{cases}
......
39 41
	\end{array}
40 42
	\]
41 43
	
44
	(Notice that, by free-cut elimination, $\Box$-formulae are always of the form $\Box N(t)$, so any composite formulae can be assumed to have only safe arguments. 
45
	We can also assume that they always occur on the LHS of a sequent.)
42 46
	\subsection{Witness predicate for $\Sigma_i$ formulae}
43 47
%	We give the witness predicate for $\Sigma_i$ formulae assumed to be in prenex form.
44 48
	When $A,B$ are $\Sigma_{i}$ we define:
......
65 69
	We define the extracted programs inductively on a free-cut free proof.
66 70
	
67 71
	\begin{itemize}
68
		\item $\forall$ cases: auxiliary formula ($A$) must be $\Pi_{i-1}$ by free-cut elimination.
72
	\item $\forall$ right case. Auxiliary formula $A$ must be $\Pi_{i-1}$ by free-cut elimination.
69 73
		\[
70 74
		\dfrac{N(a), \Gamma \seqar \Delta , A(a)}{\Gamma \seqar \Delta , \forall x^N. A(x)}
71 75
		\]
72
		
76
		By the inductive hypothesis we have functions $\vec f^\Delta , \vec f^A$ such that:
77
		\[
78
		\wit{a , \vec t}{N(a)} (;x)
79
		\wedge 
80
		\wit{a , \vec t}{\bigwedge \Gamma} (\vec u; \vec x)
81
		\implies
82
		\wit{a , \vec t}{\bigvee \Delta}{ (; \vec f^\Delta (\vec u ; x , \vec x))}
83
		\vee
84
		\wit{a , \vec t}{ A} (; \vec f^A (\vec u ; x , \vec x) )
85
		\]
86
		Since $A$ is $\Pi_{i-1}$ we can forget about $\vec f^A$.
87
		We define $\vec g^\Delta , \vec g^{\forall x^N . A}$ as follows:
88
		\[
89
		\begin{array}{rcl}
90
		\vec g^{\forall x^N . A} (\vec u ; \vec x) & \dfn & 0 \\
91
		\vec g^\Delta (\vec u ; \vec x) & \dfn & 
92
		\vec f^\Delta ( \vec u ;  \mu a^N . ( \wit{a , \vec t}{A} (;0) = 0 ) , \vec x )
93
		\end{array}
94
		\]
95
		(Notice that the minimisation program has the same complexity as the witness predicate for $\forall x^N . A(x)$, i.e.\ $\Pi_{i-1}$.)
96
	\item Contraction right case. Need to test the witness predicate using conditional. (No need for $\mu$s.).
97
	Given such a step,
98
	\[
99
	\dfrac{\Gamma \seqar \Delta , A , A}{\Gamma \seqar \Delta , A}
100
	\]
101
	by the inductive hypothesis we have programs $\vec f^\Delta , \vec f^0 , \vec f^1$ such that:
102
	\[
103
	\wit{\vec t}{\bigwedge \Gamma} (\vec u ; \vec x)
104
	\implies
105
	\wit{\vec t}{\bigvee \Delta} (; \vec f^\Delta (\vec u ; \vec x) )
106
	\vee
107
	\wit{\vec t}{A} (;\vec f^0 (\vec u ; \vec x))
108
	\vee
109
	\wit{\vec t}{A} (; \vec f^1 (\vec u ; \vec x))
110
	\]
111
	Construct the programs $\vec g^\Delta, \vec g^A$ as follows:
112
	\[
113
	\begin{array}{rcl}
114
	\vec g^\Delta (\vec u ; \vec x) & \dfn & \vec f^\Delta (\vec u ; \vec x) \\
115
	\vec g^A (\vec u; \vec x) & \dfn & 
116
	\begin{cases}
117
	\vec f^0 (\vec u ; \vec x) & \wit{\vec t}{A} (;\vec f^0(\vec u ; \vec x) =1 ) \\
118
	\vec f^1 (\vec u ; \vec x) & \text{otherwise}
119
	\end{cases} 
120
	\end{array}
121
	\]
73 122
	\end{itemize}
74 123
	\subsection{Proof of correctness}
75 124
	

Formats disponibles : Unified diff