Révision 143

CharacterizingPH/soundness.tex (revision 143)
1
\documentclass{amsart}
2
\usepackage{amsthm}
3

  
4

  
5
\input{macros}
6

  
7
\begin{document}
8
	\section{Logical operations as programs}
9
	
10
	Any polynomial-time predicate can be conservatively added to BC with only safe inputs.
11
	Thus all logical connectives $\neg, \vee, \wedge$ and equality testing $=$ can be implemented as programs with only safe arguments. 
12
	
13
	\section{Soundness}
14
	We show that any provably convergent function of $I\Sigma^{N}_i$ is in $\Box_i$.
15
	
16
	\subsection{Interpreting $\Pi_{i-1}$ formulae as programs}
17
	Each $\Pi_{i-1}$ formula is directly interpreted, as in usual WFM, as a descriptive program evaluating whether it is true or not.
18
	We define it by induction on formula structure:
19

  
20

  
21
	\[
22
	\begin{array}{rcl}
23
	\wit{s,t}{s=t} (;x) & \dfn & =(;s,t) \\
24
	\smallskip
25
	\wit{t}{N(t)} (;x) & \dfn & =(;x,t)\\
26
	\smallskip
27
	\wit{\vec t}{A\star B} (;x) & \dfn & \star (; \wit{\vec t}{A} (;x), \wit{\vec t}{B} (;x) ) \\
28
	\smallskip
29
	\wit{\vec t}{\exists x^N . A(x)} (;x) & \dfn & \begin{cases}
30
	1 & \exists a^N . \wit{a , \vec t}{A(a)} (;x) = 1 \\
31
	0 & \text{otherwise} 
32
	\end{cases} \\
33
	\smallskip
34
	\wit{\vec t}{\forall x^N . A(x)} (;x) & \dfn & 
35
	\begin{cases}
36
	0 & \exists a^N. \wit{a, \vec t}{ A(a)} (;x) = 0 \\
37
	1 & \text{otherwise}
38
	\end{cases}
39
	\end{array}
40
	\]
41
	
42
	\subsection{Witness predicate for $\Sigma_i$ formulae}
43
%	We give the witness predicate for $\Sigma_i$ formulae assumed to be in prenex form.
44
	When $A,B$ are $\Sigma_{i}$ we define:
45
		\[
46
		\begin{array}{rcl}
47
		\wit{\vec t}{A\star B} (;\vec x , \vec y) & \dfn & \star (; \wit{\vec t}{A} (;\vec x), \wit{\vec t}{B} (;\vec y) ) \\
48
		\smallskip
49
		\wit{\vec t}{\exists  x . A( x)} (; x, \vec x) & \dfn & \wit{a, \vec t}{A( a)}(;\vec x) \left[ x^N /  a\right]
50
		\end{array}
51
		\]
52
	(Notice that this covers all $\Sigma_i$ formulae).
53
	
54
	\subsection{Witness extraction invariant}
55
%	We will show the following result:
56
	
57
	We will show that, if there is a proof $\pi$ of $\Gamma \seqar \Delta$, then there are programs $\vec f$ such that:
58
	\[
59
	\wit{\vec t}{\bigwedge \Gamma} (; \vec x)
60
	\quad \implies \quad
61
	\wit{\vec t}{\bigvee \Delta } (; \vec f (; \vec x) )
62
	\]
63
	
64
	\subsection{Defining the programs}
65
	We define the extracted programs inductively on a free-cut free proof.
66
	
67
	\begin{itemize}
68
		\item $\forall$ cases: auxiliary formula ($A$) must be $\Pi_{i-1}$ by free-cut elimination.
69
		\[
70
		\dfrac{N(a), \Gamma \seqar \Delta , A(a)}{\Gamma \seqar \Delta , \forall x^N. A(x)}
71
		\]
72
		
73
	\end{itemize}
74
	\subsection{Proof of correctness}
75
	
76
\end{document}
CharacterizingPH/macros.tex (revision 143)
1
\newcommand{\wit}[2]{\mathit{Wit}^{#1}_{#2}}
2
\newcommand{\dfn}{:=}
3
\newcommand{\seqar}{\rightarrow}

Formats disponibles : Unified diff