Révision 140 CharacterizingPH/draft.tex
draft.tex (revision 140) | ||
---|---|---|
96 | 96 |
\hline |
97 | 97 |
% quantifiers & type-level\\ |
98 | 98 |
$\nc^i$ - $\ac^i$ & \cite{CloTak:1995:nc-ac}, \cite{Cook:2010:LFP:1734064} & - \\ |
99 |
$\ptime$ & $S^1_2$ \cite{Buss86book}, [app th?], $V^1$ \cite{Zambella96} \cite{Cook:2010:LFP:1734064} & $\mathit{LLL}$ \cite{Girard94:lll}, $\mathit{SLL}$ \cite{Lafont04} \\
|
|
99 |
$\ptime$ & $S^1_2$ \cite{Buss86book}, \cite{Strahm03}, $V^1$ \cite{Zambella96} \cite{Cook:2010:LFP:1734064} & $\mathit{LLL}$ \cite{Girard94:lll}, $\mathit{SLL}$ \cite{Lafont04} \\
|
|
100 | 100 |
$\Box_i$ & $S^i_2$ \cite{Buss86book}, Kahle-Oitavem & - \\ |
101 | 101 |
$\ph$& $S_2$ & - \\ |
102 |
$\pspace$& ? & ? \\
|
|
102 |
$\pspace$& ? & \cite{GaboardiMarionRonchi12} \\
|
|
103 | 103 |
% $k$-$\exptime$ & - & $\mathit{ELL}(k)$ \\ |
104 |
Elementary & $I\Delta_0 + \exp$ & $\mathit{ELL}$ |
|
104 |
Elementary & $I\Delta_0 + \exp$ & $\mathit{ELL}\; \cite{Girard94:lll}$
|
|
105 | 105 |
\end{tabular} |
106 | 106 |
|
107 | 107 |
\bigskip |
108 | 108 |
|
109 | 109 |
\noindent |
110 | 110 |
Thus, if we want an implicit characterisation of $\ph$, we should break the apparent (although not universal) link between `implicit' and `higher type'. |
111 |
If we restrict to the ground setting, where extracted programs do not make use of higher types, we have the following picture. |
|
111 |
%If we restrict to the ground setting, where extracted programs do not make use of higher types, we have the following picture.
|
|
112 | 112 |
|
113 |
% Now, if we restrict to the ground setting, where extracted programs do not make use of higher types, there are still several |
|
114 |
Now, if we zoom on the ground setting, where extracted programs do not make use of higher types, there are still several parameters by which the characterizations can vary, including: |
|
115 |
\begin{itemize} |
|
116 |
\item how are the functions specified ? By a formula, as in Peano arithmetic, by a first-order equational program, or by an applicative term in the style of combinatory algebra; |
|
117 |
\item what is the form of the extracted programs? A program of a bounded recursion class, e.g. of Cobham's algebra, or of a tiered recursion class, e.g. of Bellantoni-Cook's algebra. |
|
118 |
\end{itemize} |
|
119 |
We classify the characterizations from the literature according to these two parameters in the following table: |
|
113 | 120 |
\bigskip |
114 |
|
|
115 |
TODO: improve table to make clear columns and rows, explicit and implicit columns. |
|
116 |
|
|
117 |
\begin{tabular}{c|c|c|c} |
|
121 |
|
|
122 |
\begin{tabular}{c|c|c} |
|
118 | 123 |
{ |
119 | 124 |
%\small model of comp. $\backslash$ extracted program |
120 |
} & Cobham & mon. constraints & BC-like \\
|
|
125 |
} & bounded rec. programs & tiered rec. programs \\
|
|
121 | 126 |
\hline &&\\ |
122 |
formula & PH, $\square_i$&&\\
|
|
123 |
& bounded induction (Buss) &&\\
|
|
127 |
formula & PH, $\square_i$&\\ |
|
128 |
& bounded induction (Buss \cite{Buss86book}) &\\
|
|
124 | 129 |
\hline &&\\ |
125 |
equational &&& P\\
|
|
126 |
&&& (Leivant) \\
|
|
130 |
equational && P\\ |
|
131 |
&& (Leivant \cite{Leivant94:intrinsic-theories}) \\
|
|
127 | 132 |
\hline &&\\ |
128 |
applicative &&PH & P \\
|
|
129 |
&&(Kahle-Oitavem)& (Cantini)
|
|
133 |
applicative &P (Strahm \cite{Strahm03}) & P \\
|
|
134 |
&PH (Kahle-Oitavem \cite{KahOit:13:ph-levels})& (Cantini \cite{Cantini02})
|
|
130 | 135 |
\end{tabular} |
131 | 136 |
|
137 |
%TODO: improve table to make clear columns and rows, explicit and implicit columns. |
|
138 |
% |
|
139 |
%\begin{tabular}{c|c|c|c} |
|
140 |
% { |
|
141 |
% %\small model of comp. $\backslash$ extracted program |
|
142 |
% } & Cobham & mon. constraints & BC-like \\ |
|
143 |
% \hline &&\\ |
|
144 |
% formula & PH, $\square_i$&&\\ |
|
145 |
% & bounded induction (Buss) &&\\ |
|
146 |
% \hline &&\\ |
|
147 |
% equational &&& P\\ |
|
148 |
% &&& (Leivant) \\ |
|
149 |
% \hline &&\\ |
|
150 |
% applicative &&PH & P \\ |
|
151 |
% &&(Kahle-Oitavem)& (Cantini) |
|
152 |
%\end{tabular} |
|
153 |
|
|
132 | 154 |
\bigskip |
133 | 155 |
|
134 | 156 |
\noindent |
135 |
Our goal is to extend the implicit approach, via variations of Bellantoni-Cook (BC) programs, to the whole of the polynomial hierarchy. |
|
157 |
Our goal is to extend the approach using extraction of programs of a tiered recursion class (second row), using the equational style of specification (second line), to the whole of the polynomial hierarchy, so PH and the $\square_i$ levels. |
|
158 |
%Our goal is to extend the implicit approach, via variations of Bellantoni-Cook (BC) programs, to the whole of the polynomial hierarchy. |
|
136 | 159 |
|
137 | 160 |
\section{Towards an implicit theory for $\ph$} |
138 | 161 |
%As we mentioned, the goal of this work-in-progress is to arrive at an implicit characterisation of PH. |
Formats disponibles : Unified diff