Révision 140

CharacterizingPH/biblio.bib (revision 140)
1 1

  
2
@article{GaboardiMarionRonchi12,
3
  author    = {Marco Gaboardi and
4
               Jean{-}Yves Marion and
5
               Simona Ronchi Della Rocca},
6
  title     = {An Implicit Characterization of {PSPACE}},
7
  journal   = {{ACM} Trans. Comput. Log.},
8
  volume    = {13},
9
  number    = {2},
10
  pages     = {18:1--18:36},
11
  year      = {2012},
12
  url       = {http://doi.acm.org/10.1145/2159531.2159540},
13
  doi       = {10.1145/2159531.2159540},
14
  timestamp = {Mon, 09 Jan 2017 14:08:26 +0100},
15
  biburl    = {http://dblp.uni-trier.de/rec/bib/journals/tocl/GaboardiMR12},
16
  bibsource = {dblp computer science bibliography, http://dblp.org}
17
}
18

  
2 19
@article{Baelde12,
3 20
  author    = {David Baelde},
4 21
  title     = {Least and Greatest Fixed Points in Linear Logic},
......
403 420
}
404 421

  
405 422

  
423
@article{Strahm03,
424
  author    = {Thomas Strahm},
425
  title     = {Theories with self-application and computational complexity},
426
  journal   = {Inf. Comput.},
427
  volume    = {185},
428
  number    = {2},
429
  pages     = {263--297},
430
  year      = {2003},
431
  url       = {http://dx.doi.org/10.1016/S0890-5401(03)00086-5},
432
  doi       = {10.1016/S0890-5401(03)00086-5},
433
  timestamp = {Thu, 20 Nov 2003 12:03:25 +0100},
434
  biburl    = {http://dblp.uni-trier.de/rec/bib/journals/iandc/Strahm03},
435
  bibsource = {dblp computer science bibliography, http://dblp.org}
436
}
406 437
@article{Zambella96,
407 438
	author    = {Domenico Zambella},
408 439
	title     = {Notes on Polynomially Bounded Arithmetic},
CharacterizingPH/draft.tex (revision 140)
96 96
	\hline
97 97
%	quantifiers  & type-level\\
98 98
	$\nc^i$ - $\ac^i$    & \cite{CloTak:1995:nc-ac}, \cite{Cook:2010:LFP:1734064} & - \\
99
	$\ptime$  &  $S^1_2$ \cite{Buss86book}, [app th?], $V^1$ \cite{Zambella96} \cite{Cook:2010:LFP:1734064} & $\mathit{LLL}$ \cite{Girard94:lll}, $\mathit{SLL}$ \cite{Lafont04} \\
99
	$\ptime$  &  $S^1_2$ \cite{Buss86book}, \cite{Strahm03}, $V^1$ \cite{Zambella96} \cite{Cook:2010:LFP:1734064} & $\mathit{LLL}$ \cite{Girard94:lll}, $\mathit{SLL}$ \cite{Lafont04} \\
100 100
	$\Box_i$  & $S^i_2$ \cite{Buss86book}, Kahle-Oitavem & -  \\
101 101
	$\ph$& $S_2$ & - \\
102
	$\pspace$&  ? & ? \\
102
	$\pspace$&  ? & \cite{GaboardiMarionRonchi12} \\
103 103
%	$k$-$\exptime$ & -  & $\mathit{ELL}(k)$ \\
104
	Elementary & $I\Delta_0 + \exp$  & $\mathit{ELL}$
104
	Elementary & $I\Delta_0 + \exp$  & $\mathit{ELL}\;  \cite{Girard94:lll}$
105 105
\end{tabular}
106 106

  
107 107
\bigskip
108 108

  
109 109
\noindent
110 110
Thus, if we want an implicit characterisation of $\ph$, we should break the apparent (although not universal) link between `implicit' and `higher type'. 
111
If we restrict to the ground setting, where extracted programs do not make use of higher types, we have the following picture.
111
%If we restrict to the ground setting, where extracted programs do not make use of higher types, we have the following picture.
112 112

  
113
% Now, if we restrict to the ground setting, where extracted programs do not make use of higher types, there are still several 
114
  Now, if we zoom on the ground setting, where extracted programs do not make use of higher types, there are still several parameters by which the characterizations can vary, including:
115
 \begin{itemize}
116
   \item how are the functions specified ? By a formula, as in Peano arithmetic, by a first-order equational program, or by an applicative term in the style of combinatory algebra;
117
   \item what is the form of the extracted programs? A program of a bounded recursion class, e.g. of Cobham's algebra, or of a tiered recursion class, e.g. of Bellantoni-Cook's algebra.
118
 \end{itemize}
119
We classify the characterizations from the literature according to these two parameters in  the following table:
113 120
\bigskip
114

  
115
TODO: improve table to make clear columns and rows, explicit and implicit columns.
116

  
117
\begin{tabular}{c|c|c|c}
121
 
122
\begin{tabular}{c|c|c}
118 123
	{
119 124
		%\small model of comp. $\backslash$ extracted program 
120
		} & Cobham & mon. constraints & BC-like \\
125
		} & bounded rec. programs & tiered rec. programs \\
121 126
	\hline &&\\
122
	formula & PH, $\square_i$&&\\
123
	& bounded induction (Buss) &&\\
127
	formula & PH, $\square_i$&\\
128
	& bounded induction (Buss \cite{Buss86book}) &\\
124 129
	\hline &&\\
125
	equational &&& P\\
126
	&&& (Leivant) \\
130
	equational && P\\
131
	&& (Leivant \cite{Leivant94:intrinsic-theories}) \\
127 132
	\hline &&\\
128
	applicative &&PH & P \\
129
	&&(Kahle-Oitavem)& (Cantini)
133
	applicative &P (Strahm \cite{Strahm03})  & P \\
134
	&PH (Kahle-Oitavem \cite{KahOit:13:ph-levels})& (Cantini \cite{Cantini02})
130 135
\end{tabular}
131 136

  
137
%TODO: improve table to make clear columns and rows, explicit and implicit columns.
138
%
139
%\begin{tabular}{c|c|c|c}
140
%	{
141
%		%\small model of comp. $\backslash$ extracted program 
142
%		} & Cobham & mon. constraints & BC-like \\
143
%	\hline &&\\
144
%	formula & PH, $\square_i$&&\\
145
%	& bounded induction (Buss) &&\\
146
%	\hline &&\\
147
%	equational &&& P\\
148
%	&&& (Leivant) \\
149
%	\hline &&\\
150
%	applicative &&PH & P \\
151
%	&&(Kahle-Oitavem)& (Cantini)
152
%\end{tabular}
153

  
132 154
\bigskip
133 155

  
134 156
\noindent
135
Our goal is to extend the implicit approach, via variations of Bellantoni-Cook (BC) programs, to the whole of the polynomial hierarchy.
157
Our goal is to extend the approach using extraction of programs of a tiered recursion class (second row), using the equational style of specification (second line), to the whole of the polynomial hierarchy, so  PH and the  $\square_i$ levels.
158
%Our goal is to extend the implicit approach, via variations of Bellantoni-Cook (BC) programs, to the whole of the polynomial hierarchy.
136 159

  
137 160
\section{Towards an implicit theory for $\ph$}
138 161
%As we mentioned, the goal of this work-in-progress is to arrive at an implicit characterisation of PH. 

Formats disponibles : Unified diff