96 |
96 |
\hline
|
97 |
97 |
% quantifiers & type-level\\
|
98 |
98 |
$\nc^i$ - $\ac^i$ & \cite{CloTak:1995:nc-ac}, \cite{Cook:2010:LFP:1734064} & - \\
|
99 |
|
$\ptime$ & $S^1_2$ \cite{Buss86book}, [app th?], $V^1$ \cite{Zambella96} \cite{Cook:2010:LFP:1734064} & $\mathit{LLL}$ \cite{Girard94:lll}, $\mathit{SLL}$ \cite{Lafont04} \\
|
|
99 |
$\ptime$ & $S^1_2$ \cite{Buss86book}, \cite{Strahm03}, $V^1$ \cite{Zambella96} \cite{Cook:2010:LFP:1734064} & $\mathit{LLL}$ \cite{Girard94:lll}, $\mathit{SLL}$ \cite{Lafont04} \\
|
100 |
100 |
$\Box_i$ & $S^i_2$ \cite{Buss86book}, Kahle-Oitavem & - \\
|
101 |
101 |
$\ph$& $S_2$ & - \\
|
102 |
|
$\pspace$& ? & ? \\
|
|
102 |
$\pspace$& ? & \cite{GaboardiMarionRonchi12} \\
|
103 |
103 |
% $k$-$\exptime$ & - & $\mathit{ELL}(k)$ \\
|
104 |
|
Elementary & $I\Delta_0 + \exp$ & $\mathit{ELL}$
|
|
104 |
Elementary & $I\Delta_0 + \exp$ & $\mathit{ELL}\; \cite{Girard94:lll}$
|
105 |
105 |
\end{tabular}
|
106 |
106 |
|
107 |
107 |
\bigskip
|
108 |
108 |
|
109 |
109 |
\noindent
|
110 |
110 |
Thus, if we want an implicit characterisation of $\ph$, we should break the apparent (although not universal) link between `implicit' and `higher type'.
|
111 |
|
If we restrict to the ground setting, where extracted programs do not make use of higher types, we have the following picture.
|
|
111 |
%If we restrict to the ground setting, where extracted programs do not make use of higher types, we have the following picture.
|
112 |
112 |
|
|
113 |
% Now, if we restrict to the ground setting, where extracted programs do not make use of higher types, there are still several
|
|
114 |
Now, if we zoom on the ground setting, where extracted programs do not make use of higher types, there are still several parameters by which the characterizations can vary, including:
|
|
115 |
\begin{itemize}
|
|
116 |
\item how are the functions specified ? By a formula, as in Peano arithmetic, by a first-order equational program, or by an applicative term in the style of combinatory algebra;
|
|
117 |
\item what is the form of the extracted programs? A program of a bounded recursion class, e.g. of Cobham's algebra, or of a tiered recursion class, e.g. of Bellantoni-Cook's algebra.
|
|
118 |
\end{itemize}
|
|
119 |
We classify the characterizations from the literature according to these two parameters in the following table:
|
113 |
120 |
\bigskip
|
114 |
|
|
115 |
|
TODO: improve table to make clear columns and rows, explicit and implicit columns.
|
116 |
|
|
117 |
|
\begin{tabular}{c|c|c|c}
|
|
121 |
|
|
122 |
\begin{tabular}{c|c|c}
|
118 |
123 |
{
|
119 |
124 |
%\small model of comp. $\backslash$ extracted program
|
120 |
|
} & Cobham & mon. constraints & BC-like \\
|
|
125 |
} & bounded rec. programs & tiered rec. programs \\
|
121 |
126 |
\hline &&\\
|
122 |
|
formula & PH, $\square_i$&&\\
|
123 |
|
& bounded induction (Buss) &&\\
|
|
127 |
formula & PH, $\square_i$&\\
|
|
128 |
& bounded induction (Buss \cite{Buss86book}) &\\
|
124 |
129 |
\hline &&\\
|
125 |
|
equational &&& P\\
|
126 |
|
&&& (Leivant) \\
|
|
130 |
equational && P\\
|
|
131 |
&& (Leivant \cite{Leivant94:intrinsic-theories}) \\
|
127 |
132 |
\hline &&\\
|
128 |
|
applicative &&PH & P \\
|
129 |
|
&&(Kahle-Oitavem)& (Cantini)
|
|
133 |
applicative &P (Strahm \cite{Strahm03}) & P \\
|
|
134 |
&PH (Kahle-Oitavem \cite{KahOit:13:ph-levels})& (Cantini \cite{Cantini02})
|
130 |
135 |
\end{tabular}
|
131 |
136 |
|
|
137 |
%TODO: improve table to make clear columns and rows, explicit and implicit columns.
|
|
138 |
%
|
|
139 |
%\begin{tabular}{c|c|c|c}
|
|
140 |
% {
|
|
141 |
% %\small model of comp. $\backslash$ extracted program
|
|
142 |
% } & Cobham & mon. constraints & BC-like \\
|
|
143 |
% \hline &&\\
|
|
144 |
% formula & PH, $\square_i$&&\\
|
|
145 |
% & bounded induction (Buss) &&\\
|
|
146 |
% \hline &&\\
|
|
147 |
% equational &&& P\\
|
|
148 |
% &&& (Leivant) \\
|
|
149 |
% \hline &&\\
|
|
150 |
% applicative &&PH & P \\
|
|
151 |
% &&(Kahle-Oitavem)& (Cantini)
|
|
152 |
%\end{tabular}
|
|
153 |
|
132 |
154 |
\bigskip
|
133 |
155 |
|
134 |
156 |
\noindent
|
135 |
|
Our goal is to extend the implicit approach, via variations of Bellantoni-Cook (BC) programs, to the whole of the polynomial hierarchy.
|
|
157 |
Our goal is to extend the approach using extraction of programs of a tiered recursion class (second row), using the equational style of specification (second line), to the whole of the polynomial hierarchy, so PH and the $\square_i$ levels.
|
|
158 |
%Our goal is to extend the implicit approach, via variations of Bellantoni-Cook (BC) programs, to the whole of the polynomial hierarchy.
|
136 |
159 |
|
137 |
160 |
\section{Towards an implicit theory for $\ph$}
|
138 |
161 |
%As we mentioned, the goal of this work-in-progress is to arrive at an implicit characterisation of PH.
|