Statistiques
| Révision :

root / CSL16 / feas-arith-wfm.tex @ 14

Historique | Voir | Annoter | Télécharger (51,9 ko)

1
\documentclass[a4paper,UKenglish]{lipics-v2016}
2
%This is a template for producing LIPIcs articles. 
3
%See lipics-manual.pdf for further information.
4
%for A4 paper format use option "a4paper", for US-letter use option "letterpaper"
5
%for british hyphenation rules use option "UKenglish", for american hyphenation rules use option "USenglish"
6
% for section-numbered lemmas etc., use "numberwithinsect"
7
 
8
\usepackage{microtype}%if unwanted, comment out or use option "draft"
9

    
10
%\graphicspath{{./graphics/}}%helpful if your graphic files are in another directory
11

    
12
\bibliographystyle{plainurl}% the recommended bibstyle
13

    
14

    
15

    
16

    
17
\usepackage[lutzsyntax]{virginialake}
18
\usepackage{amsmath}
19
\usepackage{amssymb}
20
\usepackage{amsthm}
21
\usepackage{times}
22
%\usepackage{sans}
23
\usepackage{cmll}
24
\usepackage{bm}
25

    
26
%\newtheorem{theorem}{Theorem}
27
%\newtheorem{maintheorem}[theorem]{Main Theorem}
28
%\newtheorem{observation}[theorem]{Observation}
29
%\newtheorem{corollary}[theorem]{Corollary}
30
%\newtheorem{lemma}[theorem]{Lemma}
31
\newtheorem{proposition}[theorem]{Proposition}
32
%\newtheorem{conjecture}[theorem]{Conjecture}
33
%
34
%\theoremstyle{definition}
35
%\newtheorem{definition}[theorem]{Definition}
36
%\newtheorem{example}[theorem]{Example}
37
%\newtheorem{notation}[theorem]{Notation}
38
%\newtheorem{convention}[theorem]{Convention}
39
%\newtheorem{remark}[theorem]{Remark}
40
%\newtheorem{discussion}[theorem]{Discussion}
41

    
42
\newcommand{\todo}[1]{{\color{red}{\textbf{Todo:} #1}}}
43
\newcommand{\anupam}[1]{{\color{orange}{\textbf{Anupam:} #1}}}
44
\newcommand{\patrick}[1]{{\color{blue}{\textbf{Patrick:} #1}}}
45

    
46
\newcommand{\defined}{:=}
47
\begin{document}
48
	
49
	\newcommand{\LL}{\it{LL}}
50
	\vllineartrue
51
	
52
	
53
	\newcommand{\FV}{\mathit{FV}}
54
	
55
	
56
	%terms
57
	\renewcommand{\succ}{s}
58
	\renewcommand{\epsilon}{\varepsilon}
59
	
60
	% linear connectives
61
	
62
	\newcommand{\limp}{\multimap}
63
	\renewcommand{\land}{\otimes}
64
	\newcommand{\laand}{\&}
65
	\newcommand{\laor}{\oplus}
66
	\renewcommand{\lor}{\vlpa}
67
	\renewcommand{\lnot}[1]{{#1^{\perp}}}
68
	\newcommand{\lnotnot}[1]{#1^{\perp \perp}}
69
	
70
	% classical connectives
71
	
72
	\newcommand{\cimp}{\supset}
73
	\newcommand{\cand}{\wedge}
74
	\newcommand{\cor}{\vee}
75
	\newcommand{\cnot}{\neg}
76
	
77
	
78
	\newcommand{\Ax}{\mathit{(Ax)}}
79
	\newcommand{\Rl}{\mathit{(Rl)}}
80
	
81
	\newcommand{\MELL}{\mathit{MELL}}
82
	\newcommand{\MEAL}{\mathit{MELLW}}
83
	\newcommand{\MELLW}{\mathit{MELL(W)}}
84
	
85
	\newcommand{\Aonetwo}{\mathcal{A}^1_2}
86
	\newcommand{\logic}{\mathit{L}_{\mathcal A} }
87
	
88
	% predicates
89
	\newcommand{\nat}{N}
90
	
91
	\newcommand{\Nat}{\mathbb{N}}
92
	
93
	%axioms
94
	\newcommand{\wk}{\mathit{wk}}
95
	\newcommand{\impl}{\cimp\text{-}\mathit{l}}
96
	\newcommand{\impcomm}{\mathit{com}}
97
	\newcommand{\conint}{\cand\text{-}\mathit{i}}
98
	\newcommand{\conel}{\cand\text{-}\mathit{e}}
99
	\newcommand{\negclass}{\cnot}
100
	
101
	%rules
102
	\renewcommand{\mp}{\mathit{mp}}
103
	\newcommand{\gen}{\mathit{gen}}
104
	\newcommand{\inst}{\mathit{ins}}
105
	\newcommand{\id}{\it{id}}
106
	\newcommand{\cut}{\it{cut}}
107
	\newcommand{\multicut}{\it{mcut}}
108
	\newcommand{\indr}{\mathit{IND}}
109
	\newcommand{\nec}{\mathit{nec}}
110
	\newcommand{\tax}{\mathit{T}}
111
	\newcommand{\four}{\mathit{4}}
112
	\newcommand{\kax}{\mathit{K}}
113
	\newcommand{\cntr}{\mathit{cntr}}
114
	
115
	\newcommand{\lefrul}[1]{#1\text{-}\mathit{l}}
116
	\newcommand{\rigrul}[1]{#1\text{-}\mathit{r}}
117
	
118
	%consequence relations
119
	\newcommand{\admits}{\vDash}
120
	\newcommand{\seqar}{\vdash}
121
	\newcommand{\proves}{\vdash_e}
122
	
123
	%induction
124
	\newcommand{\ind}{\mathit{IND}}
125
	\newcommand{\pind}{\mathit{PIND}}
126
	\newcommand{\cax}[2]{#1\text{-}#2}
127

    
128
          % sizes
129
          \newcommand{\height}[1]{\mathit{h}(#1)}
130

    
131
% Author macros::begin %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
132
\title{Free-cut elimination in linear logic: an application to implicit complexity}
133
%\titlerunning{A Sample LIPIcs Article} %optional, in case that the title is too long; the running title should fit into the top page column
134

    
135
%% Please provide for each author the \author and \affil macro, even when authors have the same affiliation, i.e. for each author there needs to be the  \author and \affil macros
136
\author[1]{Patrick Baillot}
137
\author[2]{Anupam Das}
138
\affil[1]{Dummy University Computing Laboratory, Address/City, Country\\
139
  \texttt{open@dummyuniversity.org}}
140
\affil[2]{Department of Informatics, Dummy College, Address/City, Country\\
141
  \texttt{access@dummycollege.org}}
142
\authorrunning{J.\,Q. Open and J.\,R. Access} %mandatory. First: Use abbreviated first/middle names. Second (only in severe cases): Use first author plus 'et. al.'
143

    
144
\Copyright{John Q. Open and Joan R. Access}%mandatory, please use full first names. LIPIcs license is "CC-BY";  http://creativecommons.org/licenses/by/3.0/
145

    
146
\subjclass{Dummy classification -- please refer to \url{http://www.acm.org/about/class/ccs98-html}}% mandatory: Please choose ACM 1998 classifications from http://www.acm.org/about/class/ccs98-html . E.g., cite as "F.1.1 Models of Computation". 
147
\keywords{Dummy keyword -- please provide 1--5 keywords}% mandatory: Please provide 1-5 keywords
148
% Author macros::end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
149

    
150
%Editor-only macros:: begin (do not touch as author)%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
151
\EventEditors{John Q. Open and Joan R. Acces}
152
\EventNoEds{2}
153
\EventLongTitle{42nd Conference on Very Important Topics (CVIT 2016)}
154
\EventShortTitle{CVIT 2016}
155
\EventAcronym{CVIT}
156
\EventYear{2016}
157
\EventDate{December 24--27, 2016}
158
\EventLocation{Little Whinging, United Kingdom}
159
\EventLogo{}
160
\SeriesVolume{42}
161
\ArticleNo{23}
162
% Editor-only macros::end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
163

    
164
\maketitle
165

    
166
\begin{abstract}
167
We prove a general form of free-cut elimination for first-order theories in linear logic. We consider a version of Peano Arithmetic in linear logic and prove a witnessing theorem via the Buss and Mints \emph{witness function method}, characterising polytime as the provably total functions.
168
 \end{abstract}
169

    
170
\section{Introduction}
171

    
172
\todo{words or integers?}
173

    
174

    
175

    
176
\section{Preliminaries}
177

    
178
\todo{consider removing and just have a section on linear logic, including free-cut elimination.}
179

    
180

    
181

    
182

    
183
\paragraph*{Notation}
184
Fix conventions here for use throughout:
185
\begin{itemize}
186
\item Eigenvariables: $a, b , c$.
187
\item (Normal) variables: $u,v,w$. (only when distinction is important, e.g.\ $u^{!\nat}$).
188
\item (Safe) variables: $x,y,z$. (as above, e.g.\ $x^\nat$.)
189
\item Terms: $r,s,t$.
190
\item Formulae: $A,B,C$.
191
\item Atomic formulae: $p,q$.
192
\item Sequents: $\Gamma, \Delta, \Sigma, \Pi$.
193
\item Proofs: $\pi, \rho, \sigma$.
194
\item Theories: $\mathcal T$. Sequent systems: $\mathcal S$.
195
\end{itemize}
196

    
197
\subsection{Linear logic}
198

    
199
\anupam{use a system that is already in De Morgan form, for simplicity.}
200
\anupam{Have skipped units, can reconsider this when in arithmetic. Also in affine setting can be recovered by any contradiction/tautology.}
201

    
202
\begin{definition}\label{def:LLsequentcalculus}
203
%[Sequent calculus for linear logic]
204
[Sequent calculus for affine linear logic]
205

    
206
\patrick{2Anupam: is there a reason for considering only axioms on atomic formulas $p$?}
207

    
208
\patrick{Note that here I changed the system to consider directly affine linear logic}
209

    
210
We define the following calculus in De Morgan normal form:
211
\[
212
\begin{array}{l}
213
\begin{array}{cccc}
214
\vlinf{\lefrul{\bot}}{}{p, \lnot{p} \seqar }{}
215
& \vlinf{\id}{}{p \seqar p}{}
216
& \vlinf{\rigrul{\bot}}{}{\seqar p, \lnot{p}}{}
217
& \vliinf{\cut}{}{\Gamma, \Sigma \seqar \Delta , \Pi}{ \Gamma \seqar \Delta, A }{\Sigma, A \seqar \Pi}
218
\\
219
\noalign{\bigskip}
220
%\text{Multiplicatives:} & & & \\
221
%\noalign{\bigskip}
222
\vliinf{\lefrul{\lor}}{}{\Gamma,\Sigma, A \lor B \seqar \Delta, \Pi}{\Gamma, A \seqar \Delta}{\Sigma , B \seqar \Pi}
223
&
224
\vlinf{\lefrul{\land}}{}{\Gamma, A\land B \seqar \Delta}{\Gamma, A , B \seqar \Delta}
225
&
226
\vlinf{\rigrul{\lor}}{}{\Gamma \seqar \Delta, A \lor B}{\Gamma \seqar \Delta, A, B}
227
&
228
\vliinf{\rigrul{\land}}{}{\Gamma, \Sigma \seqar \Delta , \Pi , A \land B}{\Gamma \seqar \Delta , A}{\Sigma \seqar \Pi , B}
229
\\
230
\noalign{\bigskip}
231
%\text{Additives:} & & & \\
232
%\noalign{\bigskip}
233
\vliinf{\lefrul{\laor}}{}{\Gamma, A \laor B \seqar \Delta}{\Gamma , A \seqar \Delta}{\Gamma, B \seqar \Delta}
234
&
235
\vlinf{\lefrul{\laand}}{}{\Gamma, A_1\laand A_2 \seqar \Delta}{\Gamma, A_i \seqar \Delta}
236
&
237
%\vlinf{\lefrul{\laand}}{}{\Gamma, A\laand B \seqar \Delta}{\Gamma, B \seqar \Delta}
238
%\quad
239
\vlinf{\rigrul{\laor}}{}{\Gamma \seqar \Delta, A_1\laor A_2}{\Gamma \seqar \Delta, A_i}
240
&
241
%\vlinf{\rigrul{\laor}}{}{\Gamma \seqar \Delta, A\laor B}{\Gamma \seqar \Delta, B}
242
%\quad
243
\vliinf{\rigrul{\laand}}{}{\Gamma \seqar \Delta, A \laand B }{\Gamma \seqar \Delta, A}{\Gamma \seqar \Delta, B}
244
\\
245
\noalign{\bigskip}
246
%\text{Exponentials:} & & & \\
247
%\noalign{\bigskip}
248
\vlinf{\lefrul{?}}{}{!\Gamma, ?A \seqar ?\Delta}{!\Gamma , A \seqar ?\Delta}
249
&
250
\vlinf{\lefrul{!}}{}{\Gamma, !A \seqar \Delta}{\Gamma, A \seqar \Delta}
251
&
252
\vlinf{\rigrul{?}}{}{\Gamma \seqar \Delta, ?A}{\Gamma \seqar \Delta, A}
253
&
254
\vlinf{\rigrul{!}}{}{!\Gamma \seqar ?\Delta, !A}{!\Gamma \seqar ?\Delta, A}
255
\\
256
\noalign{\bigskip}
257
%\text{Structural:} & & & \\
258
%\noalign{\bigskip}
259

    
260
%\vlinf{\lefrul{\wk}}{}{\Gamma, !A \seqar \Delta}{\Gamma \seqar \Delta}  %% linear logic weakening
261
\vlinf{\lefrul{\wk}}{}{\Gamma, A \seqar \Delta}{\Gamma \seqar \Delta}
262
&
263
\vlinf{\lefrul{\cntr}}{}{\Gamma, !A \seqar \Delta}{\Gamma, !A, !A \seqar \Delta}
264
&
265
%\vlinf{\rigrul{\wk}}{}{\Gamma \seqar \Delta, ?A }{\Gamma \seqar \Delta}   %% linear logic weakening
266

    
267
\vlinf{\rigrul{\wk}}{}{\Gamma \seqar \Delta, A }{\Gamma \seqar \Delta}
268
&
269
\vlinf{\rigrul{\cntr}}{}{\Gamma \seqar \Delta, ?A}{\Gamma \seqar \Delta, ?A, ?A}
270
\\
271
\noalign{\bigskip}
272
\vlinf{\lefrul{\exists}}{}{\Gamma, \exists x . A(x) \seqar \Delta}{\Gamma, A(a) \seqar \Delta}
273
&
274
\vlinf{\lefrul{\forall}}{}{\Gamma, \forall x. A(x) \seqar \Delta}{\Gamma, A(t) \seqar \Delta}
275
&
276
\vlinf{\rigrul{\exists}}{}{\Gamma \seqar \Delta, \exists x . A(x)}{ \Gamma \seqar \Delta, A(t)}
277
&
278
\vlinf{\rigrul{\forall}}{}{\Gamma \seqar \Delta, \forall x . A(x)}{ \Gamma \seqar \Delta, A(a) } \\
279
\noalign{\bigskip}
280
 \vliinf{mix}{}{\Gamma, \Sigma \seqar \Delta , \Pi}{ \Gamma \seqar \Delta}{\Sigma \seqar \Pi} &&&
281
\end{array}
282
\end{array}
283
\]
284
where $p$ atomic, $i \in \{ 1,2 \}$ and the eigenvariable $a$ does not occur free in $\Gamma$ or $\Delta$.
285
\end{definition}
286
 Note that this system is \textit{affine} in the sense that it includes general weakening rules $\rigrul{\wk}$ and  $\lefrul{\wk}$, while in linear logic   $\rigrul{\wk}$ (resp. $\lefrul{\wk}$) is restricted to formulas of the form $?A$ (resp. $!A$). The rule $mix$ is included so that this system admits cut elimination. In the following though by linear logic we will mean affine linear logic.
287
 
288
  We will consider extensions of linear logic with a \textit{theory}  $\mathcal T$ consisting in a finite set of additional axioms and rules, depicted as:
289

    
290
 \[
291
 \begin{array}{cc}
292
  \vlinf{(ax)}{}{ \seqar A}{}  &  \vlinf{(R)}{}{ !\Gamma , \Sigma' \seqar \Delta' , ? \Pi  }{ \{!\Gamma , \Sigma_i \seqar \Delta_i , ? \Pi \}_{i \in I} }
293
\end{array}
294
\]
295
  
296
 where in rule (R), $I$ is a finite set (indicating the number of premises) and we assume the following condition:
297
  
298
  \textit{for any $i\in I$, formulas in $\Sigma_i, \Delta_i$ do not share any free variable with   $\Gamma, \Pi$.} 
299
  
300
  In the following we will be interested in an example of theory  $\mathcal T$ which is a form of arithmetic.
301
  
302
  A proof in this system will be called a \textit{ $\mathcal T$-proof}, or just \textit{proof} when there is no risk of confusion.
303
   The rules of Def. \ref{def:LLsequentcalculus} are called \textit{logical rules} while the rules (ax) and (R) of $\tau$ are called \textit{non-logical}.
304
  
305
  As usual rules come with a notion of \textit{active formulas}, which are a subset of the rules in the conclusion, e.g.:
306
  $A \lor B$ in rule $\lefrul{\lor}$ (and similarly for all rules for connectives); $?A$ in rule $\rigrul{\cntr}$; all conclusion formulas in axiom rules;
307
   $\Sigma', \Delta'$ in rule (R).
308
  
309
  While in usual logical systems such as linear logic cut rules can be eliminated, this is in general not the case anymore when one considers extension with a theory $\tau$. For this reason we need now to define the kind of cuts that  will remain in proofs after reduction.
310
  \begin{definition}\label{def:anchoredcut}
311
  An instance of cut rule in a  $\mathcal T$-proof is an \textit{anchored cut} if  its cut-formulas $A$ in the two premises are both principal for their rule, and at least one of these rules is non-logical.
312
  \end{definition}
313
  So for instance a cut on an (active) formula $A \lor B$ between a rule $\rigrul{\lor}$ and a rule (R) (where  $A \lor B$ occurs in $\Sigma'$) is anchored, while a cut between 
314
  a rule $\rigrul{\lor}$ and a rule $\lefrul{\lor}$ is not.
315
   
316
   Now we can state the main result of this section:
317
   \begin{theorem}
318
    Given a theory  $\mathcal T$, any  $\mathcal T$-proof $\pi$ can be transformed into a $\mathcal T$-proof $\pi'$ with same conclusion sequent and in which all cuts are anchored.
319
   \end{theorem}
320
   \begin{proof}
321
   \patrick{The proof below is still in progress...}
322
   
323
    The proof will proceed in a way similar to the classical proof of cut elimination for linear logic, but here for eliminating only non-anchored cuts, and we will have to check that all steps of the reasoning are compatible with the fact that the proof here also contains $\mathcal{T}$ axioms and rules.
324
    
325
    Given a cut rule $c$ in a proof $\pi$, we call  \emph{degree} $\deg( c)$  the number of logical connectives or quantifiers in its cut-formula. Now the \emph{degree} of the proof $\deg( \pi)$ is the multiset of the degrees of its non-anchored formulas. The degrees will be compared with the multiset ordering.
326
    
327
    The demonstration will proceed by induction on the degree  $\deg( \pi)$.  For a given degree we will proceed with a sub-induction on the \textit{height} $\height{\pi}$ of the proof.
328
    
329
    Consider a proof $\pi$ of non-null degree. We will show how to reduce it to a proof of strictly lower degree. Consider a top-most non-anchored cut $c$ in $\pi$, that is to say such that there is no non-anchored cut above $c$. We distinguish 3 cases for $c$:
330
    \begin{itemize}
331
    \item \textbf{First case}: the cut $c$ is non principal for its left premise. 
332
    
333
     Call (S) the last rule above the left premise of $c$. We perform a commutation step between (S) and $c$. We examine here the case where (S)=($\rigrul{\laand}$). 
334
     
335
     \[
336
\vlderivation{
337
\vliin{c}{}{ \Gamma,\Delta,A\vlan B }{ \vliin{\vlan}{}{\Gamma,A\vlan B,C}{ \vlhy{\Gamma,A,C} }{\vlhy{\Gamma,B,C}}}{ \vlhy{\Delta, C^\bot} }
338
}
339
\quad\to\quad
340
\vlderivation{
341
\vliin{\vlan}{}{\Gamma,\Delta,A\vlan B }{
342
\vliin{c_1}{}{\Gamma,\Delta,A }{ \vlhy{\Gamma,A,C} }{ \vlhy{ \Delta,C^\bot } }
343
}{
344
\vliin{c_2 }{}{\Gamma,\Delta,B}{ \vlhy{\Gamma,B,C } }{ \vlhy{\Delta,C^\bot} }
345
}
346
}
347
\]
348

    
349
\patrick{TODO: adapt to two-sided sequents here}
350

    
351
Observe that here $c$ is replaced by two cuts $c_1$ and $c_2$. Call $\pi_i$ the sub-derivation of last rule $c_i$, for $i=1,2$. As for $i=1, 2$ we have
352
$\deg{\pi_i}\leq \deg{\pi}$ and $\height{\pi_i}< \height{\pi}$ we can apply the induction hypothesis, and reduce $\pi_i$ to a proof $\pi'_i$ of same conclusion and with
353
$\deg{\pi'_i}\leq \deg{\pi_i}$. Therefor $\pi'_i$ has non-anchored cuts of degree strictly lower than $\deg(c)$, and thus by replacing $\pi_i$ by $\pi'_i$ for $i=1, 2$ we obtain a proof $\pi'$ such that $\deg{\pi'}<\deg{\pi}$.  
354

    
355
The case (S)=($\lefrul{\laor}$) is identical, and the other cases are easier and described in the Appendix. 
356
    \item \textbf{Second case}: the cut $c$ is non principal for its right premise. 
357
    
358
    This is similar to the first case, by proceeding with a commutation case on the right. 
359
     \item \textbf{Third case}: the cut $c$ is principal for its left and right premises. Then we consider the following sub-cases, in order:
360
     \begin{itemize}
361
      \item \textbf{exponential sub-case}: this is when one of the premises of $c$ is conclusion of a $cntr$, $\rigrul{?}$ or $\lefrul{!}$ rule on a formula $?A$ or $!A$. Assume w.l.o.g. that it is the right premise, so a rule $\lefrul{\cntr}$ or $\lefrul{!}$ on $!A$.  We will use here a global rewriting step. For that consider in $\pi$ all the top-most direct ancestors of the cut-formula $!A$, that is to say direct ancestors which do not have any more direct ancestors above. Let us denote them as $!A^{j}$ for $1\leq j \leq k$. Observe that each $!A^{j}$ is principal formula of a rule $\lefrul{!}$ or $\lefrul{wk}$.
362
      
363
      Now examine the left premise of $c$, with principal formula $!A$.
364
      
365
      \patrick{to be continued...}
366
      
367
      \item \textbf{logical sub-case}: assume both premises of $c$ are conclusions of rules others than $?$, $!$, $wk$, $cntr$.
368
      
369
      If one of the premises is an axiom $\lefrul{\bot}$, $\id$ or $\rigrul{\bot}$, then $\pi$ can be rewritten to a suitable proof $\pi'$ by removing $c$ and the axiom rule. Otherwise both premises introduce the same connective, either  $\land$, $\lor$, $\laor$, $\laand$, $\forall$ or $\exists$. In each case a specific rewriting rule replaces the cut $c$ with one cut of strictly lower degree. See the Appendix.
370
      
371
      \item \textbf{weakening sub-case}: the remaining case is when one of the premises of $c$ is a $wk$ rule and the other one is a rule distinct from $cntr$, $\rigrul{?}$ or $\lefrul{!}$. W.l.o.g. assume that the left premise of $c$ is conclusion of $\lefrul{\wk}$. If the right premise is conclusion of say rule $\rigrul{\land}$ on a formula $A_1\land A_2$, then $c$ is replaced by two cuts $c_i$ ($i=1,2$) on a formula $A_i$ obtained (on the left) by a $\lefrul{\wk}$ rule. These two cuts are of strictly lower degree than $c$, so we are done. We proceed in a similar way in the cases of rules introducing connectives $\lor$, $\laand$, $\laor$, $\forall$, $\exists$. Now,there remains the case where the right premise is a $\rigrul{\wk}$: then the cut can be eliminated by erasing the two $wk$ rules and using instead a $mix$ rule. In this case also the degree has decreased.
372
      
373
      \patrick{Display the rewriting step here}.
374
      
375
     \end{itemize}
376
     
377
      
378
    \end{itemize}
379
     
380
   \end{proof}
381
   
382
\subsection{Deduction theorem}
383

    
384
[cite Avron:`semantics and proof theory of linear logic']
385

    
386
We will make much use of the deduction theorem, allowing us to argue informally within a theory for hypotheses that have been promoted.
387

    
388
%$$
389
%	\vliiinf{}{}{ \seqar A}{ \seqar C}
390
%	$$
391

    
392
%\[
393
%	\vliiinf{R}{}{ !\Gamma , \Sigma' \seqar \Delta' , ? \Pi  }{ \{!\Gamma , \Sigma_i \seqar \Delta_i , ? \Pi \}_{i \in I} }
394
%	\]
395

    
396
\begin{theorem}
397
	[Deduction]
398
	If $\mathcal T , A \proves B$ then $\mathcal{T} \proves !A \limp B$.
399
\end{theorem}
400

    
401
\todo{need that $A$ above is closed! Check for rules to axioms.}
402

    
403

    
404

    
405
\subsection{Converting axioms to rules in $\MELLW$}
406

    
407
\begin{proposition}
408
	An axiom $\Ax$ of the form,
409
	\[
410
	A_1 \limp \vldots \limp A_m \limp !B_1 \limp \vldots \limp !B_n \limp C
411
	\]
412
	is equivalent (over propositional $\LL$) to the rule $\Rl$:
413
	\[
414
	\vliiinf{\Rl}{}{ !\Gamma , A_1 , \dots , A_m \seqar C , ? \Delta  }{ !\Gamma \seqar B_1 , ?\Delta }{\vldots }{ !\Gamma \seqar B_n , ?\Delta}
415
	\]
416
\end{proposition}
417
\begin{proof}
418
	Let us first assume $\Ax$ and derive $\Rl$. From the axiom and Currying, we have a proof of:
419
	\begin{equation}\label{eqn:curried-axiom}
420
	A_1 , \dots , A_m , !B_1 , \dots , !B_n \seqar C
421
	\end{equation}
422
	
423
	This can simply be cut against each of the premisses of $\Rl$, applying appropriate contractions and necessitations, to derive it:
424
	\[
425
	\vlderivation{
426
		\vliq{c}{}{!\Gamma , A_1 , \dots , A_m \seqar C , ?\Delta }{
427
			\vliin{\cut}{}{!\Gamma, \dots , !\Gamma , A_1 , \dots , A_m \seqar C , ?\Delta, \dots , ?\Delta }{
428
				\vlin{!}{}{!\Gamma \seqar !B_n, ?\Delta }{\vlhy{!\Gamma \seqar B_n , ?\Delta }}
429
			}{
430
			\vliin{\cut}{}{\qquad \qquad \qquad \qquad  \vlvdots \qquad \qquad \qquad \qquad }{
431
				\vlin{!}{}{!\Gamma \seqar !B_1 , ?\Delta}{\vlhy{!\Gamma \seqar B_1, ?\Delta }}
432
			}{\vlhy{ A_1 , \dots , A_m , !B_1 , \dots , !B_n \seqar C } }
433
		}
434
	}
435
}
436
\]
437

    
438
Now let us prove $\Ax$ (again in the form of \eqref{eqn:curried-axiom}) by using $\Rl$ as follows:
439
\[
440
\vliiinf{\Rl}{}{ A_1 , \dots , A_m , !B_1 , \dots , !B_n \seqar C }{  \vlderivation{
441
		\vlin{w}{}{ !B_1 , \dots , !B_n \seqar B_1 }{
442
			\vlin{!}{}{!B_1 \seqar B_1 }{
443
				\vlin{\id}{}{B_1 \seqar B_1 }{\vlhy{}}
444
			}
445
		}
446
	}  }{\vldots}{
447
	\vlderivation{
448
		\vlin{w}{}{ !B_1 , \dots , !B_n \seqar B_n }{
449
			\vlin{!}{}{!B_n \seqar B_n }{
450
				\vlin{\id}{}{B_n \seqar B_n }{\vlhy{}}
451
			}
452
		}
453
	}
454
}
455
\]
456
\end{proof}
457

    
458

    
459
\textbf{NB:} The proof does not strictly require side formulae $? \Delta$ on the right of the sequent arrow $\seqar$, it would work without them, e.g.\ for the intuitionistic case. In a one-sided setting there is no difference.
460

    
461

    
462

    
463
\begin{corollary}
464
	The induction axiom of $A^1_2$ is equivalent to the rule:
465
	\[
466
	\vliinf{}{(x \notin \FV(\Gamma, \Delta))}{ !\Gamma , A(\epsilon) \seqar A(t) , ?\Delta }{ !\Gamma , A(x) \seqar A(s_0 x ), ?\Delta }{ !\Gamma, A(x) \seqar A( s_1 x ) , ?\Delta}
467
	\]
468
\end{corollary}
469
\begin{proof}
470
	By proposition above, generalisation and Currying.
471
\end{proof}
472

    
473

    
474
\subsection{Prenexing}
475
%In the presence of weakening we have a prenex normal form due to the following:
476
%
477
%\[
478
%\vlderivation{
479
%	\vlin{}{}{\exists x . A \lor B \seqar \exists x . (A(x) \lor B) }{
480
%		
481
%		}
482
%	}
483
%\]
484

    
485
Cannot derive prenexing operations, e.g.\ a problem with $\exists x . A \lor B \seqar \exists x . (A(x) \lor B)$. Can safely add prenexing rules? Or not a problem due to Witness predicate?
486

    
487
\section{Free-cut elimination in linear logic}
488

    
489

    
490
\todo{patrick}
491

    
492
\anupam{Possibly need to include the cases for affine logic too, e.g.\ if weakening is native, since it does not play nice as an axiom.}
493

    
494
\todo{include some bounds on free-cut elimination? Look at paper "Corrected upper bounds for free-cut elimination" by Beckmann and Buss for comparison.}
495

    
496
\section{Some variants of arithmetic in linear logic}
497

    
498
For pretty much all variants discussed we will actually work in the \emph{affine} variant of linear logic, which validates weakening: $(A \land B )\limp A$. There are many reasons for this; essentially it has not much effect on complexity while also creating a more robust proof theory. For example it induces the following equivalence:
499
\[
500
!(A\land B) \equiv (!A \land !B)
501
\]
502
(The right-left direction is already valid in usual linear logic, but the left-right direction requires weakening).
503

    
504
We define a variant of arithmetic inspired by Bellantoni and Hofmann's $A^1_2$. We describe later some connections to bounded arithmetic.
505

    
506

    
507
\subsection{Based on Bellantoni-Hoffmann, Leivant, etc.}
508

    
509
\newcommand{\natcntr}{\nat\mathit{cntr}}
510
\newcommand{\geneps}{\nat_{\epsilon}}
511
\newcommand{\genzer}{\nat_{0}}
512
\newcommand{\genone}{\nat_{1}}
513

    
514

    
515
\newcommand{\sepeps}{\epsilon}
516
\newcommand{\sepzer}{\succ_{0}}
517
\newcommand{\sepone}{\succ_{1}}
518

    
519
\newcommand{\inj}{\mathit{inj}}
520
\newcommand{\surj}{\mathit{surj}}
521

    
522
\begin{definition}
523
[Arithmetic]
524
We have the following axioms:
525
\[
526
\begin{array}{rl}
527
\wk & (A \land B )\limp A \\
528
\natcntr & \forall x^N . (N(x) \land N(x)) \\
529
\geneps & \nat(\epsilon) \\
530
\genzer & \forall x^N . N(\succ_0 x) \\
531
\genone & \forall x^N . N(\succ_1 x) \\
532
\sepeps & \forall x^N . (\epsilon \neq \succ_0 x \land \epsilon \neq \succ_1 x) \\
533
\sepzer & \forall x^N , y^N. ( \succ_0 x = \succ_0 y \limp x=y ) \\
534
\sepone & \forall x^N , y^N. ( \succ_1 x = \succ_1 y \limp x=y ) \\
535
\inj & \forall x^N . \succ_0 x \neq \succ_1 x \\
536
\surj & \forall x^N . (x = \epsilon \lor \exists y^N . x = \succ_0 y \lor \exists y^N . x = \succ_1 y ) \\
537
\noalign{\bigskip}
538
\ind & A(\epsilon) \limp !( \forall x^{!\nat} . ( A(x) \limp A(\succ_0 x) ) ) \limp !( \forall x^{!\nat} . ( A(x) \limp A(\succ_1 x) ) ) \limp \forall x^{!\nat} . A(x)
539
\end{array}
540
\]
541

    
542
Induction rule should be the following, to take account of relativised quantifiers?
543
\[
544
\vliinf{\ind}{}{ !N(t) , !\Gamma , A(\epsilon) \seqar A(t), ?\Delta }{ !N(a) , !\Gamma, A(a) \seqar A(\succ_0 a) , ?\Delta }{ !N(a) , !\Gamma, A(a) \seqar A(\succ_0 a) , ?\Delta  }
545
\]
546

    
547
\todo{in existential above, is there a prenexing problem?}
548

    
549
\todo{what about $\leq$? Introducing this could solve prenexing problem, e.g.\ by induction?}
550
\end{definition}
551

    
552
\subsection{$\nat$-hierarchy}
553

    
554
\begin{definition}
555

    
556
\todo{replace N with nat.}
557

    
558
	Let us define the quantifiers $\exists x^N . A$ and $\forall x^N . A$ as $\exists x . (N(x) \land A)$ and $\forall x . (N(x) \limp A) $ respectively.
559
	
560
	We define $\Sigma^N_0 = \Pi^N_0 $ as the class of formulae that are free of quantifiers. For $i\geq 0$ we define:
561
	\begin{itemize}
562
		\item $\Sigma^N_{i+1}$ is the class of formulae $\exists x^N . A$ where $A \in \Pi^N_i$.
563
		\item $\Pi^N_{i+1}$ is the class of formulae $\forall x^N . A$ where $A \in \Sigma^N_i$.
564
		\item ($\Delta^N_i$ is the class $\Sigma^N_i \cap \Pi^N_i$.)
565
	\end{itemize}
566
\end{definition}
567

    
568
\todo{allow closure under positive Boolean operations?}
569

    
570
\todo{What about prenexing rules? Should not change provably total functions!}
571

    
572
\subsection{Equivalent rule systems}
573

    
574
For the quantifiers $\exists x^N $ and $\forall x^N$ we introduce the following rules, which are compatible with free-cut elimination:
575

    
576
\[
577
\begin{array}{cc}
578
\vlinf{}{}{\Gamma \seqar \Delta, \forall x^N . A(x)}{\Gamma, N(a) \seqar \Delta , A(a)}
579
\quad & \quad
580
\vlinf{}{}{\Gamma, N(t),\forall x^N A(x) \seqar \Delta}{\Gamma,  A(t) \seqar \Delta}
581
\\
582
\noalign{\bigskip}
583
\vlinf{}{}{\Gamma , \exists x^N A(x) \seqar \Delta}{\Gamma, N(a), A(a) \seqar \Delta}
584
\quad &\quad 
585
\vlinf{}{}{\Gamma, N(t) \seqar \Delta , \exists x^N . A(x)}{\Gamma  \seqar \Delta, A(t)}
586
\end{array}
587
\]
588

    
589
CHECK THESE!
590

    
591
\todo{Also include rules for contraction and weakening.}
592

    
593
\section{Convergence of Bellantoni-Cook programs}
594

    
595
\subsection{Bellantoni-Cook programs}
596
We first recall the notion of safe recursion on notation from BC. TODO
597

    
598
\subsection{Convergence in arithmetic}
599
\begin{theorem}
600
	[Convergence]
601
	If $\Phi(f)$ is an equational specification corresponding to a BC-program defining $f()$, then $\cax{\Sigma^N_1}{\pind} \proves  \ !\Phi(f) \limp \forall \vec{x}^{!N} . N(f(\vec x))$.
602
\end{theorem}
603
\begin{proof}
604
	We show by induction on the structure of a BC-program for $f(\vec x ; \vec y)$ that:
605
	\begin{equation}
606
	\Phi(f) , \cax{\Sigma^N_1}{\pind} \proves \ \forall \vec{x}^{!N} . \forall \vec{y}^N . N(f(\vec x ; \vec y))
607
	\end{equation}
608
	We give some key cases in what follows.
609
	
610
	Suppose $f$ is defined by PRN by:
611
	\[
612
	\begin{array}{rcl}
613
	f(0,\vec x ; \vec y) & = & g(\vec x ; \vec y) \\
614
	f(\succ_i x , \vec x ; \vec y) & = & h_i (x, \vec x ; \vec y , f(x , \vec x ; \vec y))
615
	\end{array}
616
	\]
617
	By the inductive hypothesis we already have that $g, h_0, h_1$ are provably convergent, so let us suppose that $N(\vec x)$ and prove,
618
	\begin{equation}
619
	\forall x^{!N} . ( N(\vec y) \limp N(f(x , \vec x ; \vec y)  )
620
	\end{equation}
621
	by $\cax{\Sigma^N_1}{\pind}$ on $x$.
622
	
623
	In the base case we have the following proof:
624
	\[
625
	\vlderivation{
626
		\vliin{}{}{N(\vec y) \limp N(f(0, \vec x ; \vec y))}{
627
			\vltr{IH}{N(\vec y) \limp N(g(\vec x ; \vec y))}{\vlhy{\quad}}{\vlhy{}}{\vlhy{\quad}}
628
		}{
629
		\vlin{}{}{N(g (\vec x ; \vec y) ) \limp N(f(0, \vec x ; \vec y)) }{
630
			\vlin{}{}{g(\vec x ; \vec y) = f(0 , \vec x ; \vec y)}{\vlhy{}}
631
		}
632
	}
633
}
634
\]
635

    
636
For the inductive step, we need to show that,
637
\[
638
\forall x^{!N} . (( N(\vec y) \limp N( f(x, \vec x ; \vec y) ) ) \limp N(\vec y) \limp N(f(\succ_i x , \vec x ; \vec y) )   )
639
\]
640
so let us suppose that $N(x)$ and we give the following proof:
641
\[
642
\vlderivation{
643
	\vlin{N\cntr}{}{N(y) \limp ( N(y ) \limp N(f( x , \vec x ; \vec y ) ) ) \limp N(f (\succ_i x , \vec x ; \vec y)  ) }{
644
		\vliin{}{}{N(y) \limp N(y) \limp ( N(y ) \limp N(f( x , \vec x ; \vec y ) ) ) \limp N(f (\succ_i x , \vec x ; \vec y)  ) }{
645
			\vliin{}{}{ N(y) \limp N(y) \limp ( N(y) \limp N( f(x, \vec x ; \vec y) ) ) \limp N( h_i (x , \vec x ; \vec y , f(x , \vec x ; \vec y) ) ) }{
646
				\vltr{MLL}{( N(\vec y) \limp (N (\vec y) \limp N(f(x, \vec x ; \vec y) )) \limp N(f(x, \vec x ; \vec y)) }{\vlhy{\quad }}{\vlhy{\ }}{\vlhy{\quad }}
647
			}{
648
			\vlhy{2}
649
		}
650
	}{
651
	\vlhy{3}
652
}
653
}
654
}
655
\]
656
TOFINISH
657
\end{proof}
658

    
659
\section{Witness function method}
660

    
661
Key features/differences from realisability:
662
\begin{itemize}
663
\item De Morgan normal form: reduces type level to $0$, complementary to double-negation translation that \emph{increases} type level.
664
\item Free-cut elimination: allows us to handles formulae of fixed logical complexity throughout the proof. 
665
\item Respects logical properties of formulae, e.g.\ quantifier complexity, exponential complexity.
666
\end{itemize}
667

    
668
\todo{say some more here}
669

    
670
\newcommand{\type}{\mathtt{t}}
671
\newcommand{\norm}{\nu}
672
\newcommand{\safe}{\sigma}
673

    
674
\subsection{Typing}
675

    
676
\begin{definition}
677
	[Types]
678
	To each formula we associate a tuple type as follows:
679
	\[
680
	\begin{array}{rcll}
681
	\type (\nat (t)) & := & \Nat & \\
682
	\type(s = t) & := & \Nat & \\
683
	\type (A \star B)  & : = & \type (A) \times \type (B) & \text{for $\star \in \{ \lor, \land, \laor, \laand \} $.} \\
684
	\type (! A) & : = & \type_\norm (A) & \\
685
	\type (\exists x^N . A) & := & \Nat \times \type (A) & \\
686
%	\type (\forall x^N . A) & := & \Nat \to \type(A)
687
	\end{array}
688
	\]
689
	where $\nu$ designates that the inputs are normal.
690
	\end{definition}
691
	
692
	\todo{compatibility with safety. To consider.}
693
	
694
	
695
	
696
	
697
	\newcommand{\witness}[2]{\mathit{Witness}^{#1}_{#2}}
698
	\begin{definition}
699
		[Witness predicate]
700
		We define the following formula:
701
		\[
702
		\begin{array}{rcll}
703
		\witness{\vec a}{A} (w, \vec a) & := & A(\vec a) & \text{for $A$ quantifier-free.} \\
704
		\witness{\vec a}{\exists x . A} (w, \vec w , \vec a) & := & \witness{\vec{a}, a}{A(a)}(\vec w , \vec a, w ) & \\
705
		\witness{\vec a}{A \star B} ( \vec w^1 , \vec w^2 ) & := &  \witness{\vec a}{A} (\vec w^1) \star \witness{\vec a}{B} (\vec w^2) & \text{for $\star \in \{ \land, \lor, \laand , \laor\}$.} \\
706
		\end{array}
707
		\]
708
	\end{definition}
709
	\todo{problem: what about complexity of checking equality? }
710
	
711
	\todo{What about $\nat (t)$? What does it mean? Replace with true?}
712
	
713
	\todo{either use the witness predicate above, or use realizability predicate at meta-level and a model theory, like BH.}
714
	
715
	\anupam{Need to check above properly. $N(t)$ should be witnessed by the value of $t $ in the model. For equality of terms the witness should not do anything.}
716
	
717
	\subsection{The translation}
718
	Need witness predicate so that we know what is being preserved.
719

    
720
\begin{definition}
721
	[Translation]
722
	We give a translation of proofs $\pi$ of sequents $\Gamma(\vec a) \seqar \Delta(\vec a)$ to BC-programs for a vector of functions $\vec f^\pi : \type(\bigotimes\Gamma) \times \Nat^{|\vec a|} \to \type(\bigparr\Delta)$ such that:
723
	\[
724
	\witness{\vec a}{\bigotimes \Gamma} (\vec w , \vec a) \implies \witness{\vec a}{\bigparr \Delta } (\vec f(\vec w , \vec a), \vec a)
725
	\]
726
	We will be explicit about normal and safe inputs when necessary, for the most part we will simply rearrange inputs into lists $(\vec x; \vec a)$ as in BC framework.
727
	
728
	We often suppress the parameters $\vec a$ when it is not important.	
729
	
730
	\anupam{Is this implication provable in Bellantoni's version of PV based on BC?}
731
	
732
	\anupam{for moment try ignore decoration on right? what about negation?}
733
	
734

    
735
	
736
	\[
737
	\vlderivation{
738
		\vliin{\land}{}{ \Gamma, \Sigma \seqar \Delta, \Pi, A\land B }{
739
			\vltr{\pi_1}{ \Gamma \seqar \Delta, A }{\vlhy{\quad }}{\vlhy{ }}{\vlhy{\quad }}
740
			}{
741
			\vltr{\pi_2}{ \Sigma \seqar \Pi, B }{\vlhy{\quad }}{\vlhy{ }}{\vlhy{\quad }}
742
			}
743
		}
744
	\]
745
	
746
	So we have $\vec f^{1} (\vec x ; \vec a)$ and $\vec f^2 (\vec y ; \vec b)$ for $\pi_1 $ and $\pi_2$ respectively, by the inductive hypothesis. We simply construct $\vec f^\pi$ by rearranging these functions:
747
	\[
748
	\vec f^\pi (\vec x , \vec y ; \vec a , \vec b) \quad := \quad ( f^1_1 (\vec x ; \vec a) , \dots , f^1_{|\Delta|} (\vec x ; \vec a) , f^2_1 (\vec y; \vec b) , \dots , f^2_{|\Pi|} (\vec y ; \vec b) , f^1_{|\Delta|+1} (\vec x ; \vec a ) , f^2_{|\Pi|+1} (\vec y ; \vec b)
749
	\] 
750
	
751
	\anupam{bad notation since need to include free variables of sequent too. (also of theory.) Reconsider.}
752
	
753
	\[
754
	\vlderivation{
755
		\vlin{\lefrul{\cntr}}{}{ !A , \Gamma \seqar \Delta }{
756
			\vltr{\pi'}{  !A, !A , \Gamma \seqar \Delta}{\vlhy{\quad }}{\vlhy{ }}{\vlhy{\quad }}
757
			}
758
		}
759
	\]
760
	Have $\vec f' (x_1 , x_2 , \vec y ; \vec a)$ for $\pi'$. Define
761
	\[
762
	\vec f (x_1 , \vec y ; \vec a) \quad := \quad \vec f'(x_1 , x_1 , \vec y ; \vec a)
763
	\]
764
	\[
765
	\vlderivation{
766
	\vlin{\rigrul{\cntr}}{}{\Gamma \seqar \Delta, ?A}{
767
	\vltr{\pi'}{  \Gamma \seqar \Delta, ?A, ?A}{\vlhy{\quad }}{\vlhy{ }}{\vlhy{\quad }}
768
	}
769
	}
770
	\]
771
	(need test function against witness predicate?)
772
	
773
	\anupam{problem: how to test even equality of two terms? Maybe treat $?$ as $!$ on left?}
774
	
775
	\anupam{Not a problem by free-cut elimination! Can assume there are no $?$ in the proof! Is this equivalent to treaing $?$ as $!$ on left?}
776
	
777
	\anupam{Yes I think so. We can work in a left-sided calculus. only problem is for induction. But this can never be a problem for modalities since induction formulae are modality-free.}
778
	
779
	\anupam{this is actually the main point.}
780
	
781
	
782
	\[
783
	\vlderivation{
784
	\vliin{\rigrul{\laand}}{}{\Gamma \seqar \Delta, A \laand B}{
785
	\vltr{\pi_1}{  \Gamma \seqar \Delta, A}{\vlhy{\quad }}{\vlhy{ }}{\vlhy{\quad }}
786
	}{
787
	\vltr{\pi_2}{  \Gamma \seqar \Delta, B}{\vlhy{\quad }}{\vlhy{ }}{\vlhy{\quad }}
788
	}
789
	}
790
	\]
791
	
792
	Suppose we have $\vec f^i (\vec x , \vec a ; \vec y , \vec b)$ from $\pi_i$.
793
	
794
	\anupam{problem: does this require many tests, just like for contraction? Can we isolate a different complexity class? e.g.\ PH or Grzegorzyck?}
795
	\anupam{skip this case and consider later.}
796
\[
797
\vlderivation{
798
\vliin{\cut}{}{\Gamma , \Sigma \seqar \Delta , \Pi}{
799
\vltr{\pi_1}{ \Gamma \seqar \Delta, A }{\vlhy{\quad }}{\vlhy{ }}{\vlhy{\quad }}
800
}{
801
\vltr{\pi_2}{\Sigma , A \seqar \Pi}{\vlhy{\quad }}{\vlhy{ }}{\vlhy{\quad }}
802
}
803
}
804
	\]
805
	
806
We can assume that $A$ in the conclusion of $\pi_2$ is free of modalities, since one of the $A$s must be directly descended from an induction formula, and so consists of only safe inputs. Therefore we have functions $\vec f^1 (\vec w; \vec x)$ and $\vec f^2 (\vec y ; \vec z , \vec u)$ for $\pi_1$ and $\pi_2 $ respectively (free variable parameters are suppressed), with $\vec u$ corresponding to the (safe) inputs for $A$. 
807

    
808
Let us write:
809
\[
810
\begin{array}{rcl}
811
\vec f^1 & = & ( \vec f^1_i )^{|\Delta|+1}_{i=1} \\
812
\vec f^2 & = & ( \vec f^2_i )^{|\Pi|}_{i=1}
813
\end{array}
814
\]
815
to denote the parts of $\vec f^i$ corresponding to formulae in their sequents.
816

    
817

    
818
We define:
819
\[
820
\vec f (\vec w , \vec y ; \vec x , \vec z)
821
\quad := \quad
822
(
823
( \vec f^1_i (\vec w ; \vec x) )_{i \leq |\Delta|}
824
,
825
\vec f^2 ( \vec y ; \vec z , \vec f^1_{|\Delta| +1 } (\vec w ; \vec x) )
826
)
827
\]
828

    
829
Notice that all safe inputs are hereditarily right of a $;$, and so these terms are definable by safe composition and projection.
830

    
831
\todo{another case for $!\nat(x)$ cut formula.}
832

    
833
\anupam{should work for arbitrary $!$-cuts due to principal case for $!$}
834

    
835

    
836
Right existential:
837
\[
838
\vlderivation{
839
\vlin{\rigrul{\exists}}{}{ \Gamma, \nat(t) \seqar \Delta , \exists x^\nat . A(x) }{
840
\vltr{\pi'}{ \Gamma \seqar \Delta , A(t) }{\vlhy{\quad }}{\vlhy{ }}{\vlhy{\quad }}
841
}
842
}
843
\]
844
Suppose we have functions $\vec f^X (\vec x ; \vec y)$ from $\pi'$ for $X = \Delta$ or $ X=A$. 
845
\[
846
\vec f(\vec x ; \vec y , z) \quad := \quad ( \vec f^\Delta (\vec x ; \vec y)   ,  z , \vec f^A ( \vec x ; \vec y ) )
847
\]
848

    
849

    
850
Left existential:
851
\[
852
\vlderivation{
853
\vlin{\lefrul{\exists}}{}{ \Gamma, \exists x^N . A(x) \seqar \Delta }{
854
\vltr{\pi'(a)}{ \Gamma,  N(a) , A(a) \seqar \Delta  }{\vlhy{\quad }}{\vlhy{ }}{\vlhy{\quad }}
855
}
856
}
857
\]
858

    
859
Suppose we have functions $\vec f' (\vec u , \vec v ; x , \vec y , \vec z)$ from $\pi'$ with $(\vec u ; \vec x )$ corresponding to $\Gamma$, $(;x)$ corresponding to $N(a)$ and $(\vec v ; \vec z)$ corresponding to $A(a)$. We define:
860
\[
861
\vec f ( \vec u , \vec v ;  )
862
\]
863

    
864
\anupam{should just be same, no? To consider.}
865

    
866
%Suppose we have functions $\vec g (\vec v  , \vec w ; \vec x , y , \vec z)$ where $(\vec v ; \vec x) $ corresponds to $\Gamma$, $y$ corresponds to $\nat(a)$ and $(\vec w ; \vec z) $ corresponds to $A(a)$. Then we define:
867
%\[
868
%\vec f ( \vec v , \vec w ; \vec x , y , \vec z )
869
%\]
870

    
871
\todo{finish}
872

    
873
!:
874
\[
875
\vlderivation{
876
\vlin{!}{}{\Gamma, !A \seqar \Delta}{
877
\vltr{\pi'}{ \Gamma , A \seqar \Delta  }{\vlhy{\quad }}{\vlhy{ }}{\vlhy{\quad }}
878
}
879
}
880
\]
881
\anupam{Again, use free-cut elimination to get rid of this case. We know $!$-ed formulae in advance, so just fix those as normal inputs in advance.}
882

    
883

    
884
Induction: (can assume no side-formulae on right for same reason as no contraction.)
885
\[
886
\vlderivation{
887
\vliin{\ind}{}{ !\Gamma , !\nat (t) ,  A(\epsilon) \seqar A(t) }{
888
\vltr{\pi_0}{ !\Gamma , !\nat(a) , A(a) \seqar A(\succ_0 a)}{\vlhy{\quad }}{\vlhy{ }}{\vlhy{\quad }}
889
}{
890
\vltr{\pi_1}{ !\Gamma , !\nat(a), A(a)\seqar A(\succ_1 a) }{\vlhy{\quad }}{\vlhy{ }}{\vlhy{\quad }}
891
}
892
}
893
\]
894

    
895
Suppose we have functions $\vec f^i (\vec x , y ; \vec u)$ from proofs $\pi_i$ where $\vec x $ corresponds to $!\Gamma$, $y$ corresponds to $!N(a)$ and $\vec u$ corresponds to $A(a)$.
896

    
897

    
898
\anupam{role of $!N(a)$ versus having $a$ as a parameter to function. To consider!}
899

    
900
Define the function $f_k$ (for $k = 1 , \dots , |\vec u|$) by PRN:
901
\[
902
\begin{array}{rcl}
903
f_k(\epsilon, \vec x , y ; \vec u) & := & u_k \\
904
f_k (\succ_i w , \vec x , y ; \vec u) & : = & f^i_k ( \vec x ,  y ; \vec f ( w, \vec x , y ; \vec u ) )
905
\end{array}
906
\]
907

    
908
\anupam{check this, esp use of parameters, cf.\ above.}
909

    
910
\anupam{Is this not using a simultaneous version of PRN? Might need concatenation of words/basic coding to deal with this.}
911

    
912

    
913
\end{definition}
914

    
915
\newcommand{\concat}{\mathit{concat}}
916
\paragraph{Some points on concatenation \anupam{if necessary}}
917
We can define the concatenation operation by PRN:
918
\[
919
\begin{array}{rcl}
920
\concat (\epsilon ; y) & : = & x \\
921
\concat (\succ_i x ; y) & := & \succ_i \concat (x ; y)
922
\end{array}
923
\]
924

    
925
From here we can define iterated concatenation:
926
\[
927
\concat (x_1 , \dots x_n ; y) \quad := \quad \concat (x_n ; \concat (x_{n-1} ; \vldots \concat (x_1 ; y) \vldots ) )
928
\]
929

    
930
(notice all safe inputs are hereditarily to the right of $;$ so this is definable by safe composition and projection.)
931

    
932
\section{Further work}
933

    
934
Say something about minimisation and the polynomial hierarchy. Could be achieved by controlling contraction/additives, since this requires a notion of tests.
935

    
936
\section{Conclusions}
937

    
938
\appendix
939

    
940
\section{Some cut-elimination cases}
941
We work in a one-sided calculus for full linear logic. When working in the affine setting we simply drop the condition that weakened formulae are $?$-ed.
942

    
943
As well as all usual rules, we have the induction rule:
944
\[
945
\vlinf{\indr}{(x \notin FV (\Gamma) )}{? \Gamma, A^\perp (0) , A(t)}{? \Gamma , A^\perp (x) , A(s x) }
946
\]
947

    
948
We give all the various cut-reduction cases in the following section but first we give a simple cut-elimination argument.
949

    
950
\subsection{A basic (free-)cut elimination argument}
951
We give an argument that easily scales to free-cut elimination, i.e.\ in the presence of non-logical rules.
952

    
953
\newcommand{\anarrow}[2]{\overset{#1}{\underset{#2}{\longrightarrow}}}
954
\newcommand{\cutredlin}{\mathit{ma}}
955
\newcommand{\cutredexp}{exp}
956

    
957
\begin{definition}
958
	Let $\anarrow{}{\cutredexp}$ denote the reduction steps concerning exponential cuts, and $\anarrow{}{\cutredlin}$ be the set of cut-reduction steps concerning multiplicative and additive cuts.
959
\end{definition}
960

    
961
\newcommand{\rk}{\mathsf{rk}}
962
	\renewcommand{\deg}{\mathsf{deg}}
963
\begin{definition}
964
	[Measures]
965
	For a $\anarrow{}{\cutredlin}$-redex $r$, let its \emph{degree} $\deg( r)$ be the number of logical connectives or quantifiers in its cut-formula. For a proof $\pi$, its \emph{degree} $\deg( \pi)$ is the multiset of the degree of its redexes.
966
\end{definition}
967

    
968
\begin{proposition}
969
If $\pi$ is not $\anarrow{}{\cutredlin}$-normal then there is a derivation $L:\pi \anarrow{*}{\cutredlin} \pi'$ such that $\deg(\pi')< \deg(\pi)$.
970
\end{proposition}
971
\begin{proof}
972
	First let us show the statement in the special case that $\pi$ contains precisely one $\cut$-inference as its final step, by induction on $|\pi|$. Each commutative $\anarrow{}{\cutredlin}$-step results in us being able to apply the inductive hypothesis to smaller proofs,- in the case of $\vlan $ two smaller proofs. Each key $\anarrow{}{\cutredlin}$-case strictly reduces the degree of the proof. Consequently we can eventually transform $\pi$ to a proof $\pi'$ which has possibly several cuts of smaller degree, as required.
973
	
974
	Now to the general case, we simply apply the above procedure to the subproof above a topmost cut in $\pi$.
975
\end{proof}
976
\begin{corollary}
977
	$\anarrow{}{\cutredlin}$ is weakly normalising.
978
\end{corollary}
979

    
980

    
981
\newcommand{\cntdown}{\mathit{cn}}
982
\begin{definition}
983
	[Lazy contraction]
984
	Let $\anarrow{}{\cntdown}$ comprise of the following reduction steps:
985
	\begin{enumerate}
986
		\item The commuting steps,
987
			\[
988
			\vlderivation{
989
				\vlin{\rho}{}{\Gamma', ?A, }{
990
					\vlin{\cntr}{}{\Gamma, ?A}{\vlhy{\Gamma, ? A, ? A}}
991
				}
992
			}
993
			\quad\to \quad
994
			\vlderivation{
995
				\vlin{\cntr}{}{\Gamma', ?A}{
996
					\vlin{\rho}{}{\Gamma', ?A, ?A}{\vlhy{\Gamma, ? A, ? A}}
997
				}
998
			}	
999
			\]
1000
			for each unary rule $\rho$.
1001
			\item 
1002
			The key steps:
1003
			\[ 	
1004
			\begin{array}{rcl}
1005
			\vlderivation{
1006
				\vlin{\cntr}{}{\Gamma, ?A}{
1007
					\vlin{\wk}{}{\Gamma, ?A, ?A}{\vlhy{\Gamma, ?A}}
1008
				}
1009
			}
1010
			\quad &\to & \quad
1011
			\Gamma, ?A 
1012
%			\]
1013
%			and
1014
%			\[
1015
\\
1016
\noalign{\smallskip}
1017
				\vlderivation{
1018
					\vlin{\wk}{}{\Gamma, ?A, ?A}{
1019
						\vlin{\cntr}{}{\Gamma, ?A}{\vlhy{\Gamma, ?A, ?A}}
1020
					}
1021
				}
1022
				\quad &\to& \quad
1023
				\Gamma, ?A, ?A
1024
							\end{array}
1025
			\].
1026
\item The commuting steps,
1027
\[
1028
	\vlderivation{
1029
		\vliin{\rho}{}{\Gamma ,?A}{
1030
			\vlin{\cntr}{}{\Gamma_1, ?A}{\vlhy{\Gamma_1, ?A, ?A}}
1031
		}{\vlhy{\Gamma_2}}
1032
	}
1033
	\quad \to \quad
1034
	\vlderivation{
1035
		\vlin{\cntr}{}{\Gamma, ?A}{
1036
			\vliin{\rho}{}{\Gamma,?A, ?A}{\vlhy{\Gamma_1, ?A, ?A}}{ \vlhy{\Gamma_2} }
1037
		}
1038
	}
1039
\]
1040
%\[
1041
%\begin{array}{rcl}
1042
%	\vlderivation{
1043
%		\vliin{\land}{}{\Gamma, \Delta, ?A, B\land C}{
1044
%			\vlin{\cntr}{}{\Gamma, ?A, B}{\vlhy{\Gamma, ?A, ?A, B}}
1045
%		}{\vlhy{\Delta, C}}
1046
%	}
1047
%	\quad &\to &\quad
1048
%	\vlderivation{
1049
%		\vlin{\cntr}{}{\Gamma, \Delta, ?A, B\land C}{
1050
%			\vliin{\land}{}{\Gamma, \Delta, ?A, ?A, B\land C}{\vlhy{\Gamma, ?A, ?A, B}}{ \vlhy{\Delta, C} }
1051
%		}
1052
%	}
1053
%%	\]
1054
%%	
1055
%%	\[
1056
%\\
1057
%\noalign{\smallskip}
1058
%	\vlderivation{
1059
%		\vliin{\cut}{}{\Gamma, \Delta, ?A}{
1060
%			\vlin{\cntr}{}{\Gamma, ?A, B}{\vlhy{\Gamma, ?A, ?A, B}}
1061
%		}{\vlhy{\Delta, \lnot{B}}}
1062
%	}
1063
%	\quad &\to& \quad
1064
%	\vlderivation{
1065
%		\vlin{\cntr}{}{\Gamma, \Delta, ?A}{
1066
%			\vliin{\cut}{}{\Gamma, \Delta, ?A, ?A}{\vlhy{\Gamma, ?A, ?A, B}}{ \vlhy{\Delta, \lnot{B}} }
1067
%		}
1068
%	}
1069
%\end{array}
1070
%\]
1071
for each binary rule $\rho \in \{ \land, \cut \}$.
1072
\item The commuting step:
1073
	\[
1074
	\vlderivation{
1075
		\vliin{\vlan}{}{\Gamma, ?A, B\vlan C}{
1076
			\vlin{\cntr}{}{\Gamma, ?A, B}{\vlhy{\Gamma, ?A, ?A, B}}
1077
		}{\vlhy{\Gamma, ?A, B}}
1078
	}
1079
	\quad \to \quad
1080
	\vlderivation{
1081
		\vlin{\cntr}{}{\Gamma, ?A, B\vlan C}{
1082
			\vliin{\vlan}{}{\Gamma, ?A, ?A, B\vlan C}{\vlhy{\Gamma, ?A, ?A, B}}{
1083
				\vlin{\wk}{}{\Gamma, ?A, ?A, C}{\vlhy{\Gamma, ?A, C}}
1084
			}
1085
		}
1086
	}
1087
	\]
1088
	\end{enumerate}
1089
	For binary rules:
1090

    
1091
\end{definition}
1092
\begin{proposition}
1093
	$\anarrow{}{\cntdown}$ is weakly normalising
1094
	, modulo $\cntr$-$\cntr$ redexes,
1095
	and degree-preserving. 
1096
	If $\pi$ is $\anarrow{}{\cutredlin}$-normal and $\pi \downarrow_\cntdown \pi'$, then so is $\pi'$.
1097
\end{proposition}
1098
\begin{proof}
1099
	By induction on the number of redexes in a proof. Start with bottommost redex, by induction on number of inference steps beneath it.
1100
\end{proof}
1101

    
1102
\begin{remark}
1103
	Only weakly normalising since $\cntr$ can commute with $\cntr$, allowing cycles.
1104
\end{remark}
1105

    
1106
\begin{proposition}
1107
	If $\pi$ is $\anarrow{}{\cutredexp}$-reducible but $\anarrow{}{\cutredlin}$- and $\anarrow{}{\cntdown}$-normal then there is a derivation $H:\pi \anarrow{*}{\cutredexp} \pi'$ such that $\deg (\pi')<\deg(\pi)$.
1108
\end{proposition}
1109

    
1110

    
1111

    
1112
\subsection{Base cases}
1113

    
1114
\[
1115
\vlderivation{
1116
\vliin{\cut}{}{ \Gamma,a }{ \vlhy{\Gamma,a} }{ \vlin{\id}{}{a,a^\bot}{ \vlhy{} } }
1117
}
1118
\quad\to\quad
1119
\vlderivation{
1120
\Gamma,a
1121
}
1122
\]
1123

    
1124
\[
1125
\vlderivation{
1126
\vliin{\cut}{}{\Gamma}{ \vlin{\bot}{}{ \Gamma,\bot }{ \vlhy{\Gamma} } }{ \vlin{1}{}{1}{ \vlhy{} } }
1127
}
1128
\quad\to\quad
1129
\vlderivation{
1130
\Gamma
1131
}
1132
\]
1133

    
1134
\[
1135
\vlderivation{
1136
\vliin{\cut}{}{ \Gamma,\Delta,\top }{ \vlin{\top}{}{ \Gamma,\top,0 }{ \vlhy{} } }{ \vlhy{\Delta , \top } }
1137
}
1138
\quad\to\quad
1139
\vlinf{\top}{}{ \Gamma,\Delta,\top }{}
1140
\]
1141

    
1142
\subsection{Commutative cases}
1143
These are the cases when the principal formula of a step is not active for the cut-step below.
1144

    
1145
\begin{enumerate}
1146
\item The cut-step is immediately preceded by an initial step. Note that only the case for $\top$ applies:
1147
\[
1148
\vlderivation{
1149
\vliin{\cut}{}{\Gamma,\Delta,\top}{ 
1150
\vlin{\top}{  }{ \Gamma,\top,A }{ \vlhy{} }
1151
 }{ \vlhy{\Delta,A^\bot } }
1152
}
1153
\quad\to\quad
1154
\vlinf{\top}{}{ \Gamma,\Delta,\top }{}
1155
\]
1156
%Notice that this commutation eliminates the cut entirely and preserves the height of all cuts below.
1157
\item\label{CaseCommOneStep} A cut-step is immediately preceded by a step $\rho$ with exactly one premiss:
1158
\[
1159
\vlderivation{
1160
\vliin{\cut}{}{\Gamma',\Delta}{\vlin{\rho}{}{\Gamma',A}{\vlhy{\Gamma,A}}}{\vlhy{A^\bot , \Delta}}
1161
}
1162
\]
1163
We have three subcases:
1164
\begin{enumerate}
1165
\item\label{subcase:unary-commutation-vanilla} 
1166
%$\Delta$ consists of only $?$-ed formulae or 
1167
If $\rho \notin \{! , \indr \}$ then we can simply permute as follows:
1168
\begin{equation}
1169
\label{eqn:com-case-unary-simple}
1170
\vlderivation{
1171
\vliin{\cut}{}{\Gamma',\Delta}{\vlin{\rho}{}{\Gamma',A}{\vlhy{\Gamma,A}}}{\vlhy{A^\bot , \Delta}}
1172
}
1173
\quad \to \quad
1174
\vlderivation{
1175
\vlin{\rho}{}{\Gamma',\Delta}{
1176
\vliin{\cut}{}{\Gamma,\Delta}{\vlhy{\Gamma,A}}{\vlhy{A^\bot , \Delta}}
1177
}
1178
}
1179
\end{equation}
1180
(If $\rho$ was $\forall$ then we might need to rename some free variables in $\Delta$.)
1181
\item $\rho $ is a $!$-step. Therefore $\Gamma$ has the form $? \Sigma , B$ and $A$ has the form $?C$, yielding the following situation:
1182
\[
1183
\vlderivation{
1184
\vliin{\cut}{}{? \Sigma, !B, \Delta }{
1185
\vlin{!}{}{? \Sigma, !B , ?C}{\vlhy{?\Sigma , B , ?C}  }
1186
}{
1187
\vlin{\rho'}{}{!C^\perp , \Delta}{\vlhy{\vlvdots}}
1188
}
1189
}
1190
\]
1191
Now, if $!C^\perp$ is principle for $\rho'$ then $\rho'\in \{! , \indr\}$ and so $\Delta $ must be $?$-ed; in this case we are able to apply the transformation \eqref{eqn:com-case-unary-simple}. Otherwise $A^\perp$ is not principal for $\rho'$ and so $\rho' \notin \{! , \indr \}$, which means we can apply \ref{subcase:unary-commutation-vanilla} along this side of the subproof.
1192
\item $\rho$ is a $\indr$-step. Therefore $\Gamma$ has the form $? \Sigma , B^\perp(x), B(s x) $ and $A$ has the form $?C$, and the argument is similar to the case above.
1193
% yielding the following situation:
1194
%\[
1195
%\vlderivation{
1196
%	\vliin{\cut}{}{? \Sigma, B^\perp (0) , B(t), \Delta }{
1197
%		\vlin{\indr}{}{? \Sigma, B^\perp (0) , B(t) , ?C}{\vlhy{?\Sigma , B^\perp(x) , B(s x) , ?C}  }
1198
%	}{
1199
%	\vlin{\rho'}{}{!C^\perp , \Delta}{\vlhy{\vlvdots}}
1200
%}
1201
%}
1202
%\]
1203
\end{enumerate}
1204

    
1205

    
1206

    
1207
\item A cut-step is immediately preceded by a $\vlte $-step:
1208
\[
1209
\vlderivation{
1210
\vliin{\cut}{}{\Gamma,\Delta,\Sigma,A\vlte B }{
1211
\vliin{\vlte}{}{\Gamma,\Delta,A\vlte B,C }{\vlhy{\Gamma,A,C}}{\vlhy{\Delta,B}}
1212
}{\vlhy{ \Sigma , C^\bot  }}
1213
}
1214
\quad\to\quad
1215
\vlderivation{
1216
\vliin{\vlte}{}{\Gamma,\Delta,\Sigma,A\vlte B}{
1217
\vliin{\cut}{}{\Gamma,\Sigma,A}{\vlhy{\Gamma,A,C}}{\vlhy{\Sigma,C^\bot}}
1218
}{\vlhy{\Delta,B}}
1219
}
1220
\]
1221
%Notice that this commutation might increase the height of any cuts below along the right branch of the indicated cut, but decreases the height along the left branch.
1222
\item\label{CommCaseAmpersand} A cut-step is immediately preceded by a $\vlan$-step.
1223
\[
1224
\vlderivation{
1225
\vliin{\cut}{}{ \Gamma,\Delta,A\vlan B }{ \vliin{\vlan}{}{\Gamma,A\vlan B,C}{ \vlhy{\Gamma,A,C} }{\vlhy{\Gamma,B,C}}}{ \vlhy{\Delta, C^\bot} }
1226
}
1227
\quad\to\quad
1228
\vlderivation{
1229
\vliin{\vlan}{}{\Gamma,\Delta,A\vlan B }{
1230
\vliin{cut}{}{\Gamma,\Delta,A }{ \vlhy{\Gamma,A,C} }{ \vlhy{ \Delta,C^\bot } }
1231
}{
1232
\vliin{ \cut }{}{\Gamma,\Delta,B}{ \vlhy{\Gamma,B,C } }{ \vlhy{\Delta,C^\bot} }
1233
}
1234
}
1235
\]
1236
\item (No rule for cuts commuting with cuts.)
1237
%A cut-step is immediately preceded by another cut-step:
1238
\[
1239
\vlderivation{
1240
	\vliin{\cut}{}{\Gamma, \Delta, \Sigma}{
1241
		\vliin{\cut}{}{\Gamma, \Delta, B}{\vlhy{\Gamma, A}}{\vlhy{\Delta, \lnot{A}, B}}
1242
		}{\vlhy{\Sigma, \lnot{B}}}
1243
	}
1244
	\quad\to\quad
1245
\vlderivation{
1246
	\vliin{\cut}{}{\Gamma, \Delta, \Sigma}{\vlhy{\Gamma, A}}{
1247
		\vliin{\cut}{}{\Delta, \Sigma, \lnot{A}}{\vlhy{\Delta, \lnot{A}, B}}{\vlhy{\Sigma, \lnot{B}}}
1248
		}
1249
	}
1250
\]
1251
\end{enumerate}
1252

    
1253

    
1254

    
1255
\subsection{Key cases: structural steps}
1256
%[THIS SECTION MIGHT NOT BE NECESSARY]
1257
We attempt to permute cuts on exponential formulae over structural steps whose principal formula is active for the cut. 
1258

    
1259
We use the commutative case \ref{CaseCommOneStep} to assume that the topmost cut-step in a sequence has already been permuted up to its origin on the $!$-side. 
1260

    
1261
We have two cases.
1262
\begin{enumerate}
1263
\item\label{StructStepCont} The structural step preceding the cut is a weakening:
1264
\[
1265
\vlderivation{
1266
\vliin{\cut}{}{?\Gamma,\Delta}{ \vlin{!}{}{ ?\Gamma,!A }{ \vlhy{?\Gamma , A} } }{ \vlin{w}{}{ ?A^\bot }{ \vlhy{\Delta	} } }
1267
}
1268
\quad\to\quad
1269
\vlinf{w}{}{?\Gamma,\Delta}{ \Delta }
1270
\]
1271
%\item The structural step preceding the cut is a contraction:
1272
%\[
1273
%\vlderivation{
1274
%\vliin{\cut}{}{ ?\Gamma,\Delta }{
1275
% \vlin{!}{}{ ?\Gamma,!A }{ \vlhy{?\Gamma , A} }
1276
%}{ \vlin{c}{}{ ?A^\bot , \Delta }{ \vlhy{ ?A^\bot , ?A^\bot ,  \Delta} } }
1277
%}
1278
%\quad\to\quad
1279
%\vlderivation{
1280
%\vliq{c}{}{?\Gamma, \Delta}{
1281
%\vliin{\cut}{}{?\Gamma, ?\Gamma,\Delta }{
1282
% \vlin{!}{}{ ?\Gamma,!A }{ \vlhy{?\Gamma , A} }
1283
%}{
1284
%\vliin{\cut}{}{?\Gamma,?A^\bot , \Delta }{
1285
% \vlin{!}{}{ ?\Gamma,!A }{ \vlhy{?\Gamma , A} }
1286
%}{ \vlhy{?A^\bot , ?A^\bot , \Delta } }
1287
%}
1288
%}
1289
%}
1290
%\]
1291
%OR use a multicut:
1292
%\[
1293
%\vlderivation{
1294
%\vliin{\cut}{}{ ?\Gamma,\Delta }{
1295
% \vlin{!}{}{ ?\Gamma,!A }{ \vlhy{?\Gamma , A} }
1296
%}{ \vlin{c}{}{ ?A^\bot , \Delta }{ \vlhy{ ?A^\bot , ?A^\bot ,  \Delta} } }
1297
%}
1298
%\quad\to\quad
1299
%\vlderivation{
1300
%\vliin{\multicut}{}{?\Gamma,?A^\bot , \Delta }{
1301
% \vlin{!}{}{ ?\Gamma,!A }{ \vlhy{?\Gamma , A} }
1302
%}{ \vlhy{?A^\bot , ?A^\bot , \Delta } }
1303
%}
1304
%\]
1305
\item The structural step preceding a cut is a contraction:
1306
\[
1307
\vlderivation{
1308
	\vliin{\cut}{}{?\Gamma, \Sigma }{ \vlhy{?\Gamma,!A^\bot} }{
1309
		\vlin{\cntr}{}{ ?A,\Sigma }{ \vlhy{ ?A,?A,\Sigma } }
1310
	}
1311
}
1312
\quad\to\quad
1313
\vlderivation{
1314
	\vliq{\cntr}{}{ ?\Gamma,\Sigma }{
1315
		\vliin{\cut}{}{ ?\Gamma,?\Gamma,\Sigma }{ \vlhy{?\Gamma,!A^\bot } }{
1316
			\vliin{\cut}{}{ ?A,?\Gamma,\Sigma }{ \vlhy{?\Gamma,!A^\bot} }{ \vlhy{ ?A,?A,?\Delta,\Sigma } }
1317
		}
1318
	}
1319
}
1320
\]
1321
%\item The structural step preceding a cut is a parallel contraction:
1322
%\[
1323
%\vlderivation{
1324
%\vliin{\cut}{}{?\Gamma,?\Delta, \Sigma }{ \vlhy{?\Gamma,!A^\bot} }{
1325
%\vlin{}{}{ ?A,?\Delta,\Sigma }{ \vlhy{ ?A,?A,?\Delta,?\Delta,\Sigma } }
1326
%}
1327
%}
1328
%\quad\to\quad
1329
%\vlderivation{
1330
%\vlin{}{}{ ?\Gamma,?\Delta,\Sigma }{
1331
%\vliin{\cut}{}{ ?\Gamma,?\Gamma,?\Delta,?\Delta,\Sigma }{ \vlhy{?\Gamma,!A^\bot } }{
1332
%\vliin{\cut}{}{ ?A,?\Gamma,?\Delta,?\Delta,\Sigma }{ \vlhy{?\Gamma,!A^\bot} }{ \vlhy{ ?A,?A,?\Delta,?\Delta,\Sigma } }
1333
%}
1334
%}
1335
%}
1336
%\]
1337
\end{enumerate}
1338

    
1339
\subsection{Key cases: logical steps}
1340
Finally, once all cuts have been permuted maximally on both sides, we have the cases when the cut-formula is principal for a preceding logical step on both sides. We have three cases, one for every pair of connectives.
1341
\begin{enumerate}
1342
\item The cut-formula is multiplicative:
1343
\[
1344
\vlderivation{
1345
\vliin{\cut}{}{ \Gamma,\Delta,\Sigma }{
1346
\vliin{\vlte}{}{ \Gamma,\Delta,A\vlte B }{ \vlhy{\Gamma,A} }{ \vlhy{\Delta,B} }
1347
}{ \vlin{\vlpa}{}{ \Sigma, A^\bot \vlpa B^\bot }{ \vlhy{\Sigma , A^\bot , B^\bot} } }
1348
}
1349
\quad\to\quad
1350
\vlderivation{
1351
\vliin{\cut}{}{ \Gamma,\Delta,\Sigma }{ \vlhy{\Gamma,A} }{
1352
\vliin{\cut}{}{ \Delta,\Sigma,A^\bot }{ \vlhy{\Delta,B} }{ \vlhy{\Sigma , A^\bot,B^\bot } }
1353
}
1354
}
1355
\]
1356
\item The cut-formula is additive,
1357
\[
1358
\vlderivation{
1359
\vliin{\cut}{}{ \Gamma,\Delta }{ 
1360
\vliin{\vlan}{}{ \Gamma,A\vlan B }{ \vlhy{\Gamma,A} }{ \vlhy{\Gamma,B} }
1361
 }{ \vlin{\vlor}{}{ \Delta,A^\bot\vlor B^\bot }{ \vlhy{\Delta, A^\bot } } }
1362
}
1363
\quad\to\quad
1364
\vliinf{\cut}{}{ \Gamma,\Delta }{ \Gamma,A }{ \Delta,A^\bot }
1365
\]
1366
where the case for the other $\vlor$-rule is symmetric.
1367
\item The cut-formula is exponential.
1368
\[
1369
\vlderivation{
1370
\vliin{\cut}{}{ ?\Gamma,\Delta }{
1371
 \vlin{!}{}{ ?\Gamma,!A }{ \vlhy{?\Gamma , A} }
1372
}{
1373
\vlin{?}{}{ \Delta,?A^\bot }{ \vlhy{\Delta, A^\bot } }
1374
}
1375
}
1376
\quad\to\quad
1377
\vliinf{\cut}{}{ ?\Gamma,\Delta }{ ?\Gamma,A }{ \Delta,A^\bot }
1378
\]
1379
\item The cut-formula is quantified.
1380
\[
1381
\vlderivation{
1382
	\vliin{\cut}{}{\Gamma, \Delta}{
1383
		\vlin{\forall}{}{\Gamma, \forall x. A(x)}{\vltr{\pi(a)}{\Gamma, A(a)}{\vlhy{\quad}}{\vlhy{}}{\vlhy{\quad}}}
1384
		}{
1385
		\vlin{\exists}{}{\Delta, \exists x . \lnot{A}(x)}{\vlhy{\Delta, \lnot{A}(t)}}
1386
		}
1387
	}
1388
	\quad \to \quad
1389
	\vlderivation{
1390
		\vliin{\cut}{}{\Gamma, \Delta}{
1391
			\vltr{\pi(t)}{\Gamma, A(t)}{\vlhy{\quad}}{\vlhy{}}{\vlhy{\quad}}
1392
			}{\vlhy{\Delta, \lnot{A}(t)}}
1393
		}
1394
\]
1395
\end{enumerate}
1396

    
1397

    
1398
\end{document}