root / CSL16 / feas-arith-wfm.tex @ 14
Historique | Voir | Annoter | Télécharger (51,9 ko)
1 |
\documentclass[a4paper,UKenglish]{lipics-v2016} |
---|---|
2 |
%This is a template for producing LIPIcs articles. |
3 |
%See lipics-manual.pdf for further information. |
4 |
%for A4 paper format use option "a4paper", for US-letter use option "letterpaper" |
5 |
%for british hyphenation rules use option "UKenglish", for american hyphenation rules use option "USenglish" |
6 |
% for section-numbered lemmas etc., use "numberwithinsect" |
7 |
|
8 |
\usepackage{microtype}%if unwanted, comment out or use option "draft" |
9 |
|
10 |
%\graphicspath{{./graphics/}}%helpful if your graphic files are in another directory |
11 |
|
12 |
\bibliographystyle{plainurl}% the recommended bibstyle |
13 |
|
14 |
|
15 |
|
16 |
|
17 |
\usepackage[lutzsyntax]{virginialake} |
18 |
\usepackage{amsmath} |
19 |
\usepackage{amssymb} |
20 |
\usepackage{amsthm} |
21 |
\usepackage{times} |
22 |
%\usepackage{sans} |
23 |
\usepackage{cmll} |
24 |
\usepackage{bm} |
25 |
|
26 |
%\newtheorem{theorem}{Theorem} |
27 |
%\newtheorem{maintheorem}[theorem]{Main Theorem} |
28 |
%\newtheorem{observation}[theorem]{Observation} |
29 |
%\newtheorem{corollary}[theorem]{Corollary} |
30 |
%\newtheorem{lemma}[theorem]{Lemma} |
31 |
\newtheorem{proposition}[theorem]{Proposition} |
32 |
%\newtheorem{conjecture}[theorem]{Conjecture} |
33 |
% |
34 |
%\theoremstyle{definition} |
35 |
%\newtheorem{definition}[theorem]{Definition} |
36 |
%\newtheorem{example}[theorem]{Example} |
37 |
%\newtheorem{notation}[theorem]{Notation} |
38 |
%\newtheorem{convention}[theorem]{Convention} |
39 |
%\newtheorem{remark}[theorem]{Remark} |
40 |
%\newtheorem{discussion}[theorem]{Discussion} |
41 |
|
42 |
\newcommand{\todo}[1]{{\color{red}{\textbf{Todo:} #1}}} |
43 |
\newcommand{\anupam}[1]{{\color{orange}{\textbf{Anupam:} #1}}} |
44 |
\newcommand{\patrick}[1]{{\color{blue}{\textbf{Patrick:} #1}}} |
45 |
|
46 |
\newcommand{\defined}{:=} |
47 |
\begin{document} |
48 |
|
49 |
\newcommand{\LL}{\it{LL}} |
50 |
\vllineartrue |
51 |
|
52 |
|
53 |
\newcommand{\FV}{\mathit{FV}} |
54 |
|
55 |
|
56 |
%terms |
57 |
\renewcommand{\succ}{s} |
58 |
\renewcommand{\epsilon}{\varepsilon} |
59 |
|
60 |
% linear connectives |
61 |
|
62 |
\newcommand{\limp}{\multimap} |
63 |
\renewcommand{\land}{\otimes} |
64 |
\newcommand{\laand}{\&} |
65 |
\newcommand{\laor}{\oplus} |
66 |
\renewcommand{\lor}{\vlpa} |
67 |
\renewcommand{\lnot}[1]{{#1^{\perp}}} |
68 |
\newcommand{\lnotnot}[1]{#1^{\perp \perp}} |
69 |
|
70 |
% classical connectives |
71 |
|
72 |
\newcommand{\cimp}{\supset} |
73 |
\newcommand{\cand}{\wedge} |
74 |
\newcommand{\cor}{\vee} |
75 |
\newcommand{\cnot}{\neg} |
76 |
|
77 |
|
78 |
\newcommand{\Ax}{\mathit{(Ax)}} |
79 |
\newcommand{\Rl}{\mathit{(Rl)}} |
80 |
|
81 |
\newcommand{\MELL}{\mathit{MELL}} |
82 |
\newcommand{\MEAL}{\mathit{MELLW}} |
83 |
\newcommand{\MELLW}{\mathit{MELL(W)}} |
84 |
|
85 |
\newcommand{\Aonetwo}{\mathcal{A}^1_2} |
86 |
\newcommand{\logic}{\mathit{L}_{\mathcal A} } |
87 |
|
88 |
% predicates |
89 |
\newcommand{\nat}{N} |
90 |
|
91 |
\newcommand{\Nat}{\mathbb{N}} |
92 |
|
93 |
%axioms |
94 |
\newcommand{\wk}{\mathit{wk}} |
95 |
\newcommand{\impl}{\cimp\text{-}\mathit{l}} |
96 |
\newcommand{\impcomm}{\mathit{com}} |
97 |
\newcommand{\conint}{\cand\text{-}\mathit{i}} |
98 |
\newcommand{\conel}{\cand\text{-}\mathit{e}} |
99 |
\newcommand{\negclass}{\cnot} |
100 |
|
101 |
%rules |
102 |
\renewcommand{\mp}{\mathit{mp}} |
103 |
\newcommand{\gen}{\mathit{gen}} |
104 |
\newcommand{\inst}{\mathit{ins}} |
105 |
\newcommand{\id}{\it{id}} |
106 |
\newcommand{\cut}{\it{cut}} |
107 |
\newcommand{\multicut}{\it{mcut}} |
108 |
\newcommand{\indr}{\mathit{IND}} |
109 |
\newcommand{\nec}{\mathit{nec}} |
110 |
\newcommand{\tax}{\mathit{T}} |
111 |
\newcommand{\four}{\mathit{4}} |
112 |
\newcommand{\kax}{\mathit{K}} |
113 |
\newcommand{\cntr}{\mathit{cntr}} |
114 |
|
115 |
\newcommand{\lefrul}[1]{#1\text{-}\mathit{l}} |
116 |
\newcommand{\rigrul}[1]{#1\text{-}\mathit{r}} |
117 |
|
118 |
%consequence relations |
119 |
\newcommand{\admits}{\vDash} |
120 |
\newcommand{\seqar}{\vdash} |
121 |
\newcommand{\proves}{\vdash_e} |
122 |
|
123 |
%induction |
124 |
\newcommand{\ind}{\mathit{IND}} |
125 |
\newcommand{\pind}{\mathit{PIND}} |
126 |
\newcommand{\cax}[2]{#1\text{-}#2} |
127 |
|
128 |
% sizes |
129 |
\newcommand{\height}[1]{\mathit{h}(#1)} |
130 |
|
131 |
% Author macros::begin %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
132 |
\title{Free-cut elimination in linear logic: an application to implicit complexity} |
133 |
%\titlerunning{A Sample LIPIcs Article} %optional, in case that the title is too long; the running title should fit into the top page column |
134 |
|
135 |
%% Please provide for each author the \author and \affil macro, even when authors have the same affiliation, i.e. for each author there needs to be the \author and \affil macros |
136 |
\author[1]{Patrick Baillot} |
137 |
\author[2]{Anupam Das} |
138 |
\affil[1]{Dummy University Computing Laboratory, Address/City, Country\\ |
139 |
\texttt{open@dummyuniversity.org}} |
140 |
\affil[2]{Department of Informatics, Dummy College, Address/City, Country\\ |
141 |
\texttt{access@dummycollege.org}} |
142 |
\authorrunning{J.\,Q. Open and J.\,R. Access} %mandatory. First: Use abbreviated first/middle names. Second (only in severe cases): Use first author plus 'et. al.' |
143 |
|
144 |
\Copyright{John Q. Open and Joan R. Access}%mandatory, please use full first names. LIPIcs license is "CC-BY"; http://creativecommons.org/licenses/by/3.0/ |
145 |
|
146 |
\subjclass{Dummy classification -- please refer to \url{http://www.acm.org/about/class/ccs98-html}}% mandatory: Please choose ACM 1998 classifications from http://www.acm.org/about/class/ccs98-html . E.g., cite as "F.1.1 Models of Computation". |
147 |
\keywords{Dummy keyword -- please provide 1--5 keywords}% mandatory: Please provide 1-5 keywords |
148 |
% Author macros::end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
149 |
|
150 |
%Editor-only macros:: begin (do not touch as author)%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
151 |
\EventEditors{John Q. Open and Joan R. Acces} |
152 |
\EventNoEds{2} |
153 |
\EventLongTitle{42nd Conference on Very Important Topics (CVIT 2016)} |
154 |
\EventShortTitle{CVIT 2016} |
155 |
\EventAcronym{CVIT} |
156 |
\EventYear{2016} |
157 |
\EventDate{December 24--27, 2016} |
158 |
\EventLocation{Little Whinging, United Kingdom} |
159 |
\EventLogo{} |
160 |
\SeriesVolume{42} |
161 |
\ArticleNo{23} |
162 |
% Editor-only macros::end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
163 |
|
164 |
\maketitle |
165 |
|
166 |
\begin{abstract} |
167 |
We prove a general form of free-cut elimination for first-order theories in linear logic. We consider a version of Peano Arithmetic in linear logic and prove a witnessing theorem via the Buss and Mints \emph{witness function method}, characterising polytime as the provably total functions. |
168 |
\end{abstract} |
169 |
|
170 |
\section{Introduction} |
171 |
|
172 |
\todo{words or integers?} |
173 |
|
174 |
|
175 |
|
176 |
\section{Preliminaries} |
177 |
|
178 |
\todo{consider removing and just have a section on linear logic, including free-cut elimination.} |
179 |
|
180 |
|
181 |
|
182 |
|
183 |
\paragraph*{Notation} |
184 |
Fix conventions here for use throughout: |
185 |
\begin{itemize} |
186 |
\item Eigenvariables: $a, b , c$. |
187 |
\item (Normal) variables: $u,v,w$. (only when distinction is important, e.g.\ $u^{!\nat}$). |
188 |
\item (Safe) variables: $x,y,z$. (as above, e.g.\ $x^\nat$.) |
189 |
\item Terms: $r,s,t$. |
190 |
\item Formulae: $A,B,C$. |
191 |
\item Atomic formulae: $p,q$. |
192 |
\item Sequents: $\Gamma, \Delta, \Sigma, \Pi$. |
193 |
\item Proofs: $\pi, \rho, \sigma$. |
194 |
\item Theories: $\mathcal T$. Sequent systems: $\mathcal S$. |
195 |
\end{itemize} |
196 |
|
197 |
\subsection{Linear logic} |
198 |
|
199 |
\anupam{use a system that is already in De Morgan form, for simplicity.} |
200 |
\anupam{Have skipped units, can reconsider this when in arithmetic. Also in affine setting can be recovered by any contradiction/tautology.} |
201 |
|
202 |
\begin{definition}\label{def:LLsequentcalculus} |
203 |
%[Sequent calculus for linear logic] |
204 |
[Sequent calculus for affine linear logic] |
205 |
|
206 |
\patrick{2Anupam: is there a reason for considering only axioms on atomic formulas $p$?} |
207 |
|
208 |
\patrick{Note that here I changed the system to consider directly affine linear logic} |
209 |
|
210 |
We define the following calculus in De Morgan normal form: |
211 |
\[ |
212 |
\begin{array}{l} |
213 |
\begin{array}{cccc} |
214 |
\vlinf{\lefrul{\bot}}{}{p, \lnot{p} \seqar }{} |
215 |
& \vlinf{\id}{}{p \seqar p}{} |
216 |
& \vlinf{\rigrul{\bot}}{}{\seqar p, \lnot{p}}{} |
217 |
& \vliinf{\cut}{}{\Gamma, \Sigma \seqar \Delta , \Pi}{ \Gamma \seqar \Delta, A }{\Sigma, A \seqar \Pi} |
218 |
\\ |
219 |
\noalign{\bigskip} |
220 |
%\text{Multiplicatives:} & & & \\ |
221 |
%\noalign{\bigskip} |
222 |
\vliinf{\lefrul{\lor}}{}{\Gamma,\Sigma, A \lor B \seqar \Delta, \Pi}{\Gamma, A \seqar \Delta}{\Sigma , B \seqar \Pi} |
223 |
& |
224 |
\vlinf{\lefrul{\land}}{}{\Gamma, A\land B \seqar \Delta}{\Gamma, A , B \seqar \Delta} |
225 |
& |
226 |
\vlinf{\rigrul{\lor}}{}{\Gamma \seqar \Delta, A \lor B}{\Gamma \seqar \Delta, A, B} |
227 |
& |
228 |
\vliinf{\rigrul{\land}}{}{\Gamma, \Sigma \seqar \Delta , \Pi , A \land B}{\Gamma \seqar \Delta , A}{\Sigma \seqar \Pi , B} |
229 |
\\ |
230 |
\noalign{\bigskip} |
231 |
%\text{Additives:} & & & \\ |
232 |
%\noalign{\bigskip} |
233 |
\vliinf{\lefrul{\laor}}{}{\Gamma, A \laor B \seqar \Delta}{\Gamma , A \seqar \Delta}{\Gamma, B \seqar \Delta} |
234 |
& |
235 |
\vlinf{\lefrul{\laand}}{}{\Gamma, A_1\laand A_2 \seqar \Delta}{\Gamma, A_i \seqar \Delta} |
236 |
& |
237 |
%\vlinf{\lefrul{\laand}}{}{\Gamma, A\laand B \seqar \Delta}{\Gamma, B \seqar \Delta} |
238 |
%\quad |
239 |
\vlinf{\rigrul{\laor}}{}{\Gamma \seqar \Delta, A_1\laor A_2}{\Gamma \seqar \Delta, A_i} |
240 |
& |
241 |
%\vlinf{\rigrul{\laor}}{}{\Gamma \seqar \Delta, A\laor B}{\Gamma \seqar \Delta, B} |
242 |
%\quad |
243 |
\vliinf{\rigrul{\laand}}{}{\Gamma \seqar \Delta, A \laand B }{\Gamma \seqar \Delta, A}{\Gamma \seqar \Delta, B} |
244 |
\\ |
245 |
\noalign{\bigskip} |
246 |
%\text{Exponentials:} & & & \\ |
247 |
%\noalign{\bigskip} |
248 |
\vlinf{\lefrul{?}}{}{!\Gamma, ?A \seqar ?\Delta}{!\Gamma , A \seqar ?\Delta} |
249 |
& |
250 |
\vlinf{\lefrul{!}}{}{\Gamma, !A \seqar \Delta}{\Gamma, A \seqar \Delta} |
251 |
& |
252 |
\vlinf{\rigrul{?}}{}{\Gamma \seqar \Delta, ?A}{\Gamma \seqar \Delta, A} |
253 |
& |
254 |
\vlinf{\rigrul{!}}{}{!\Gamma \seqar ?\Delta, !A}{!\Gamma \seqar ?\Delta, A} |
255 |
\\ |
256 |
\noalign{\bigskip} |
257 |
%\text{Structural:} & & & \\ |
258 |
%\noalign{\bigskip} |
259 |
|
260 |
%\vlinf{\lefrul{\wk}}{}{\Gamma, !A \seqar \Delta}{\Gamma \seqar \Delta} %% linear logic weakening |
261 |
\vlinf{\lefrul{\wk}}{}{\Gamma, A \seqar \Delta}{\Gamma \seqar \Delta} |
262 |
& |
263 |
\vlinf{\lefrul{\cntr}}{}{\Gamma, !A \seqar \Delta}{\Gamma, !A, !A \seqar \Delta} |
264 |
& |
265 |
%\vlinf{\rigrul{\wk}}{}{\Gamma \seqar \Delta, ?A }{\Gamma \seqar \Delta} %% linear logic weakening |
266 |
|
267 |
\vlinf{\rigrul{\wk}}{}{\Gamma \seqar \Delta, A }{\Gamma \seqar \Delta} |
268 |
& |
269 |
\vlinf{\rigrul{\cntr}}{}{\Gamma \seqar \Delta, ?A}{\Gamma \seqar \Delta, ?A, ?A} |
270 |
\\ |
271 |
\noalign{\bigskip} |
272 |
\vlinf{\lefrul{\exists}}{}{\Gamma, \exists x . A(x) \seqar \Delta}{\Gamma, A(a) \seqar \Delta} |
273 |
& |
274 |
\vlinf{\lefrul{\forall}}{}{\Gamma, \forall x. A(x) \seqar \Delta}{\Gamma, A(t) \seqar \Delta} |
275 |
& |
276 |
\vlinf{\rigrul{\exists}}{}{\Gamma \seqar \Delta, \exists x . A(x)}{ \Gamma \seqar \Delta, A(t)} |
277 |
& |
278 |
\vlinf{\rigrul{\forall}}{}{\Gamma \seqar \Delta, \forall x . A(x)}{ \Gamma \seqar \Delta, A(a) } \\ |
279 |
\noalign{\bigskip} |
280 |
\vliinf{mix}{}{\Gamma, \Sigma \seqar \Delta , \Pi}{ \Gamma \seqar \Delta}{\Sigma \seqar \Pi} &&& |
281 |
\end{array} |
282 |
\end{array} |
283 |
\] |
284 |
where $p$ atomic, $i \in \{ 1,2 \}$ and the eigenvariable $a$ does not occur free in $\Gamma$ or $\Delta$. |
285 |
\end{definition} |
286 |
Note that this system is \textit{affine} in the sense that it includes general weakening rules $\rigrul{\wk}$ and $\lefrul{\wk}$, while in linear logic $\rigrul{\wk}$ (resp. $\lefrul{\wk}$) is restricted to formulas of the form $?A$ (resp. $!A$). The rule $mix$ is included so that this system admits cut elimination. In the following though by linear logic we will mean affine linear logic. |
287 |
|
288 |
We will consider extensions of linear logic with a \textit{theory} $\mathcal T$ consisting in a finite set of additional axioms and rules, depicted as: |
289 |
|
290 |
\[ |
291 |
\begin{array}{cc} |
292 |
\vlinf{(ax)}{}{ \seqar A}{} & \vlinf{(R)}{}{ !\Gamma , \Sigma' \seqar \Delta' , ? \Pi }{ \{!\Gamma , \Sigma_i \seqar \Delta_i , ? \Pi \}_{i \in I} } |
293 |
\end{array} |
294 |
\] |
295 |
|
296 |
where in rule (R), $I$ is a finite set (indicating the number of premises) and we assume the following condition: |
297 |
|
298 |
\textit{for any $i\in I$, formulas in $\Sigma_i, \Delta_i$ do not share any free variable with $\Gamma, \Pi$.} |
299 |
|
300 |
In the following we will be interested in an example of theory $\mathcal T$ which is a form of arithmetic. |
301 |
|
302 |
A proof in this system will be called a \textit{ $\mathcal T$-proof}, or just \textit{proof} when there is no risk of confusion. |
303 |
The rules of Def. \ref{def:LLsequentcalculus} are called \textit{logical rules} while the rules (ax) and (R) of $\tau$ are called \textit{non-logical}. |
304 |
|
305 |
As usual rules come with a notion of \textit{active formulas}, which are a subset of the rules in the conclusion, e.g.: |
306 |
$A \lor B$ in rule $\lefrul{\lor}$ (and similarly for all rules for connectives); $?A$ in rule $\rigrul{\cntr}$; all conclusion formulas in axiom rules; |
307 |
$\Sigma', \Delta'$ in rule (R). |
308 |
|
309 |
While in usual logical systems such as linear logic cut rules can be eliminated, this is in general not the case anymore when one considers extension with a theory $\tau$. For this reason we need now to define the kind of cuts that will remain in proofs after reduction. |
310 |
\begin{definition}\label{def:anchoredcut} |
311 |
An instance of cut rule in a $\mathcal T$-proof is an \textit{anchored cut} if its cut-formulas $A$ in the two premises are both principal for their rule, and at least one of these rules is non-logical. |
312 |
\end{definition} |
313 |
So for instance a cut on an (active) formula $A \lor B$ between a rule $\rigrul{\lor}$ and a rule (R) (where $A \lor B$ occurs in $\Sigma'$) is anchored, while a cut between |
314 |
a rule $\rigrul{\lor}$ and a rule $\lefrul{\lor}$ is not. |
315 |
|
316 |
Now we can state the main result of this section: |
317 |
\begin{theorem} |
318 |
Given a theory $\mathcal T$, any $\mathcal T$-proof $\pi$ can be transformed into a $\mathcal T$-proof $\pi'$ with same conclusion sequent and in which all cuts are anchored. |
319 |
\end{theorem} |
320 |
\begin{proof} |
321 |
\patrick{The proof below is still in progress...} |
322 |
|
323 |
The proof will proceed in a way similar to the classical proof of cut elimination for linear logic, but here for eliminating only non-anchored cuts, and we will have to check that all steps of the reasoning are compatible with the fact that the proof here also contains $\mathcal{T}$ axioms and rules. |
324 |
|
325 |
Given a cut rule $c$ in a proof $\pi$, we call \emph{degree} $\deg( c)$ the number of logical connectives or quantifiers in its cut-formula. Now the \emph{degree} of the proof $\deg( \pi)$ is the multiset of the degrees of its non-anchored formulas. The degrees will be compared with the multiset ordering. |
326 |
|
327 |
The demonstration will proceed by induction on the degree $\deg( \pi)$. For a given degree we will proceed with a sub-induction on the \textit{height} $\height{\pi}$ of the proof. |
328 |
|
329 |
Consider a proof $\pi$ of non-null degree. We will show how to reduce it to a proof of strictly lower degree. Consider a top-most non-anchored cut $c$ in $\pi$, that is to say such that there is no non-anchored cut above $c$. We distinguish 3 cases for $c$: |
330 |
\begin{itemize} |
331 |
\item \textbf{First case}: the cut $c$ is non principal for its left premise. |
332 |
|
333 |
Call (S) the last rule above the left premise of $c$. We perform a commutation step between (S) and $c$. We examine here the case where (S)=($\rigrul{\laand}$). |
334 |
|
335 |
\[ |
336 |
\vlderivation{ |
337 |
\vliin{c}{}{ \Gamma,\Delta,A\vlan B }{ \vliin{\vlan}{}{\Gamma,A\vlan B,C}{ \vlhy{\Gamma,A,C} }{\vlhy{\Gamma,B,C}}}{ \vlhy{\Delta, C^\bot} } |
338 |
} |
339 |
\quad\to\quad |
340 |
\vlderivation{ |
341 |
\vliin{\vlan}{}{\Gamma,\Delta,A\vlan B }{ |
342 |
\vliin{c_1}{}{\Gamma,\Delta,A }{ \vlhy{\Gamma,A,C} }{ \vlhy{ \Delta,C^\bot } } |
343 |
}{ |
344 |
\vliin{c_2 }{}{\Gamma,\Delta,B}{ \vlhy{\Gamma,B,C } }{ \vlhy{\Delta,C^\bot} } |
345 |
} |
346 |
} |
347 |
\] |
348 |
|
349 |
\patrick{TODO: adapt to two-sided sequents here} |
350 |
|
351 |
Observe that here $c$ is replaced by two cuts $c_1$ and $c_2$. Call $\pi_i$ the sub-derivation of last rule $c_i$, for $i=1,2$. As for $i=1, 2$ we have |
352 |
$\deg{\pi_i}\leq \deg{\pi}$ and $\height{\pi_i}< \height{\pi}$ we can apply the induction hypothesis, and reduce $\pi_i$ to a proof $\pi'_i$ of same conclusion and with |
353 |
$\deg{\pi'_i}\leq \deg{\pi_i}$. Therefor $\pi'_i$ has non-anchored cuts of degree strictly lower than $\deg(c)$, and thus by replacing $\pi_i$ by $\pi'_i$ for $i=1, 2$ we obtain a proof $\pi'$ such that $\deg{\pi'}<\deg{\pi}$. |
354 |
|
355 |
The case (S)=($\lefrul{\laor}$) is identical, and the other cases are easier and described in the Appendix. |
356 |
\item \textbf{Second case}: the cut $c$ is non principal for its right premise. |
357 |
|
358 |
This is similar to the first case, by proceeding with a commutation case on the right. |
359 |
\item \textbf{Third case}: the cut $c$ is principal for its left and right premises. Then we consider the following sub-cases, in order: |
360 |
\begin{itemize} |
361 |
\item \textbf{exponential sub-case}: this is when one of the premises of $c$ is conclusion of a $cntr$, $\rigrul{?}$ or $\lefrul{!}$ rule on a formula $?A$ or $!A$. Assume w.l.o.g. that it is the right premise, so a rule $\lefrul{\cntr}$ or $\lefrul{!}$ on $!A$. We will use here a global rewriting step. For that consider in $\pi$ all the top-most direct ancestors of the cut-formula $!A$, that is to say direct ancestors which do not have any more direct ancestors above. Let us denote them as $!A^{j}$ for $1\leq j \leq k$. Observe that each $!A^{j}$ is principal formula of a rule $\lefrul{!}$ or $\lefrul{wk}$. |
362 |
|
363 |
Now examine the left premise of $c$, with principal formula $!A$. |
364 |
|
365 |
\patrick{to be continued...} |
366 |
|
367 |
\item \textbf{logical sub-case}: assume both premises of $c$ are conclusions of rules others than $?$, $!$, $wk$, $cntr$. |
368 |
|
369 |
If one of the premises is an axiom $\lefrul{\bot}$, $\id$ or $\rigrul{\bot}$, then $\pi$ can be rewritten to a suitable proof $\pi'$ by removing $c$ and the axiom rule. Otherwise both premises introduce the same connective, either $\land$, $\lor$, $\laor$, $\laand$, $\forall$ or $\exists$. In each case a specific rewriting rule replaces the cut $c$ with one cut of strictly lower degree. See the Appendix. |
370 |
|
371 |
\item \textbf{weakening sub-case}: the remaining case is when one of the premises of $c$ is a $wk$ rule and the other one is a rule distinct from $cntr$, $\rigrul{?}$ or $\lefrul{!}$. W.l.o.g. assume that the left premise of $c$ is conclusion of $\lefrul{\wk}$. If the right premise is conclusion of say rule $\rigrul{\land}$ on a formula $A_1\land A_2$, then $c$ is replaced by two cuts $c_i$ ($i=1,2$) on a formula $A_i$ obtained (on the left) by a $\lefrul{\wk}$ rule. These two cuts are of strictly lower degree than $c$, so we are done. We proceed in a similar way in the cases of rules introducing connectives $\lor$, $\laand$, $\laor$, $\forall$, $\exists$. Now,there remains the case where the right premise is a $\rigrul{\wk}$: then the cut can be eliminated by erasing the two $wk$ rules and using instead a $mix$ rule. In this case also the degree has decreased. |
372 |
|
373 |
\patrick{Display the rewriting step here}. |
374 |
|
375 |
\end{itemize} |
376 |
|
377 |
|
378 |
\end{itemize} |
379 |
|
380 |
\end{proof} |
381 |
|
382 |
\subsection{Deduction theorem} |
383 |
|
384 |
[cite Avron:`semantics and proof theory of linear logic'] |
385 |
|
386 |
We will make much use of the deduction theorem, allowing us to argue informally within a theory for hypotheses that have been promoted. |
387 |
|
388 |
%$$ |
389 |
% \vliiinf{}{}{ \seqar A}{ \seqar C} |
390 |
% $$ |
391 |
|
392 |
%\[ |
393 |
% \vliiinf{R}{}{ !\Gamma , \Sigma' \seqar \Delta' , ? \Pi }{ \{!\Gamma , \Sigma_i \seqar \Delta_i , ? \Pi \}_{i \in I} } |
394 |
% \] |
395 |
|
396 |
\begin{theorem} |
397 |
[Deduction] |
398 |
If $\mathcal T , A \proves B$ then $\mathcal{T} \proves !A \limp B$. |
399 |
\end{theorem} |
400 |
|
401 |
\todo{need that $A$ above is closed! Check for rules to axioms.} |
402 |
|
403 |
|
404 |
|
405 |
\subsection{Converting axioms to rules in $\MELLW$} |
406 |
|
407 |
\begin{proposition} |
408 |
An axiom $\Ax$ of the form, |
409 |
\[ |
410 |
A_1 \limp \vldots \limp A_m \limp !B_1 \limp \vldots \limp !B_n \limp C |
411 |
\] |
412 |
is equivalent (over propositional $\LL$) to the rule $\Rl$: |
413 |
\[ |
414 |
\vliiinf{\Rl}{}{ !\Gamma , A_1 , \dots , A_m \seqar C , ? \Delta }{ !\Gamma \seqar B_1 , ?\Delta }{\vldots }{ !\Gamma \seqar B_n , ?\Delta} |
415 |
\] |
416 |
\end{proposition} |
417 |
\begin{proof} |
418 |
Let us first assume $\Ax$ and derive $\Rl$. From the axiom and Currying, we have a proof of: |
419 |
\begin{equation}\label{eqn:curried-axiom} |
420 |
A_1 , \dots , A_m , !B_1 , \dots , !B_n \seqar C |
421 |
\end{equation} |
422 |
|
423 |
This can simply be cut against each of the premisses of $\Rl$, applying appropriate contractions and necessitations, to derive it: |
424 |
\[ |
425 |
\vlderivation{ |
426 |
\vliq{c}{}{!\Gamma , A_1 , \dots , A_m \seqar C , ?\Delta }{ |
427 |
\vliin{\cut}{}{!\Gamma, \dots , !\Gamma , A_1 , \dots , A_m \seqar C , ?\Delta, \dots , ?\Delta }{ |
428 |
\vlin{!}{}{!\Gamma \seqar !B_n, ?\Delta }{\vlhy{!\Gamma \seqar B_n , ?\Delta }} |
429 |
}{ |
430 |
\vliin{\cut}{}{\qquad \qquad \qquad \qquad \vlvdots \qquad \qquad \qquad \qquad }{ |
431 |
\vlin{!}{}{!\Gamma \seqar !B_1 , ?\Delta}{\vlhy{!\Gamma \seqar B_1, ?\Delta }} |
432 |
}{\vlhy{ A_1 , \dots , A_m , !B_1 , \dots , !B_n \seqar C } } |
433 |
} |
434 |
} |
435 |
} |
436 |
\] |
437 |
|
438 |
Now let us prove $\Ax$ (again in the form of \eqref{eqn:curried-axiom}) by using $\Rl$ as follows: |
439 |
\[ |
440 |
\vliiinf{\Rl}{}{ A_1 , \dots , A_m , !B_1 , \dots , !B_n \seqar C }{ \vlderivation{ |
441 |
\vlin{w}{}{ !B_1 , \dots , !B_n \seqar B_1 }{ |
442 |
\vlin{!}{}{!B_1 \seqar B_1 }{ |
443 |
\vlin{\id}{}{B_1 \seqar B_1 }{\vlhy{}} |
444 |
} |
445 |
} |
446 |
} }{\vldots}{ |
447 |
\vlderivation{ |
448 |
\vlin{w}{}{ !B_1 , \dots , !B_n \seqar B_n }{ |
449 |
\vlin{!}{}{!B_n \seqar B_n }{ |
450 |
\vlin{\id}{}{B_n \seqar B_n }{\vlhy{}} |
451 |
} |
452 |
} |
453 |
} |
454 |
} |
455 |
\] |
456 |
\end{proof} |
457 |
|
458 |
|
459 |
\textbf{NB:} The proof does not strictly require side formulae $? \Delta$ on the right of the sequent arrow $\seqar$, it would work without them, e.g.\ for the intuitionistic case. In a one-sided setting there is no difference. |
460 |
|
461 |
|
462 |
|
463 |
\begin{corollary} |
464 |
The induction axiom of $A^1_2$ is equivalent to the rule: |
465 |
\[ |
466 |
\vliinf{}{(x \notin \FV(\Gamma, \Delta))}{ !\Gamma , A(\epsilon) \seqar A(t) , ?\Delta }{ !\Gamma , A(x) \seqar A(s_0 x ), ?\Delta }{ !\Gamma, A(x) \seqar A( s_1 x ) , ?\Delta} |
467 |
\] |
468 |
\end{corollary} |
469 |
\begin{proof} |
470 |
By proposition above, generalisation and Currying. |
471 |
\end{proof} |
472 |
|
473 |
|
474 |
\subsection{Prenexing} |
475 |
%In the presence of weakening we have a prenex normal form due to the following: |
476 |
% |
477 |
%\[ |
478 |
%\vlderivation{ |
479 |
% \vlin{}{}{\exists x . A \lor B \seqar \exists x . (A(x) \lor B) }{ |
480 |
% |
481 |
% } |
482 |
% } |
483 |
%\] |
484 |
|
485 |
Cannot derive prenexing operations, e.g.\ a problem with $\exists x . A \lor B \seqar \exists x . (A(x) \lor B)$. Can safely add prenexing rules? Or not a problem due to Witness predicate? |
486 |
|
487 |
\section{Free-cut elimination in linear logic} |
488 |
|
489 |
|
490 |
\todo{patrick} |
491 |
|
492 |
\anupam{Possibly need to include the cases for affine logic too, e.g.\ if weakening is native, since it does not play nice as an axiom.} |
493 |
|
494 |
\todo{include some bounds on free-cut elimination? Look at paper "Corrected upper bounds for free-cut elimination" by Beckmann and Buss for comparison.} |
495 |
|
496 |
\section{Some variants of arithmetic in linear logic} |
497 |
|
498 |
For pretty much all variants discussed we will actually work in the \emph{affine} variant of linear logic, which validates weakening: $(A \land B )\limp A$. There are many reasons for this; essentially it has not much effect on complexity while also creating a more robust proof theory. For example it induces the following equivalence: |
499 |
\[ |
500 |
!(A\land B) \equiv (!A \land !B) |
501 |
\] |
502 |
(The right-left direction is already valid in usual linear logic, but the left-right direction requires weakening). |
503 |
|
504 |
We define a variant of arithmetic inspired by Bellantoni and Hofmann's $A^1_2$. We describe later some connections to bounded arithmetic. |
505 |
|
506 |
|
507 |
\subsection{Based on Bellantoni-Hoffmann, Leivant, etc.} |
508 |
|
509 |
\newcommand{\natcntr}{\nat\mathit{cntr}} |
510 |
\newcommand{\geneps}{\nat_{\epsilon}} |
511 |
\newcommand{\genzer}{\nat_{0}} |
512 |
\newcommand{\genone}{\nat_{1}} |
513 |
|
514 |
|
515 |
\newcommand{\sepeps}{\epsilon} |
516 |
\newcommand{\sepzer}{\succ_{0}} |
517 |
\newcommand{\sepone}{\succ_{1}} |
518 |
|
519 |
\newcommand{\inj}{\mathit{inj}} |
520 |
\newcommand{\surj}{\mathit{surj}} |
521 |
|
522 |
\begin{definition} |
523 |
[Arithmetic] |
524 |
We have the following axioms: |
525 |
\[ |
526 |
\begin{array}{rl} |
527 |
\wk & (A \land B )\limp A \\ |
528 |
\natcntr & \forall x^N . (N(x) \land N(x)) \\ |
529 |
\geneps & \nat(\epsilon) \\ |
530 |
\genzer & \forall x^N . N(\succ_0 x) \\ |
531 |
\genone & \forall x^N . N(\succ_1 x) \\ |
532 |
\sepeps & \forall x^N . (\epsilon \neq \succ_0 x \land \epsilon \neq \succ_1 x) \\ |
533 |
\sepzer & \forall x^N , y^N. ( \succ_0 x = \succ_0 y \limp x=y ) \\ |
534 |
\sepone & \forall x^N , y^N. ( \succ_1 x = \succ_1 y \limp x=y ) \\ |
535 |
\inj & \forall x^N . \succ_0 x \neq \succ_1 x \\ |
536 |
\surj & \forall x^N . (x = \epsilon \lor \exists y^N . x = \succ_0 y \lor \exists y^N . x = \succ_1 y ) \\ |
537 |
\noalign{\bigskip} |
538 |
\ind & A(\epsilon) \limp !( \forall x^{!\nat} . ( A(x) \limp A(\succ_0 x) ) ) \limp !( \forall x^{!\nat} . ( A(x) \limp A(\succ_1 x) ) ) \limp \forall x^{!\nat} . A(x) |
539 |
\end{array} |
540 |
\] |
541 |
|
542 |
Induction rule should be the following, to take account of relativised quantifiers? |
543 |
\[ |
544 |
\vliinf{\ind}{}{ !N(t) , !\Gamma , A(\epsilon) \seqar A(t), ?\Delta }{ !N(a) , !\Gamma, A(a) \seqar A(\succ_0 a) , ?\Delta }{ !N(a) , !\Gamma, A(a) \seqar A(\succ_0 a) , ?\Delta } |
545 |
\] |
546 |
|
547 |
\todo{in existential above, is there a prenexing problem?} |
548 |
|
549 |
\todo{what about $\leq$? Introducing this could solve prenexing problem, e.g.\ by induction?} |
550 |
\end{definition} |
551 |
|
552 |
\subsection{$\nat$-hierarchy} |
553 |
|
554 |
\begin{definition} |
555 |
|
556 |
\todo{replace N with nat.} |
557 |
|
558 |
Let us define the quantifiers $\exists x^N . A$ and $\forall x^N . A$ as $\exists x . (N(x) \land A)$ and $\forall x . (N(x) \limp A) $ respectively. |
559 |
|
560 |
We define $\Sigma^N_0 = \Pi^N_0 $ as the class of formulae that are free of quantifiers. For $i\geq 0$ we define: |
561 |
\begin{itemize} |
562 |
\item $\Sigma^N_{i+1}$ is the class of formulae $\exists x^N . A$ where $A \in \Pi^N_i$. |
563 |
\item $\Pi^N_{i+1}$ is the class of formulae $\forall x^N . A$ where $A \in \Sigma^N_i$. |
564 |
\item ($\Delta^N_i$ is the class $\Sigma^N_i \cap \Pi^N_i$.) |
565 |
\end{itemize} |
566 |
\end{definition} |
567 |
|
568 |
\todo{allow closure under positive Boolean operations?} |
569 |
|
570 |
\todo{What about prenexing rules? Should not change provably total functions!} |
571 |
|
572 |
\subsection{Equivalent rule systems} |
573 |
|
574 |
For the quantifiers $\exists x^N $ and $\forall x^N$ we introduce the following rules, which are compatible with free-cut elimination: |
575 |
|
576 |
\[ |
577 |
\begin{array}{cc} |
578 |
\vlinf{}{}{\Gamma \seqar \Delta, \forall x^N . A(x)}{\Gamma, N(a) \seqar \Delta , A(a)} |
579 |
\quad & \quad |
580 |
\vlinf{}{}{\Gamma, N(t),\forall x^N A(x) \seqar \Delta}{\Gamma, A(t) \seqar \Delta} |
581 |
\\ |
582 |
\noalign{\bigskip} |
583 |
\vlinf{}{}{\Gamma , \exists x^N A(x) \seqar \Delta}{\Gamma, N(a), A(a) \seqar \Delta} |
584 |
\quad &\quad |
585 |
\vlinf{}{}{\Gamma, N(t) \seqar \Delta , \exists x^N . A(x)}{\Gamma \seqar \Delta, A(t)} |
586 |
\end{array} |
587 |
\] |
588 |
|
589 |
CHECK THESE! |
590 |
|
591 |
\todo{Also include rules for contraction and weakening.} |
592 |
|
593 |
\section{Convergence of Bellantoni-Cook programs} |
594 |
|
595 |
\subsection{Bellantoni-Cook programs} |
596 |
We first recall the notion of safe recursion on notation from BC. TODO |
597 |
|
598 |
\subsection{Convergence in arithmetic} |
599 |
\begin{theorem} |
600 |
[Convergence] |
601 |
If $\Phi(f)$ is an equational specification corresponding to a BC-program defining $f()$, then $\cax{\Sigma^N_1}{\pind} \proves \ !\Phi(f) \limp \forall \vec{x}^{!N} . N(f(\vec x))$. |
602 |
\end{theorem} |
603 |
\begin{proof} |
604 |
We show by induction on the structure of a BC-program for $f(\vec x ; \vec y)$ that: |
605 |
\begin{equation} |
606 |
\Phi(f) , \cax{\Sigma^N_1}{\pind} \proves \ \forall \vec{x}^{!N} . \forall \vec{y}^N . N(f(\vec x ; \vec y)) |
607 |
\end{equation} |
608 |
We give some key cases in what follows. |
609 |
|
610 |
Suppose $f$ is defined by PRN by: |
611 |
\[ |
612 |
\begin{array}{rcl} |
613 |
f(0,\vec x ; \vec y) & = & g(\vec x ; \vec y) \\ |
614 |
f(\succ_i x , \vec x ; \vec y) & = & h_i (x, \vec x ; \vec y , f(x , \vec x ; \vec y)) |
615 |
\end{array} |
616 |
\] |
617 |
By the inductive hypothesis we already have that $g, h_0, h_1$ are provably convergent, so let us suppose that $N(\vec x)$ and prove, |
618 |
\begin{equation} |
619 |
\forall x^{!N} . ( N(\vec y) \limp N(f(x , \vec x ; \vec y) ) |
620 |
\end{equation} |
621 |
by $\cax{\Sigma^N_1}{\pind}$ on $x$. |
622 |
|
623 |
In the base case we have the following proof: |
624 |
\[ |
625 |
\vlderivation{ |
626 |
\vliin{}{}{N(\vec y) \limp N(f(0, \vec x ; \vec y))}{ |
627 |
\vltr{IH}{N(\vec y) \limp N(g(\vec x ; \vec y))}{\vlhy{\quad}}{\vlhy{}}{\vlhy{\quad}} |
628 |
}{ |
629 |
\vlin{}{}{N(g (\vec x ; \vec y) ) \limp N(f(0, \vec x ; \vec y)) }{ |
630 |
\vlin{}{}{g(\vec x ; \vec y) = f(0 , \vec x ; \vec y)}{\vlhy{}} |
631 |
} |
632 |
} |
633 |
} |
634 |
\] |
635 |
|
636 |
For the inductive step, we need to show that, |
637 |
\[ |
638 |
\forall x^{!N} . (( N(\vec y) \limp N( f(x, \vec x ; \vec y) ) ) \limp N(\vec y) \limp N(f(\succ_i x , \vec x ; \vec y) ) ) |
639 |
\] |
640 |
so let us suppose that $N(x)$ and we give the following proof: |
641 |
\[ |
642 |
\vlderivation{ |
643 |
\vlin{N\cntr}{}{N(y) \limp ( N(y ) \limp N(f( x , \vec x ; \vec y ) ) ) \limp N(f (\succ_i x , \vec x ; \vec y) ) }{ |
644 |
\vliin{}{}{N(y) \limp N(y) \limp ( N(y ) \limp N(f( x , \vec x ; \vec y ) ) ) \limp N(f (\succ_i x , \vec x ; \vec y) ) }{ |
645 |
\vliin{}{}{ N(y) \limp N(y) \limp ( N(y) \limp N( f(x, \vec x ; \vec y) ) ) \limp N( h_i (x , \vec x ; \vec y , f(x , \vec x ; \vec y) ) ) }{ |
646 |
\vltr{MLL}{( N(\vec y) \limp (N (\vec y) \limp N(f(x, \vec x ; \vec y) )) \limp N(f(x, \vec x ; \vec y)) }{\vlhy{\quad }}{\vlhy{\ }}{\vlhy{\quad }} |
647 |
}{ |
648 |
\vlhy{2} |
649 |
} |
650 |
}{ |
651 |
\vlhy{3} |
652 |
} |
653 |
} |
654 |
} |
655 |
\] |
656 |
TOFINISH |
657 |
\end{proof} |
658 |
|
659 |
\section{Witness function method} |
660 |
|
661 |
Key features/differences from realisability: |
662 |
\begin{itemize} |
663 |
\item De Morgan normal form: reduces type level to $0$, complementary to double-negation translation that \emph{increases} type level. |
664 |
\item Free-cut elimination: allows us to handles formulae of fixed logical complexity throughout the proof. |
665 |
\item Respects logical properties of formulae, e.g.\ quantifier complexity, exponential complexity. |
666 |
\end{itemize} |
667 |
|
668 |
\todo{say some more here} |
669 |
|
670 |
\newcommand{\type}{\mathtt{t}} |
671 |
\newcommand{\norm}{\nu} |
672 |
\newcommand{\safe}{\sigma} |
673 |
|
674 |
\subsection{Typing} |
675 |
|
676 |
\begin{definition} |
677 |
[Types] |
678 |
To each formula we associate a tuple type as follows: |
679 |
\[ |
680 |
\begin{array}{rcll} |
681 |
\type (\nat (t)) & := & \Nat & \\ |
682 |
\type(s = t) & := & \Nat & \\ |
683 |
\type (A \star B) & : = & \type (A) \times \type (B) & \text{for $\star \in \{ \lor, \land, \laor, \laand \} $.} \\ |
684 |
\type (! A) & : = & \type_\norm (A) & \\ |
685 |
\type (\exists x^N . A) & := & \Nat \times \type (A) & \\ |
686 |
% \type (\forall x^N . A) & := & \Nat \to \type(A) |
687 |
\end{array} |
688 |
\] |
689 |
where $\nu$ designates that the inputs are normal. |
690 |
\end{definition} |
691 |
|
692 |
\todo{compatibility with safety. To consider.} |
693 |
|
694 |
|
695 |
|
696 |
|
697 |
\newcommand{\witness}[2]{\mathit{Witness}^{#1}_{#2}} |
698 |
\begin{definition} |
699 |
[Witness predicate] |
700 |
We define the following formula: |
701 |
\[ |
702 |
\begin{array}{rcll} |
703 |
\witness{\vec a}{A} (w, \vec a) & := & A(\vec a) & \text{for $A$ quantifier-free.} \\ |
704 |
\witness{\vec a}{\exists x . A} (w, \vec w , \vec a) & := & \witness{\vec{a}, a}{A(a)}(\vec w , \vec a, w ) & \\ |
705 |
\witness{\vec a}{A \star B} ( \vec w^1 , \vec w^2 ) & := & \witness{\vec a}{A} (\vec w^1) \star \witness{\vec a}{B} (\vec w^2) & \text{for $\star \in \{ \land, \lor, \laand , \laor\}$.} \\ |
706 |
\end{array} |
707 |
\] |
708 |
\end{definition} |
709 |
\todo{problem: what about complexity of checking equality? } |
710 |
|
711 |
\todo{What about $\nat (t)$? What does it mean? Replace with true?} |
712 |
|
713 |
\todo{either use the witness predicate above, or use realizability predicate at meta-level and a model theory, like BH.} |
714 |
|
715 |
\anupam{Need to check above properly. $N(t)$ should be witnessed by the value of $t $ in the model. For equality of terms the witness should not do anything.} |
716 |
|
717 |
\subsection{The translation} |
718 |
Need witness predicate so that we know what is being preserved. |
719 |
|
720 |
\begin{definition} |
721 |
[Translation] |
722 |
We give a translation of proofs $\pi$ of sequents $\Gamma(\vec a) \seqar \Delta(\vec a)$ to BC-programs for a vector of functions $\vec f^\pi : \type(\bigotimes\Gamma) \times \Nat^{|\vec a|} \to \type(\bigparr\Delta)$ such that: |
723 |
\[ |
724 |
\witness{\vec a}{\bigotimes \Gamma} (\vec w , \vec a) \implies \witness{\vec a}{\bigparr \Delta } (\vec f(\vec w , \vec a), \vec a) |
725 |
\] |
726 |
We will be explicit about normal and safe inputs when necessary, for the most part we will simply rearrange inputs into lists $(\vec x; \vec a)$ as in BC framework. |
727 |
|
728 |
We often suppress the parameters $\vec a$ when it is not important. |
729 |
|
730 |
\anupam{Is this implication provable in Bellantoni's version of PV based on BC?} |
731 |
|
732 |
\anupam{for moment try ignore decoration on right? what about negation?} |
733 |
|
734 |
|
735 |
|
736 |
\[ |
737 |
\vlderivation{ |
738 |
\vliin{\land}{}{ \Gamma, \Sigma \seqar \Delta, \Pi, A\land B }{ |
739 |
\vltr{\pi_1}{ \Gamma \seqar \Delta, A }{\vlhy{\quad }}{\vlhy{ }}{\vlhy{\quad }} |
740 |
}{ |
741 |
\vltr{\pi_2}{ \Sigma \seqar \Pi, B }{\vlhy{\quad }}{\vlhy{ }}{\vlhy{\quad }} |
742 |
} |
743 |
} |
744 |
\] |
745 |
|
746 |
So we have $\vec f^{1} (\vec x ; \vec a)$ and $\vec f^2 (\vec y ; \vec b)$ for $\pi_1 $ and $\pi_2$ respectively, by the inductive hypothesis. We simply construct $\vec f^\pi$ by rearranging these functions: |
747 |
\[ |
748 |
\vec f^\pi (\vec x , \vec y ; \vec a , \vec b) \quad := \quad ( f^1_1 (\vec x ; \vec a) , \dots , f^1_{|\Delta|} (\vec x ; \vec a) , f^2_1 (\vec y; \vec b) , \dots , f^2_{|\Pi|} (\vec y ; \vec b) , f^1_{|\Delta|+1} (\vec x ; \vec a ) , f^2_{|\Pi|+1} (\vec y ; \vec b) |
749 |
\] |
750 |
|
751 |
\anupam{bad notation since need to include free variables of sequent too. (also of theory.) Reconsider.} |
752 |
|
753 |
\[ |
754 |
\vlderivation{ |
755 |
\vlin{\lefrul{\cntr}}{}{ !A , \Gamma \seqar \Delta }{ |
756 |
\vltr{\pi'}{ !A, !A , \Gamma \seqar \Delta}{\vlhy{\quad }}{\vlhy{ }}{\vlhy{\quad }} |
757 |
} |
758 |
} |
759 |
\] |
760 |
Have $\vec f' (x_1 , x_2 , \vec y ; \vec a)$ for $\pi'$. Define |
761 |
\[ |
762 |
\vec f (x_1 , \vec y ; \vec a) \quad := \quad \vec f'(x_1 , x_1 , \vec y ; \vec a) |
763 |
\] |
764 |
\[ |
765 |
\vlderivation{ |
766 |
\vlin{\rigrul{\cntr}}{}{\Gamma \seqar \Delta, ?A}{ |
767 |
\vltr{\pi'}{ \Gamma \seqar \Delta, ?A, ?A}{\vlhy{\quad }}{\vlhy{ }}{\vlhy{\quad }} |
768 |
} |
769 |
} |
770 |
\] |
771 |
(need test function against witness predicate?) |
772 |
|
773 |
\anupam{problem: how to test even equality of two terms? Maybe treat $?$ as $!$ on left?} |
774 |
|
775 |
\anupam{Not a problem by free-cut elimination! Can assume there are no $?$ in the proof! Is this equivalent to treaing $?$ as $!$ on left?} |
776 |
|
777 |
\anupam{Yes I think so. We can work in a left-sided calculus. only problem is for induction. But this can never be a problem for modalities since induction formulae are modality-free.} |
778 |
|
779 |
\anupam{this is actually the main point.} |
780 |
|
781 |
|
782 |
\[ |
783 |
\vlderivation{ |
784 |
\vliin{\rigrul{\laand}}{}{\Gamma \seqar \Delta, A \laand B}{ |
785 |
\vltr{\pi_1}{ \Gamma \seqar \Delta, A}{\vlhy{\quad }}{\vlhy{ }}{\vlhy{\quad }} |
786 |
}{ |
787 |
\vltr{\pi_2}{ \Gamma \seqar \Delta, B}{\vlhy{\quad }}{\vlhy{ }}{\vlhy{\quad }} |
788 |
} |
789 |
} |
790 |
\] |
791 |
|
792 |
Suppose we have $\vec f^i (\vec x , \vec a ; \vec y , \vec b)$ from $\pi_i$. |
793 |
|
794 |
\anupam{problem: does this require many tests, just like for contraction? Can we isolate a different complexity class? e.g.\ PH or Grzegorzyck?} |
795 |
\anupam{skip this case and consider later.} |
796 |
\[ |
797 |
\vlderivation{ |
798 |
\vliin{\cut}{}{\Gamma , \Sigma \seqar \Delta , \Pi}{ |
799 |
\vltr{\pi_1}{ \Gamma \seqar \Delta, A }{\vlhy{\quad }}{\vlhy{ }}{\vlhy{\quad }} |
800 |
}{ |
801 |
\vltr{\pi_2}{\Sigma , A \seqar \Pi}{\vlhy{\quad }}{\vlhy{ }}{\vlhy{\quad }} |
802 |
} |
803 |
} |
804 |
\] |
805 |
|
806 |
We can assume that $A$ in the conclusion of $\pi_2$ is free of modalities, since one of the $A$s must be directly descended from an induction formula, and so consists of only safe inputs. Therefore we have functions $\vec f^1 (\vec w; \vec x)$ and $\vec f^2 (\vec y ; \vec z , \vec u)$ for $\pi_1$ and $\pi_2 $ respectively (free variable parameters are suppressed), with $\vec u$ corresponding to the (safe) inputs for $A$. |
807 |
|
808 |
Let us write: |
809 |
\[ |
810 |
\begin{array}{rcl} |
811 |
\vec f^1 & = & ( \vec f^1_i )^{|\Delta|+1}_{i=1} \\ |
812 |
\vec f^2 & = & ( \vec f^2_i )^{|\Pi|}_{i=1} |
813 |
\end{array} |
814 |
\] |
815 |
to denote the parts of $\vec f^i$ corresponding to formulae in their sequents. |
816 |
|
817 |
|
818 |
We define: |
819 |
\[ |
820 |
\vec f (\vec w , \vec y ; \vec x , \vec z) |
821 |
\quad := \quad |
822 |
( |
823 |
( \vec f^1_i (\vec w ; \vec x) )_{i \leq |\Delta|} |
824 |
, |
825 |
\vec f^2 ( \vec y ; \vec z , \vec f^1_{|\Delta| +1 } (\vec w ; \vec x) ) |
826 |
) |
827 |
\] |
828 |
|
829 |
Notice that all safe inputs are hereditarily right of a $;$, and so these terms are definable by safe composition and projection. |
830 |
|
831 |
\todo{another case for $!\nat(x)$ cut formula.} |
832 |
|
833 |
\anupam{should work for arbitrary $!$-cuts due to principal case for $!$} |
834 |
|
835 |
|
836 |
Right existential: |
837 |
\[ |
838 |
\vlderivation{ |
839 |
\vlin{\rigrul{\exists}}{}{ \Gamma, \nat(t) \seqar \Delta , \exists x^\nat . A(x) }{ |
840 |
\vltr{\pi'}{ \Gamma \seqar \Delta , A(t) }{\vlhy{\quad }}{\vlhy{ }}{\vlhy{\quad }} |
841 |
} |
842 |
} |
843 |
\] |
844 |
Suppose we have functions $\vec f^X (\vec x ; \vec y)$ from $\pi'$ for $X = \Delta$ or $ X=A$. |
845 |
\[ |
846 |
\vec f(\vec x ; \vec y , z) \quad := \quad ( \vec f^\Delta (\vec x ; \vec y) , z , \vec f^A ( \vec x ; \vec y ) ) |
847 |
\] |
848 |
|
849 |
|
850 |
Left existential: |
851 |
\[ |
852 |
\vlderivation{ |
853 |
\vlin{\lefrul{\exists}}{}{ \Gamma, \exists x^N . A(x) \seqar \Delta }{ |
854 |
\vltr{\pi'(a)}{ \Gamma, N(a) , A(a) \seqar \Delta }{\vlhy{\quad }}{\vlhy{ }}{\vlhy{\quad }} |
855 |
} |
856 |
} |
857 |
\] |
858 |
|
859 |
Suppose we have functions $\vec f' (\vec u , \vec v ; x , \vec y , \vec z)$ from $\pi'$ with $(\vec u ; \vec x )$ corresponding to $\Gamma$, $(;x)$ corresponding to $N(a)$ and $(\vec v ; \vec z)$ corresponding to $A(a)$. We define: |
860 |
\[ |
861 |
\vec f ( \vec u , \vec v ; ) |
862 |
\] |
863 |
|
864 |
\anupam{should just be same, no? To consider.} |
865 |
|
866 |
%Suppose we have functions $\vec g (\vec v , \vec w ; \vec x , y , \vec z)$ where $(\vec v ; \vec x) $ corresponds to $\Gamma$, $y$ corresponds to $\nat(a)$ and $(\vec w ; \vec z) $ corresponds to $A(a)$. Then we define: |
867 |
%\[ |
868 |
%\vec f ( \vec v , \vec w ; \vec x , y , \vec z ) |
869 |
%\] |
870 |
|
871 |
\todo{finish} |
872 |
|
873 |
!: |
874 |
\[ |
875 |
\vlderivation{ |
876 |
\vlin{!}{}{\Gamma, !A \seqar \Delta}{ |
877 |
\vltr{\pi'}{ \Gamma , A \seqar \Delta }{\vlhy{\quad }}{\vlhy{ }}{\vlhy{\quad }} |
878 |
} |
879 |
} |
880 |
\] |
881 |
\anupam{Again, use free-cut elimination to get rid of this case. We know $!$-ed formulae in advance, so just fix those as normal inputs in advance.} |
882 |
|
883 |
|
884 |
Induction: (can assume no side-formulae on right for same reason as no contraction.) |
885 |
\[ |
886 |
\vlderivation{ |
887 |
\vliin{\ind}{}{ !\Gamma , !\nat (t) , A(\epsilon) \seqar A(t) }{ |
888 |
\vltr{\pi_0}{ !\Gamma , !\nat(a) , A(a) \seqar A(\succ_0 a)}{\vlhy{\quad }}{\vlhy{ }}{\vlhy{\quad }} |
889 |
}{ |
890 |
\vltr{\pi_1}{ !\Gamma , !\nat(a), A(a)\seqar A(\succ_1 a) }{\vlhy{\quad }}{\vlhy{ }}{\vlhy{\quad }} |
891 |
} |
892 |
} |
893 |
\] |
894 |
|
895 |
Suppose we have functions $\vec f^i (\vec x , y ; \vec u)$ from proofs $\pi_i$ where $\vec x $ corresponds to $!\Gamma$, $y$ corresponds to $!N(a)$ and $\vec u$ corresponds to $A(a)$. |
896 |
|
897 |
|
898 |
\anupam{role of $!N(a)$ versus having $a$ as a parameter to function. To consider!} |
899 |
|
900 |
Define the function $f_k$ (for $k = 1 , \dots , |\vec u|$) by PRN: |
901 |
\[ |
902 |
\begin{array}{rcl} |
903 |
f_k(\epsilon, \vec x , y ; \vec u) & := & u_k \\ |
904 |
f_k (\succ_i w , \vec x , y ; \vec u) & : = & f^i_k ( \vec x , y ; \vec f ( w, \vec x , y ; \vec u ) ) |
905 |
\end{array} |
906 |
\] |
907 |
|
908 |
\anupam{check this, esp use of parameters, cf.\ above.} |
909 |
|
910 |
\anupam{Is this not using a simultaneous version of PRN? Might need concatenation of words/basic coding to deal with this.} |
911 |
|
912 |
|
913 |
\end{definition} |
914 |
|
915 |
\newcommand{\concat}{\mathit{concat}} |
916 |
\paragraph{Some points on concatenation \anupam{if necessary}} |
917 |
We can define the concatenation operation by PRN: |
918 |
\[ |
919 |
\begin{array}{rcl} |
920 |
\concat (\epsilon ; y) & : = & x \\ |
921 |
\concat (\succ_i x ; y) & := & \succ_i \concat (x ; y) |
922 |
\end{array} |
923 |
\] |
924 |
|
925 |
From here we can define iterated concatenation: |
926 |
\[ |
927 |
\concat (x_1 , \dots x_n ; y) \quad := \quad \concat (x_n ; \concat (x_{n-1} ; \vldots \concat (x_1 ; y) \vldots ) ) |
928 |
\] |
929 |
|
930 |
(notice all safe inputs are hereditarily to the right of $;$ so this is definable by safe composition and projection.) |
931 |
|
932 |
\section{Further work} |
933 |
|
934 |
Say something about minimisation and the polynomial hierarchy. Could be achieved by controlling contraction/additives, since this requires a notion of tests. |
935 |
|
936 |
\section{Conclusions} |
937 |
|
938 |
\appendix |
939 |
|
940 |
\section{Some cut-elimination cases} |
941 |
We work in a one-sided calculus for full linear logic. When working in the affine setting we simply drop the condition that weakened formulae are $?$-ed. |
942 |
|
943 |
As well as all usual rules, we have the induction rule: |
944 |
\[ |
945 |
\vlinf{\indr}{(x \notin FV (\Gamma) )}{? \Gamma, A^\perp (0) , A(t)}{? \Gamma , A^\perp (x) , A(s x) } |
946 |
\] |
947 |
|
948 |
We give all the various cut-reduction cases in the following section but first we give a simple cut-elimination argument. |
949 |
|
950 |
\subsection{A basic (free-)cut elimination argument} |
951 |
We give an argument that easily scales to free-cut elimination, i.e.\ in the presence of non-logical rules. |
952 |
|
953 |
\newcommand{\anarrow}[2]{\overset{#1}{\underset{#2}{\longrightarrow}}} |
954 |
\newcommand{\cutredlin}{\mathit{ma}} |
955 |
\newcommand{\cutredexp}{exp} |
956 |
|
957 |
\begin{definition} |
958 |
Let $\anarrow{}{\cutredexp}$ denote the reduction steps concerning exponential cuts, and $\anarrow{}{\cutredlin}$ be the set of cut-reduction steps concerning multiplicative and additive cuts. |
959 |
\end{definition} |
960 |
|
961 |
\newcommand{\rk}{\mathsf{rk}} |
962 |
\renewcommand{\deg}{\mathsf{deg}} |
963 |
\begin{definition} |
964 |
[Measures] |
965 |
For a $\anarrow{}{\cutredlin}$-redex $r$, let its \emph{degree} $\deg( r)$ be the number of logical connectives or quantifiers in its cut-formula. For a proof $\pi$, its \emph{degree} $\deg( \pi)$ is the multiset of the degree of its redexes. |
966 |
\end{definition} |
967 |
|
968 |
\begin{proposition} |
969 |
If $\pi$ is not $\anarrow{}{\cutredlin}$-normal then there is a derivation $L:\pi \anarrow{*}{\cutredlin} \pi'$ such that $\deg(\pi')< \deg(\pi)$. |
970 |
\end{proposition} |
971 |
\begin{proof} |
972 |
First let us show the statement in the special case that $\pi$ contains precisely one $\cut$-inference as its final step, by induction on $|\pi|$. Each commutative $\anarrow{}{\cutredlin}$-step results in us being able to apply the inductive hypothesis to smaller proofs,- in the case of $\vlan $ two smaller proofs. Each key $\anarrow{}{\cutredlin}$-case strictly reduces the degree of the proof. Consequently we can eventually transform $\pi$ to a proof $\pi'$ which has possibly several cuts of smaller degree, as required. |
973 |
|
974 |
Now to the general case, we simply apply the above procedure to the subproof above a topmost cut in $\pi$. |
975 |
\end{proof} |
976 |
\begin{corollary} |
977 |
$\anarrow{}{\cutredlin}$ is weakly normalising. |
978 |
\end{corollary} |
979 |
|
980 |
|
981 |
\newcommand{\cntdown}{\mathit{cn}} |
982 |
\begin{definition} |
983 |
[Lazy contraction] |
984 |
Let $\anarrow{}{\cntdown}$ comprise of the following reduction steps: |
985 |
\begin{enumerate} |
986 |
\item The commuting steps, |
987 |
\[ |
988 |
\vlderivation{ |
989 |
\vlin{\rho}{}{\Gamma', ?A, }{ |
990 |
\vlin{\cntr}{}{\Gamma, ?A}{\vlhy{\Gamma, ? A, ? A}} |
991 |
} |
992 |
} |
993 |
\quad\to \quad |
994 |
\vlderivation{ |
995 |
\vlin{\cntr}{}{\Gamma', ?A}{ |
996 |
\vlin{\rho}{}{\Gamma', ?A, ?A}{\vlhy{\Gamma, ? A, ? A}} |
997 |
} |
998 |
} |
999 |
\] |
1000 |
for each unary rule $\rho$. |
1001 |
\item |
1002 |
The key steps: |
1003 |
\[ |
1004 |
\begin{array}{rcl} |
1005 |
\vlderivation{ |
1006 |
\vlin{\cntr}{}{\Gamma, ?A}{ |
1007 |
\vlin{\wk}{}{\Gamma, ?A, ?A}{\vlhy{\Gamma, ?A}} |
1008 |
} |
1009 |
} |
1010 |
\quad &\to & \quad |
1011 |
\Gamma, ?A |
1012 |
% \] |
1013 |
% and |
1014 |
% \[ |
1015 |
\\ |
1016 |
\noalign{\smallskip} |
1017 |
\vlderivation{ |
1018 |
\vlin{\wk}{}{\Gamma, ?A, ?A}{ |
1019 |
\vlin{\cntr}{}{\Gamma, ?A}{\vlhy{\Gamma, ?A, ?A}} |
1020 |
} |
1021 |
} |
1022 |
\quad &\to& \quad |
1023 |
\Gamma, ?A, ?A |
1024 |
\end{array} |
1025 |
\]. |
1026 |
\item The commuting steps, |
1027 |
\[ |
1028 |
\vlderivation{ |
1029 |
\vliin{\rho}{}{\Gamma ,?A}{ |
1030 |
\vlin{\cntr}{}{\Gamma_1, ?A}{\vlhy{\Gamma_1, ?A, ?A}} |
1031 |
}{\vlhy{\Gamma_2}} |
1032 |
} |
1033 |
\quad \to \quad |
1034 |
\vlderivation{ |
1035 |
\vlin{\cntr}{}{\Gamma, ?A}{ |
1036 |
\vliin{\rho}{}{\Gamma,?A, ?A}{\vlhy{\Gamma_1, ?A, ?A}}{ \vlhy{\Gamma_2} } |
1037 |
} |
1038 |
} |
1039 |
\] |
1040 |
%\[ |
1041 |
%\begin{array}{rcl} |
1042 |
% \vlderivation{ |
1043 |
% \vliin{\land}{}{\Gamma, \Delta, ?A, B\land C}{ |
1044 |
% \vlin{\cntr}{}{\Gamma, ?A, B}{\vlhy{\Gamma, ?A, ?A, B}} |
1045 |
% }{\vlhy{\Delta, C}} |
1046 |
% } |
1047 |
% \quad &\to &\quad |
1048 |
% \vlderivation{ |
1049 |
% \vlin{\cntr}{}{\Gamma, \Delta, ?A, B\land C}{ |
1050 |
% \vliin{\land}{}{\Gamma, \Delta, ?A, ?A, B\land C}{\vlhy{\Gamma, ?A, ?A, B}}{ \vlhy{\Delta, C} } |
1051 |
% } |
1052 |
% } |
1053 |
%% \] |
1054 |
%% |
1055 |
%% \[ |
1056 |
%\\ |
1057 |
%\noalign{\smallskip} |
1058 |
% \vlderivation{ |
1059 |
% \vliin{\cut}{}{\Gamma, \Delta, ?A}{ |
1060 |
% \vlin{\cntr}{}{\Gamma, ?A, B}{\vlhy{\Gamma, ?A, ?A, B}} |
1061 |
% }{\vlhy{\Delta, \lnot{B}}} |
1062 |
% } |
1063 |
% \quad &\to& \quad |
1064 |
% \vlderivation{ |
1065 |
% \vlin{\cntr}{}{\Gamma, \Delta, ?A}{ |
1066 |
% \vliin{\cut}{}{\Gamma, \Delta, ?A, ?A}{\vlhy{\Gamma, ?A, ?A, B}}{ \vlhy{\Delta, \lnot{B}} } |
1067 |
% } |
1068 |
% } |
1069 |
%\end{array} |
1070 |
%\] |
1071 |
for each binary rule $\rho \in \{ \land, \cut \}$. |
1072 |
\item The commuting step: |
1073 |
\[ |
1074 |
\vlderivation{ |
1075 |
\vliin{\vlan}{}{\Gamma, ?A, B\vlan C}{ |
1076 |
\vlin{\cntr}{}{\Gamma, ?A, B}{\vlhy{\Gamma, ?A, ?A, B}} |
1077 |
}{\vlhy{\Gamma, ?A, B}} |
1078 |
} |
1079 |
\quad \to \quad |
1080 |
\vlderivation{ |
1081 |
\vlin{\cntr}{}{\Gamma, ?A, B\vlan C}{ |
1082 |
\vliin{\vlan}{}{\Gamma, ?A, ?A, B\vlan C}{\vlhy{\Gamma, ?A, ?A, B}}{ |
1083 |
\vlin{\wk}{}{\Gamma, ?A, ?A, C}{\vlhy{\Gamma, ?A, C}} |
1084 |
} |
1085 |
} |
1086 |
} |
1087 |
\] |
1088 |
\end{enumerate} |
1089 |
For binary rules: |
1090 |
|
1091 |
\end{definition} |
1092 |
\begin{proposition} |
1093 |
$\anarrow{}{\cntdown}$ is weakly normalising |
1094 |
, modulo $\cntr$-$\cntr$ redexes, |
1095 |
and degree-preserving. |
1096 |
If $\pi$ is $\anarrow{}{\cutredlin}$-normal and $\pi \downarrow_\cntdown \pi'$, then so is $\pi'$. |
1097 |
\end{proposition} |
1098 |
\begin{proof} |
1099 |
By induction on the number of redexes in a proof. Start with bottommost redex, by induction on number of inference steps beneath it. |
1100 |
\end{proof} |
1101 |
|
1102 |
\begin{remark} |
1103 |
Only weakly normalising since $\cntr$ can commute with $\cntr$, allowing cycles. |
1104 |
\end{remark} |
1105 |
|
1106 |
\begin{proposition} |
1107 |
If $\pi$ is $\anarrow{}{\cutredexp}$-reducible but $\anarrow{}{\cutredlin}$- and $\anarrow{}{\cntdown}$-normal then there is a derivation $H:\pi \anarrow{*}{\cutredexp} \pi'$ such that $\deg (\pi')<\deg(\pi)$. |
1108 |
\end{proposition} |
1109 |
|
1110 |
|
1111 |
|
1112 |
\subsection{Base cases} |
1113 |
|
1114 |
\[ |
1115 |
\vlderivation{ |
1116 |
\vliin{\cut}{}{ \Gamma,a }{ \vlhy{\Gamma,a} }{ \vlin{\id}{}{a,a^\bot}{ \vlhy{} } } |
1117 |
} |
1118 |
\quad\to\quad |
1119 |
\vlderivation{ |
1120 |
\Gamma,a |
1121 |
} |
1122 |
\] |
1123 |
|
1124 |
\[ |
1125 |
\vlderivation{ |
1126 |
\vliin{\cut}{}{\Gamma}{ \vlin{\bot}{}{ \Gamma,\bot }{ \vlhy{\Gamma} } }{ \vlin{1}{}{1}{ \vlhy{} } } |
1127 |
} |
1128 |
\quad\to\quad |
1129 |
\vlderivation{ |
1130 |
\Gamma |
1131 |
} |
1132 |
\] |
1133 |
|
1134 |
\[ |
1135 |
\vlderivation{ |
1136 |
\vliin{\cut}{}{ \Gamma,\Delta,\top }{ \vlin{\top}{}{ \Gamma,\top,0 }{ \vlhy{} } }{ \vlhy{\Delta , \top } } |
1137 |
} |
1138 |
\quad\to\quad |
1139 |
\vlinf{\top}{}{ \Gamma,\Delta,\top }{} |
1140 |
\] |
1141 |
|
1142 |
\subsection{Commutative cases} |
1143 |
These are the cases when the principal formula of a step is not active for the cut-step below. |
1144 |
|
1145 |
\begin{enumerate} |
1146 |
\item The cut-step is immediately preceded by an initial step. Note that only the case for $\top$ applies: |
1147 |
\[ |
1148 |
\vlderivation{ |
1149 |
\vliin{\cut}{}{\Gamma,\Delta,\top}{ |
1150 |
\vlin{\top}{ }{ \Gamma,\top,A }{ \vlhy{} } |
1151 |
}{ \vlhy{\Delta,A^\bot } } |
1152 |
} |
1153 |
\quad\to\quad |
1154 |
\vlinf{\top}{}{ \Gamma,\Delta,\top }{} |
1155 |
\] |
1156 |
%Notice that this commutation eliminates the cut entirely and preserves the height of all cuts below. |
1157 |
\item\label{CaseCommOneStep} A cut-step is immediately preceded by a step $\rho$ with exactly one premiss: |
1158 |
\[ |
1159 |
\vlderivation{ |
1160 |
\vliin{\cut}{}{\Gamma',\Delta}{\vlin{\rho}{}{\Gamma',A}{\vlhy{\Gamma,A}}}{\vlhy{A^\bot , \Delta}} |
1161 |
} |
1162 |
\] |
1163 |
We have three subcases: |
1164 |
\begin{enumerate} |
1165 |
\item\label{subcase:unary-commutation-vanilla} |
1166 |
%$\Delta$ consists of only $?$-ed formulae or |
1167 |
If $\rho \notin \{! , \indr \}$ then we can simply permute as follows: |
1168 |
\begin{equation} |
1169 |
\label{eqn:com-case-unary-simple} |
1170 |
\vlderivation{ |
1171 |
\vliin{\cut}{}{\Gamma',\Delta}{\vlin{\rho}{}{\Gamma',A}{\vlhy{\Gamma,A}}}{\vlhy{A^\bot , \Delta}} |
1172 |
} |
1173 |
\quad \to \quad |
1174 |
\vlderivation{ |
1175 |
\vlin{\rho}{}{\Gamma',\Delta}{ |
1176 |
\vliin{\cut}{}{\Gamma,\Delta}{\vlhy{\Gamma,A}}{\vlhy{A^\bot , \Delta}} |
1177 |
} |
1178 |
} |
1179 |
\end{equation} |
1180 |
(If $\rho$ was $\forall$ then we might need to rename some free variables in $\Delta$.) |
1181 |
\item $\rho $ is a $!$-step. Therefore $\Gamma$ has the form $? \Sigma , B$ and $A$ has the form $?C$, yielding the following situation: |
1182 |
\[ |
1183 |
\vlderivation{ |
1184 |
\vliin{\cut}{}{? \Sigma, !B, \Delta }{ |
1185 |
\vlin{!}{}{? \Sigma, !B , ?C}{\vlhy{?\Sigma , B , ?C} } |
1186 |
}{ |
1187 |
\vlin{\rho'}{}{!C^\perp , \Delta}{\vlhy{\vlvdots}} |
1188 |
} |
1189 |
} |
1190 |
\] |
1191 |
Now, if $!C^\perp$ is principle for $\rho'$ then $\rho'\in \{! , \indr\}$ and so $\Delta $ must be $?$-ed; in this case we are able to apply the transformation \eqref{eqn:com-case-unary-simple}. Otherwise $A^\perp$ is not principal for $\rho'$ and so $\rho' \notin \{! , \indr \}$, which means we can apply \ref{subcase:unary-commutation-vanilla} along this side of the subproof. |
1192 |
\item $\rho$ is a $\indr$-step. Therefore $\Gamma$ has the form $? \Sigma , B^\perp(x), B(s x) $ and $A$ has the form $?C$, and the argument is similar to the case above. |
1193 |
% yielding the following situation: |
1194 |
%\[ |
1195 |
%\vlderivation{ |
1196 |
% \vliin{\cut}{}{? \Sigma, B^\perp (0) , B(t), \Delta }{ |
1197 |
% \vlin{\indr}{}{? \Sigma, B^\perp (0) , B(t) , ?C}{\vlhy{?\Sigma , B^\perp(x) , B(s x) , ?C} } |
1198 |
% }{ |
1199 |
% \vlin{\rho'}{}{!C^\perp , \Delta}{\vlhy{\vlvdots}} |
1200 |
%} |
1201 |
%} |
1202 |
%\] |
1203 |
\end{enumerate} |
1204 |
|
1205 |
|
1206 |
|
1207 |
\item A cut-step is immediately preceded by a $\vlte $-step: |
1208 |
\[ |
1209 |
\vlderivation{ |
1210 |
\vliin{\cut}{}{\Gamma,\Delta,\Sigma,A\vlte B }{ |
1211 |
\vliin{\vlte}{}{\Gamma,\Delta,A\vlte B,C }{\vlhy{\Gamma,A,C}}{\vlhy{\Delta,B}} |
1212 |
}{\vlhy{ \Sigma , C^\bot }} |
1213 |
} |
1214 |
\quad\to\quad |
1215 |
\vlderivation{ |
1216 |
\vliin{\vlte}{}{\Gamma,\Delta,\Sigma,A\vlte B}{ |
1217 |
\vliin{\cut}{}{\Gamma,\Sigma,A}{\vlhy{\Gamma,A,C}}{\vlhy{\Sigma,C^\bot}} |
1218 |
}{\vlhy{\Delta,B}} |
1219 |
} |
1220 |
\] |
1221 |
%Notice that this commutation might increase the height of any cuts below along the right branch of the indicated cut, but decreases the height along the left branch. |
1222 |
\item\label{CommCaseAmpersand} A cut-step is immediately preceded by a $\vlan$-step. |
1223 |
\[ |
1224 |
\vlderivation{ |
1225 |
\vliin{\cut}{}{ \Gamma,\Delta,A\vlan B }{ \vliin{\vlan}{}{\Gamma,A\vlan B,C}{ \vlhy{\Gamma,A,C} }{\vlhy{\Gamma,B,C}}}{ \vlhy{\Delta, C^\bot} } |
1226 |
} |
1227 |
\quad\to\quad |
1228 |
\vlderivation{ |
1229 |
\vliin{\vlan}{}{\Gamma,\Delta,A\vlan B }{ |
1230 |
\vliin{cut}{}{\Gamma,\Delta,A }{ \vlhy{\Gamma,A,C} }{ \vlhy{ \Delta,C^\bot } } |
1231 |
}{ |
1232 |
\vliin{ \cut }{}{\Gamma,\Delta,B}{ \vlhy{\Gamma,B,C } }{ \vlhy{\Delta,C^\bot} } |
1233 |
} |
1234 |
} |
1235 |
\] |
1236 |
\item (No rule for cuts commuting with cuts.) |
1237 |
%A cut-step is immediately preceded by another cut-step: |
1238 |
\[ |
1239 |
\vlderivation{ |
1240 |
\vliin{\cut}{}{\Gamma, \Delta, \Sigma}{ |
1241 |
\vliin{\cut}{}{\Gamma, \Delta, B}{\vlhy{\Gamma, A}}{\vlhy{\Delta, \lnot{A}, B}} |
1242 |
}{\vlhy{\Sigma, \lnot{B}}} |
1243 |
} |
1244 |
\quad\to\quad |
1245 |
\vlderivation{ |
1246 |
\vliin{\cut}{}{\Gamma, \Delta, \Sigma}{\vlhy{\Gamma, A}}{ |
1247 |
\vliin{\cut}{}{\Delta, \Sigma, \lnot{A}}{\vlhy{\Delta, \lnot{A}, B}}{\vlhy{\Sigma, \lnot{B}}} |
1248 |
} |
1249 |
} |
1250 |
\] |
1251 |
\end{enumerate} |
1252 |
|
1253 |
|
1254 |
|
1255 |
\subsection{Key cases: structural steps} |
1256 |
%[THIS SECTION MIGHT NOT BE NECESSARY] |
1257 |
We attempt to permute cuts on exponential formulae over structural steps whose principal formula is active for the cut. |
1258 |
|
1259 |
We use the commutative case \ref{CaseCommOneStep} to assume that the topmost cut-step in a sequence has already been permuted up to its origin on the $!$-side. |
1260 |
|
1261 |
We have two cases. |
1262 |
\begin{enumerate} |
1263 |
\item\label{StructStepCont} The structural step preceding the cut is a weakening: |
1264 |
\[ |
1265 |
\vlderivation{ |
1266 |
\vliin{\cut}{}{?\Gamma,\Delta}{ \vlin{!}{}{ ?\Gamma,!A }{ \vlhy{?\Gamma , A} } }{ \vlin{w}{}{ ?A^\bot }{ \vlhy{\Delta } } } |
1267 |
} |
1268 |
\quad\to\quad |
1269 |
\vlinf{w}{}{?\Gamma,\Delta}{ \Delta } |
1270 |
\] |
1271 |
%\item The structural step preceding the cut is a contraction: |
1272 |
%\[ |
1273 |
%\vlderivation{ |
1274 |
%\vliin{\cut}{}{ ?\Gamma,\Delta }{ |
1275 |
% \vlin{!}{}{ ?\Gamma,!A }{ \vlhy{?\Gamma , A} } |
1276 |
%}{ \vlin{c}{}{ ?A^\bot , \Delta }{ \vlhy{ ?A^\bot , ?A^\bot , \Delta} } } |
1277 |
%} |
1278 |
%\quad\to\quad |
1279 |
%\vlderivation{ |
1280 |
%\vliq{c}{}{?\Gamma, \Delta}{ |
1281 |
%\vliin{\cut}{}{?\Gamma, ?\Gamma,\Delta }{ |
1282 |
% \vlin{!}{}{ ?\Gamma,!A }{ \vlhy{?\Gamma , A} } |
1283 |
%}{ |
1284 |
%\vliin{\cut}{}{?\Gamma,?A^\bot , \Delta }{ |
1285 |
% \vlin{!}{}{ ?\Gamma,!A }{ \vlhy{?\Gamma , A} } |
1286 |
%}{ \vlhy{?A^\bot , ?A^\bot , \Delta } } |
1287 |
%} |
1288 |
%} |
1289 |
%} |
1290 |
%\] |
1291 |
%OR use a multicut: |
1292 |
%\[ |
1293 |
%\vlderivation{ |
1294 |
%\vliin{\cut}{}{ ?\Gamma,\Delta }{ |
1295 |
% \vlin{!}{}{ ?\Gamma,!A }{ \vlhy{?\Gamma , A} } |
1296 |
%}{ \vlin{c}{}{ ?A^\bot , \Delta }{ \vlhy{ ?A^\bot , ?A^\bot , \Delta} } } |
1297 |
%} |
1298 |
%\quad\to\quad |
1299 |
%\vlderivation{ |
1300 |
%\vliin{\multicut}{}{?\Gamma,?A^\bot , \Delta }{ |
1301 |
% \vlin{!}{}{ ?\Gamma,!A }{ \vlhy{?\Gamma , A} } |
1302 |
%}{ \vlhy{?A^\bot , ?A^\bot , \Delta } } |
1303 |
%} |
1304 |
%\] |
1305 |
\item The structural step preceding a cut is a contraction: |
1306 |
\[ |
1307 |
\vlderivation{ |
1308 |
\vliin{\cut}{}{?\Gamma, \Sigma }{ \vlhy{?\Gamma,!A^\bot} }{ |
1309 |
\vlin{\cntr}{}{ ?A,\Sigma }{ \vlhy{ ?A,?A,\Sigma } } |
1310 |
} |
1311 |
} |
1312 |
\quad\to\quad |
1313 |
\vlderivation{ |
1314 |
\vliq{\cntr}{}{ ?\Gamma,\Sigma }{ |
1315 |
\vliin{\cut}{}{ ?\Gamma,?\Gamma,\Sigma }{ \vlhy{?\Gamma,!A^\bot } }{ |
1316 |
\vliin{\cut}{}{ ?A,?\Gamma,\Sigma }{ \vlhy{?\Gamma,!A^\bot} }{ \vlhy{ ?A,?A,?\Delta,\Sigma } } |
1317 |
} |
1318 |
} |
1319 |
} |
1320 |
\] |
1321 |
%\item The structural step preceding a cut is a parallel contraction: |
1322 |
%\[ |
1323 |
%\vlderivation{ |
1324 |
%\vliin{\cut}{}{?\Gamma,?\Delta, \Sigma }{ \vlhy{?\Gamma,!A^\bot} }{ |
1325 |
%\vlin{}{}{ ?A,?\Delta,\Sigma }{ \vlhy{ ?A,?A,?\Delta,?\Delta,\Sigma } } |
1326 |
%} |
1327 |
%} |
1328 |
%\quad\to\quad |
1329 |
%\vlderivation{ |
1330 |
%\vlin{}{}{ ?\Gamma,?\Delta,\Sigma }{ |
1331 |
%\vliin{\cut}{}{ ?\Gamma,?\Gamma,?\Delta,?\Delta,\Sigma }{ \vlhy{?\Gamma,!A^\bot } }{ |
1332 |
%\vliin{\cut}{}{ ?A,?\Gamma,?\Delta,?\Delta,\Sigma }{ \vlhy{?\Gamma,!A^\bot} }{ \vlhy{ ?A,?A,?\Delta,?\Delta,\Sigma } } |
1333 |
%} |
1334 |
%} |
1335 |
%} |
1336 |
%\] |
1337 |
\end{enumerate} |
1338 |
|
1339 |
\subsection{Key cases: logical steps} |
1340 |
Finally, once all cuts have been permuted maximally on both sides, we have the cases when the cut-formula is principal for a preceding logical step on both sides. We have three cases, one for every pair of connectives. |
1341 |
\begin{enumerate} |
1342 |
\item The cut-formula is multiplicative: |
1343 |
\[ |
1344 |
\vlderivation{ |
1345 |
\vliin{\cut}{}{ \Gamma,\Delta,\Sigma }{ |
1346 |
\vliin{\vlte}{}{ \Gamma,\Delta,A\vlte B }{ \vlhy{\Gamma,A} }{ \vlhy{\Delta,B} } |
1347 |
}{ \vlin{\vlpa}{}{ \Sigma, A^\bot \vlpa B^\bot }{ \vlhy{\Sigma , A^\bot , B^\bot} } } |
1348 |
} |
1349 |
\quad\to\quad |
1350 |
\vlderivation{ |
1351 |
\vliin{\cut}{}{ \Gamma,\Delta,\Sigma }{ \vlhy{\Gamma,A} }{ |
1352 |
\vliin{\cut}{}{ \Delta,\Sigma,A^\bot }{ \vlhy{\Delta,B} }{ \vlhy{\Sigma , A^\bot,B^\bot } } |
1353 |
} |
1354 |
} |
1355 |
\] |
1356 |
\item The cut-formula is additive, |
1357 |
\[ |
1358 |
\vlderivation{ |
1359 |
\vliin{\cut}{}{ \Gamma,\Delta }{ |
1360 |
\vliin{\vlan}{}{ \Gamma,A\vlan B }{ \vlhy{\Gamma,A} }{ \vlhy{\Gamma,B} } |
1361 |
}{ \vlin{\vlor}{}{ \Delta,A^\bot\vlor B^\bot }{ \vlhy{\Delta, A^\bot } } } |
1362 |
} |
1363 |
\quad\to\quad |
1364 |
\vliinf{\cut}{}{ \Gamma,\Delta }{ \Gamma,A }{ \Delta,A^\bot } |
1365 |
\] |
1366 |
where the case for the other $\vlor$-rule is symmetric. |
1367 |
\item The cut-formula is exponential. |
1368 |
\[ |
1369 |
\vlderivation{ |
1370 |
\vliin{\cut}{}{ ?\Gamma,\Delta }{ |
1371 |
\vlin{!}{}{ ?\Gamma,!A }{ \vlhy{?\Gamma , A} } |
1372 |
}{ |
1373 |
\vlin{?}{}{ \Delta,?A^\bot }{ \vlhy{\Delta, A^\bot } } |
1374 |
} |
1375 |
} |
1376 |
\quad\to\quad |
1377 |
\vliinf{\cut}{}{ ?\Gamma,\Delta }{ ?\Gamma,A }{ \Delta,A^\bot } |
1378 |
\] |
1379 |
\item The cut-formula is quantified. |
1380 |
\[ |
1381 |
\vlderivation{ |
1382 |
\vliin{\cut}{}{\Gamma, \Delta}{ |
1383 |
\vlin{\forall}{}{\Gamma, \forall x. A(x)}{\vltr{\pi(a)}{\Gamma, A(a)}{\vlhy{\quad}}{\vlhy{}}{\vlhy{\quad}}} |
1384 |
}{ |
1385 |
\vlin{\exists}{}{\Delta, \exists x . \lnot{A}(x)}{\vlhy{\Delta, \lnot{A}(t)}} |
1386 |
} |
1387 |
} |
1388 |
\quad \to \quad |
1389 |
\vlderivation{ |
1390 |
\vliin{\cut}{}{\Gamma, \Delta}{ |
1391 |
\vltr{\pi(t)}{\Gamma, A(t)}{\vlhy{\quad}}{\vlhy{}}{\vlhy{\quad}} |
1392 |
}{\vlhy{\Delta, \lnot{A}(t)}} |
1393 |
} |
1394 |
\] |
1395 |
\end{enumerate} |
1396 |
|
1397 |
|
1398 |
\end{document} |