root / CSL16 / feas-arith-wfm.tex @ 13
Historique | Voir | Annoter | Télécharger (45,82 ko)
1 | 2 | adas | \documentclass[a4paper,UKenglish]{lipics-v2016} |
---|---|---|---|
2 | 2 | adas | %This is a template for producing LIPIcs articles. |
3 | 2 | adas | %See lipics-manual.pdf for further information. |
4 | 2 | adas | %for A4 paper format use option "a4paper", for US-letter use option "letterpaper" |
5 | 2 | adas | %for british hyphenation rules use option "UKenglish", for american hyphenation rules use option "USenglish" |
6 | 2 | adas | % for section-numbered lemmas etc., use "numberwithinsect" |
7 | 2 | adas | |
8 | 2 | adas | \usepackage{microtype}%if unwanted, comment out or use option "draft" |
9 | 2 | adas | |
10 | 2 | adas | %\graphicspath{{./graphics/}}%helpful if your graphic files are in another directory |
11 | 2 | adas | |
12 | 2 | adas | \bibliographystyle{plainurl}% the recommended bibstyle |
13 | 2 | adas | |
14 | 2 | adas | |
15 | 2 | adas | |
16 | 2 | adas | |
17 | 2 | adas | \usepackage[lutzsyntax]{virginialake} |
18 | 2 | adas | \usepackage{amsmath} |
19 | 2 | adas | \usepackage{amssymb} |
20 | 2 | adas | \usepackage{amsthm} |
21 | 2 | adas | \usepackage{times} |
22 | 2 | adas | %\usepackage{sans} |
23 | 2 | adas | \usepackage{cmll} |
24 | 10 | adas | \usepackage{bm} |
25 | 2 | adas | |
26 | 2 | adas | %\newtheorem{theorem}{Theorem} |
27 | 2 | adas | %\newtheorem{maintheorem}[theorem]{Main Theorem} |
28 | 2 | adas | %\newtheorem{observation}[theorem]{Observation} |
29 | 2 | adas | %\newtheorem{corollary}[theorem]{Corollary} |
30 | 2 | adas | %\newtheorem{lemma}[theorem]{Lemma} |
31 | 2 | adas | \newtheorem{proposition}[theorem]{Proposition} |
32 | 2 | adas | %\newtheorem{conjecture}[theorem]{Conjecture} |
33 | 2 | adas | % |
34 | 2 | adas | %\theoremstyle{definition} |
35 | 2 | adas | %\newtheorem{definition}[theorem]{Definition} |
36 | 2 | adas | %\newtheorem{example}[theorem]{Example} |
37 | 2 | adas | %\newtheorem{notation}[theorem]{Notation} |
38 | 2 | adas | %\newtheorem{convention}[theorem]{Convention} |
39 | 2 | adas | %\newtheorem{remark}[theorem]{Remark} |
40 | 2 | adas | %\newtheorem{discussion}[theorem]{Discussion} |
41 | 2 | adas | |
42 | 2 | adas | \newcommand{\todo}[1]{{\color{red}{\textbf{Todo:} #1}}} |
43 | 2 | adas | \newcommand{\anupam}[1]{{\color{orange}{\textbf{Anupam:} #1}}} |
44 | 2 | adas | \newcommand{\patrick}[1]{{\color{blue}{\textbf{Patrick:} #1}}} |
45 | 2 | adas | |
46 | 2 | adas | \newcommand{\defined}{:=} |
47 | 2 | adas | \begin{document} |
48 | 2 | adas | |
49 | 2 | adas | \newcommand{\LL}{\it{LL}} |
50 | 2 | adas | \vllineartrue |
51 | 2 | adas | |
52 | 2 | adas | |
53 | 2 | adas | \newcommand{\FV}{\mathit{FV}} |
54 | 2 | adas | |
55 | 2 | adas | |
56 | 2 | adas | %terms |
57 | 2 | adas | \renewcommand{\succ}{s} |
58 | 2 | adas | \renewcommand{\epsilon}{\varepsilon} |
59 | 2 | adas | |
60 | 2 | adas | % linear connectives |
61 | 2 | adas | |
62 | 2 | adas | \newcommand{\limp}{\multimap} |
63 | 2 | adas | \renewcommand{\land}{\otimes} |
64 | 2 | adas | \newcommand{\laand}{\&} |
65 | 2 | adas | \newcommand{\laor}{\oplus} |
66 | 2 | adas | \renewcommand{\lor}{\vlpa} |
67 | 2 | adas | \renewcommand{\lnot}[1]{{#1^{\perp}}} |
68 | 2 | adas | \newcommand{\lnotnot}[1]{#1^{\perp \perp}} |
69 | 2 | adas | |
70 | 2 | adas | % classical connectives |
71 | 2 | adas | |
72 | 2 | adas | \newcommand{\cimp}{\supset} |
73 | 2 | adas | \newcommand{\cand}{\wedge} |
74 | 2 | adas | \newcommand{\cor}{\vee} |
75 | 2 | adas | \newcommand{\cnot}{\neg} |
76 | 2 | adas | |
77 | 2 | adas | |
78 | 2 | adas | \newcommand{\Ax}{\mathit{(Ax)}} |
79 | 2 | adas | \newcommand{\Rl}{\mathit{(Rl)}} |
80 | 2 | adas | |
81 | 2 | adas | \newcommand{\MELL}{\mathit{MELL}} |
82 | 2 | adas | \newcommand{\MEAL}{\mathit{MELLW}} |
83 | 2 | adas | \newcommand{\MELLW}{\mathit{MELL(W)}} |
84 | 2 | adas | |
85 | 2 | adas | \newcommand{\Aonetwo}{\mathcal{A}^1_2} |
86 | 2 | adas | \newcommand{\logic}{\mathit{L}_{\mathcal A} } |
87 | 2 | adas | |
88 | 2 | adas | % predicates |
89 | 2 | adas | \newcommand{\nat}{N} |
90 | 2 | adas | |
91 | 2 | adas | \newcommand{\Nat}{\mathbb{N}} |
92 | 2 | adas | |
93 | 2 | adas | %axioms |
94 | 2 | adas | \newcommand{\wk}{\mathit{wk}} |
95 | 2 | adas | \newcommand{\impl}{\cimp\text{-}\mathit{l}} |
96 | 2 | adas | \newcommand{\impcomm}{\mathit{com}} |
97 | 2 | adas | \newcommand{\conint}{\cand\text{-}\mathit{i}} |
98 | 2 | adas | \newcommand{\conel}{\cand\text{-}\mathit{e}} |
99 | 2 | adas | \newcommand{\negclass}{\cnot} |
100 | 2 | adas | |
101 | 2 | adas | %rules |
102 | 2 | adas | \renewcommand{\mp}{\mathit{mp}} |
103 | 2 | adas | \newcommand{\gen}{\mathit{gen}} |
104 | 2 | adas | \newcommand{\inst}{\mathit{ins}} |
105 | 2 | adas | \newcommand{\id}{\it{id}} |
106 | 2 | adas | \newcommand{\cut}{\it{cut}} |
107 | 2 | adas | \newcommand{\multicut}{\it{mcut}} |
108 | 2 | adas | \newcommand{\indr}{\mathit{IND}} |
109 | 2 | adas | \newcommand{\nec}{\mathit{nec}} |
110 | 2 | adas | \newcommand{\tax}{\mathit{T}} |
111 | 2 | adas | \newcommand{\four}{\mathit{4}} |
112 | 2 | adas | \newcommand{\kax}{\mathit{K}} |
113 | 2 | adas | \newcommand{\cntr}{\mathit{cntr}} |
114 | 2 | adas | |
115 | 2 | adas | \newcommand{\lefrul}[1]{#1\text{-}\mathit{l}} |
116 | 2 | adas | \newcommand{\rigrul}[1]{#1\text{-}\mathit{r}} |
117 | 2 | adas | |
118 | 2 | adas | %consequence relations |
119 | 2 | adas | \newcommand{\admits}{\vDash} |
120 | 2 | adas | \newcommand{\seqar}{\vdash} |
121 | 10 | adas | \newcommand{\proves}{\vdash_e} |
122 | 2 | adas | |
123 | 2 | adas | %induction |
124 | 2 | adas | \newcommand{\ind}{\mathit{IND}} |
125 | 2 | adas | \newcommand{\pind}{\mathit{PIND}} |
126 | 2 | adas | \newcommand{\cax}[2]{#1\text{-}#2} |
127 | 2 | adas | |
128 | 11 | adas | |
129 | 11 | adas | |
130 | 11 | adas | % Author macros::begin %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
131 | 11 | adas | \title{Free-cut elimination in linear logic: an application to implicit complexity} |
132 | 11 | adas | %\titlerunning{A Sample LIPIcs Article} %optional, in case that the title is too long; the running title should fit into the top page column |
133 | 11 | adas | |
134 | 11 | adas | %% Please provide for each author the \author and \affil macro, even when authors have the same affiliation, i.e. for each author there needs to be the \author and \affil macros |
135 | 11 | adas | \author[1]{Patrick Baillot} |
136 | 11 | adas | \author[2]{Anupam Das} |
137 | 11 | adas | \affil[1]{Dummy University Computing Laboratory, Address/City, Country\\ |
138 | 11 | adas | \texttt{open@dummyuniversity.org}} |
139 | 11 | adas | \affil[2]{Department of Informatics, Dummy College, Address/City, Country\\ |
140 | 11 | adas | \texttt{access@dummycollege.org}} |
141 | 11 | adas | \authorrunning{J.\,Q. Open and J.\,R. Access} %mandatory. First: Use abbreviated first/middle names. Second (only in severe cases): Use first author plus 'et. al.' |
142 | 11 | adas | |
143 | 11 | adas | \Copyright{John Q. Open and Joan R. Access}%mandatory, please use full first names. LIPIcs license is "CC-BY"; http://creativecommons.org/licenses/by/3.0/ |
144 | 11 | adas | |
145 | 11 | adas | \subjclass{Dummy classification -- please refer to \url{http://www.acm.org/about/class/ccs98-html}}% mandatory: Please choose ACM 1998 classifications from http://www.acm.org/about/class/ccs98-html . E.g., cite as "F.1.1 Models of Computation". |
146 | 11 | adas | \keywords{Dummy keyword -- please provide 1--5 keywords}% mandatory: Please provide 1-5 keywords |
147 | 11 | adas | % Author macros::end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
148 | 11 | adas | |
149 | 11 | adas | %Editor-only macros:: begin (do not touch as author)%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
150 | 11 | adas | \EventEditors{John Q. Open and Joan R. Acces} |
151 | 11 | adas | \EventNoEds{2} |
152 | 11 | adas | \EventLongTitle{42nd Conference on Very Important Topics (CVIT 2016)} |
153 | 11 | adas | \EventShortTitle{CVIT 2016} |
154 | 11 | adas | \EventAcronym{CVIT} |
155 | 11 | adas | \EventYear{2016} |
156 | 11 | adas | \EventDate{December 24--27, 2016} |
157 | 11 | adas | \EventLocation{Little Whinging, United Kingdom} |
158 | 11 | adas | \EventLogo{} |
159 | 11 | adas | \SeriesVolume{42} |
160 | 11 | adas | \ArticleNo{23} |
161 | 11 | adas | % Editor-only macros::end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
162 | 11 | adas | |
163 | 2 | adas | \maketitle |
164 | 2 | adas | |
165 | 2 | adas | \begin{abstract} |
166 | 2 | adas | We prove a general form of free-cut elimination for first-order theories in linear logic. We consider a version of Peano Arithmetic in linear logic and prove a witnessing theorem via the Buss and Mints \emph{witness function method}, characterising polytime as the provably total functions. |
167 | 2 | adas | \end{abstract} |
168 | 2 | adas | |
169 | 2 | adas | \section{Introduction} |
170 | 2 | adas | |
171 | 5 | adas | \todo{words or integers?} |
172 | 5 | adas | |
173 | 8 | adas | |
174 | 8 | adas | |
175 | 2 | adas | \section{Preliminaries} |
176 | 2 | adas | |
177 | 2 | adas | \todo{consider removing and just have a section on linear logic, including free-cut elimination.} |
178 | 2 | adas | |
179 | 8 | adas | |
180 | 10 | adas | |
181 | 10 | adas | |
182 | 9 | adas | \paragraph*{Notation} |
183 | 8 | adas | Fix conventions here for use throughout: |
184 | 8 | adas | \begin{itemize} |
185 | 8 | adas | \item Eigenvariables: $a, b , c$. |
186 | 8 | adas | \item (Normal) variables: $u,v,w$. (only when distinction is important, e.g.\ $u^{!\nat}$). |
187 | 8 | adas | \item (Safe) variables: $x,y,z$. (as above, e.g.\ $x^\nat$.) |
188 | 8 | adas | \item Terms: $r,s,t$. |
189 | 8 | adas | \item Formulae: $A,B,C$. |
190 | 10 | adas | \item Atomic formulae: $p,q$. |
191 | 8 | adas | \item Sequents: $\Gamma, \Delta, \Sigma, \Pi$. |
192 | 9 | adas | \item Proofs: $\pi, \rho, \sigma$. |
193 | 8 | adas | \item Theories: $\mathcal T$. Sequent systems: $\mathcal S$. |
194 | 8 | adas | \end{itemize} |
195 | 8 | adas | |
196 | 2 | adas | \subsection{Linear logic} |
197 | 2 | adas | |
198 | 10 | adas | \anupam{use a system that is already in De Morgan form, for simplicity.} |
199 | 10 | adas | \anupam{Have skipped units, can reconsider this when in arithmetic. Also in affine setting can be recovered by any contradiction/tautology.} |
200 | 10 | adas | |
201 | 13 | pbaillot | \begin{definition}\label{def:LLsequentcalculus} |
202 | 10 | adas | [Sequent calculus for linear logic] |
203 | 10 | adas | We define the following calculus in De Morgan normal form: |
204 | 10 | adas | \[ |
205 | 10 | adas | \begin{array}{l} |
206 | 10 | adas | \begin{array}{cccc} |
207 | 10 | adas | \vlinf{\lefrul{\bot}}{}{p, \lnot{p} \seqar }{} |
208 | 10 | adas | & \vlinf{\id}{}{p \seqar p}{} |
209 | 10 | adas | & \vlinf{\rigrul{\bot}}{}{\seqar p, \lnot{p}}{} |
210 | 10 | adas | & \vliinf{\cut}{}{\Gamma, \Sigma \seqar \Delta , \Pi}{ \Gamma \seqar \Delta, A }{\Sigma, A \seqar \Pi} |
211 | 10 | adas | \\ |
212 | 10 | adas | \noalign{\bigskip} |
213 | 10 | adas | %\text{Multiplicatives:} & & & \\ |
214 | 10 | adas | %\noalign{\bigskip} |
215 | 10 | adas | \vliinf{\lefrul{\lor}}{}{\Gamma,\Sigma, A \lor B \seqar \Delta, \Pi}{\Gamma, A \seqar \Delta}{\Sigma , B \seqar \Pi} |
216 | 10 | adas | & |
217 | 10 | adas | \vlinf{\lefrul{\land}}{}{\Gamma, A\land B \seqar \Delta}{\Gamma, A , B \seqar \Delta} |
218 | 10 | adas | & |
219 | 10 | adas | \vlinf{\rigrul{\lor}}{}{\Gamma \seqar \Delta, A \lor B}{\Gamma \seqar \Delta, A, B} |
220 | 10 | adas | & |
221 | 10 | adas | \vliinf{\rigrul{\land}}{}{\Gamma, \Sigma \seqar \Delta , \Pi , A \land B}{\Gamma \seqar \Delta , A}{\Sigma \seqar \Pi , B} |
222 | 10 | adas | \\ |
223 | 10 | adas | \noalign{\bigskip} |
224 | 10 | adas | %\text{Additives:} & & & \\ |
225 | 10 | adas | %\noalign{\bigskip} |
226 | 10 | adas | \vliinf{\lefrul{\laor}}{}{\Gamma, A \laor B \seqar \Delta}{\Gamma , A \seqar \Delta}{\Gamma, B \seqar \Delta} |
227 | 10 | adas | & |
228 | 10 | adas | \vlinf{\lefrul{\laand}}{}{\Gamma, A_1\laand A_2 \seqar \Delta}{\Gamma, A_i \seqar \Delta} |
229 | 10 | adas | & |
230 | 10 | adas | %\vlinf{\lefrul{\laand}}{}{\Gamma, A\laand B \seqar \Delta}{\Gamma, B \seqar \Delta} |
231 | 10 | adas | %\quad |
232 | 13 | pbaillot | \vlinf{\rigrul{\laor}}{}{\Gamma \seqar \Delta, A_1\laor A_2}{\Gamma \seqar \Delta, A_i} |
233 | 10 | adas | & |
234 | 10 | adas | %\vlinf{\rigrul{\laor}}{}{\Gamma \seqar \Delta, A\laor B}{\Gamma \seqar \Delta, B} |
235 | 10 | adas | %\quad |
236 | 10 | adas | \vliinf{\rigrul{\laand}}{}{\Gamma \seqar \Delta, A \laand B }{\Gamma \seqar \Delta, A}{\Gamma \seqar \Delta, B} |
237 | 10 | adas | \\ |
238 | 10 | adas | \noalign{\bigskip} |
239 | 10 | adas | %\text{Exponentials:} & & & \\ |
240 | 10 | adas | %\noalign{\bigskip} |
241 | 10 | adas | \vlinf{\lefrul{?}}{}{!\Gamma, ?A \seqar ?\Delta}{!\Gamma , A \seqar ?\Delta} |
242 | 10 | adas | & |
243 | 10 | adas | \vlinf{\lefrul{!}}{}{\Gamma, !A \seqar \Delta}{\Gamma, A \seqar \Delta} |
244 | 10 | adas | & |
245 | 10 | adas | \vlinf{\rigrul{?}}{}{\Gamma \seqar \Delta, ?A}{\Gamma \seqar \Delta, A} |
246 | 10 | adas | & |
247 | 13 | pbaillot | \vlinf{\rigrul{!}}{}{!\Gamma \seqar ?\Delta, !A}{!\Gamma \seqar ?\Delta, A} |
248 | 10 | adas | \\ |
249 | 10 | adas | \noalign{\bigskip} |
250 | 10 | adas | %\text{Structural:} & & & \\ |
251 | 10 | adas | %\noalign{\bigskip} |
252 | 10 | adas | \vlinf{\lefrul{\wk}}{}{\Gamma, !A \seqar \Delta}{\Gamma \seqar \Delta} |
253 | 10 | adas | & |
254 | 10 | adas | \vlinf{\lefrul{\cntr}}{}{\Gamma, !A \seqar \Delta}{\Gamma, !A, !A \seqar \Delta} |
255 | 10 | adas | & |
256 | 10 | adas | \vlinf{\rigrul{\wk}}{}{\Gamma \seqar \Delta, ?A }{\Gamma \seqar \Delta} |
257 | 10 | adas | & |
258 | 10 | adas | \vlinf{\rigrul{\cntr}}{}{\Gamma \seqar \Delta, ?A}{\Gamma \seqar \Delta, ?A, ?A} |
259 | 10 | adas | \\ |
260 | 10 | adas | \noalign{\bigskip} |
261 | 10 | adas | \vlinf{\lefrul{\exists}}{}{\Gamma, \exists x . A(x) \seqar \Delta}{\Gamma, A(a) \seqar \Delta} |
262 | 10 | adas | & |
263 | 10 | adas | \vlinf{\lefrul{\forall}}{}{\Gamma, \forall x. A(x) \seqar \Delta}{\Gamma, A(t) \seqar \Delta} |
264 | 10 | adas | & |
265 | 10 | adas | \vlinf{\rigrul{\exists}}{}{\Gamma \seqar \Delta, \exists x . A(x)}{ \Gamma \seqar \Delta, A(t)} |
266 | 10 | adas | & |
267 | 10 | adas | \vlinf{\rigrul{\forall}}{}{\Gamma \seqar \Delta, \forall x . A(x)}{ \Gamma \seqar \Delta, A(a) } |
268 | 10 | adas | \end{array} |
269 | 10 | adas | \end{array} |
270 | 10 | adas | \] |
271 | 10 | adas | where $p$ atomic, $i \in \{ 1,2 \}$ and the eigenvariable $a$ does not occur free in $\Gamma$ or $\Delta$. |
272 | 10 | adas | \end{definition} |
273 | 10 | adas | |
274 | 13 | pbaillot | We will consider extensions of linear logic with a \textit{theory} $\mathcal T$ consisting in a finite set of additional axioms and rules, depicted as: |
275 | 10 | adas | |
276 | 13 | pbaillot | \[ |
277 | 13 | pbaillot | \begin{array}{cc} |
278 | 13 | pbaillot | \vlinf{(ax)}{}{ \seqar A}{} & \vlinf{(R)}{}{ !\Gamma , \Sigma' \seqar \Delta' , ? \Pi }{ \{!\Gamma , \Sigma_i \seqar \Delta_i , ? \Pi \}_{i \in I} } |
279 | 13 | pbaillot | \end{array} |
280 | 13 | pbaillot | \] |
281 | 13 | pbaillot | |
282 | 13 | pbaillot | where in rule (R), $I$ is a finite set (indicating the number of premises) and we assume the following condition: |
283 | 13 | pbaillot | |
284 | 13 | pbaillot | \textit{for any $i\in I$, formulas in $\Sigma_i, \Delta_i$ do not share any free variable with $\Gamma, \Pi$.} |
285 | 13 | pbaillot | |
286 | 13 | pbaillot | In the following we will be interested in an example of theory $\mathcal T$ which is a form of arithmetic. |
287 | 13 | pbaillot | |
288 | 13 | pbaillot | A proof in this system will be called a \textit{ $\mathcal T$-proof}, or just \textit{proof} when there is no risk of confusion. |
289 | 13 | pbaillot | The rules of Def. \ref{def:LLsequentcalculus} are called \textit{logical rules} while the rules (ax) and (R) of $\tau$ are called \textit{non-logical}. |
290 | 13 | pbaillot | |
291 | 13 | pbaillot | As usual rules come with a notion of \textit{active formulas}, which are a subset of the rules in the conclusion, e.g.: |
292 | 13 | pbaillot | $A \lor B$ in rule $\lefrul{\lor}$ (and similarly for all rules for connectives); $?A$ in rule $\rigrul{\cntr}$; all conclusion formulas in axiom rules; |
293 | 13 | pbaillot | $\Sigma', \Delta'$ in rule (R). |
294 | 13 | pbaillot | |
295 | 13 | pbaillot | While in usual logical systems such as linear logic cut rules can be eliminated, this is in general not the case anymore when one considers extension with a theory $\tau$. For this reason we need now to define the kind of cuts that will remain in proofs after reduction. |
296 | 13 | pbaillot | \begin{definition}\label{def:anchoredcut} |
297 | 13 | pbaillot | An instance of cut rule in a $\mathcal T$-proof is an \textit{anchored cut} if its cut-formulas $A$ in the two premises are both principal for their rule, and at least one of these rules is non-logical. |
298 | 13 | pbaillot | \end{definition} |
299 | 13 | pbaillot | So for instance a cut on an (active) formula $A \lor B$ between a rule $\rigrul{\lor}$ and a rule (R) (where $A \lor B$ occurs in $\Sigma'$) is anchored, while a cut between |
300 | 13 | pbaillot | a rule $\rigrul{\lor}$ and a rule $\lefrul{\lor}$ is not. |
301 | 13 | pbaillot | |
302 | 13 | pbaillot | Now we can state the main result of this section: |
303 | 13 | pbaillot | \begin{theorem} |
304 | 13 | pbaillot | GIven a theory $\mathcal T$, any $\mathcal T$-proof $\pi$ can be transformed into a $\mathcal T$-proof $\pi'$ with same conclusion sequent and in which all cuts are anchored. |
305 | 13 | pbaillot | \end{theorem} |
306 | 13 | pbaillot | |
307 | 2 | adas | \subsection{Deduction theorem} |
308 | 2 | adas | |
309 | 2 | adas | [cite Avron:`semantics and proof theory of linear logic'] |
310 | 2 | adas | |
311 | 2 | adas | We will make much use of the deduction theorem, allowing us to argue informally within a theory for hypotheses that have been promoted. |
312 | 2 | adas | |
313 | 13 | pbaillot | %$$ |
314 | 13 | pbaillot | % \vliiinf{}{}{ \seqar A}{ \seqar C} |
315 | 13 | pbaillot | % $$ |
316 | 13 | pbaillot | |
317 | 13 | pbaillot | %\[ |
318 | 13 | pbaillot | % \vliiinf{R}{}{ !\Gamma , \Sigma' \seqar \Delta' , ? \Pi }{ \{!\Gamma , \Sigma_i \seqar \Delta_i , ? \Pi \}_{i \in I} } |
319 | 13 | pbaillot | % \] |
320 | 13 | pbaillot | |
321 | 2 | adas | \begin{theorem} |
322 | 2 | adas | [Deduction] |
323 | 2 | adas | If $\mathcal T , A \proves B$ then $\mathcal{T} \proves !A \limp B$. |
324 | 2 | adas | \end{theorem} |
325 | 2 | adas | |
326 | 2 | adas | \todo{need that $A$ above is closed! Check for rules to axioms.} |
327 | 2 | adas | |
328 | 2 | adas | |
329 | 2 | adas | |
330 | 2 | adas | \subsection{Converting axioms to rules in $\MELLW$} |
331 | 2 | adas | |
332 | 2 | adas | \begin{proposition} |
333 | 2 | adas | An axiom $\Ax$ of the form, |
334 | 2 | adas | \[ |
335 | 2 | adas | A_1 \limp \vldots \limp A_m \limp !B_1 \limp \vldots \limp !B_n \limp C |
336 | 2 | adas | \] |
337 | 2 | adas | is equivalent (over propositional $\LL$) to the rule $\Rl$: |
338 | 2 | adas | \[ |
339 | 2 | adas | \vliiinf{\Rl}{}{ !\Gamma , A_1 , \dots , A_m \seqar C , ? \Delta }{ !\Gamma \seqar B_1 , ?\Delta }{\vldots }{ !\Gamma \seqar B_n , ?\Delta} |
340 | 2 | adas | \] |
341 | 2 | adas | \end{proposition} |
342 | 2 | adas | \begin{proof} |
343 | 2 | adas | Let us first assume $\Ax$ and derive $\Rl$. From the axiom and Currying, we have a proof of: |
344 | 2 | adas | \begin{equation}\label{eqn:curried-axiom} |
345 | 2 | adas | A_1 , \dots , A_m , !B_1 , \dots , !B_n \seqar C |
346 | 2 | adas | \end{equation} |
347 | 2 | adas | |
348 | 2 | adas | This can simply be cut against each of the premisses of $\Rl$, applying appropriate contractions and necessitations, to derive it: |
349 | 2 | adas | \[ |
350 | 2 | adas | \vlderivation{ |
351 | 2 | adas | \vliq{c}{}{!\Gamma , A_1 , \dots , A_m \seqar C , ?\Delta }{ |
352 | 2 | adas | \vliin{\cut}{}{!\Gamma, \dots , !\Gamma , A_1 , \dots , A_m \seqar C , ?\Delta, \dots , ?\Delta }{ |
353 | 2 | adas | \vlin{!}{}{!\Gamma \seqar !B_n, ?\Delta }{\vlhy{!\Gamma \seqar B_n , ?\Delta }} |
354 | 2 | adas | }{ |
355 | 2 | adas | \vliin{\cut}{}{\qquad \qquad \qquad \qquad \vlvdots \qquad \qquad \qquad \qquad }{ |
356 | 2 | adas | \vlin{!}{}{!\Gamma \seqar !B_1 , ?\Delta}{\vlhy{!\Gamma \seqar B_1, ?\Delta }} |
357 | 2 | adas | }{\vlhy{ A_1 , \dots , A_m , !B_1 , \dots , !B_n \seqar C } } |
358 | 2 | adas | } |
359 | 2 | adas | } |
360 | 2 | adas | } |
361 | 2 | adas | \] |
362 | 2 | adas | |
363 | 2 | adas | Now let us prove $\Ax$ (again in the form of \eqref{eqn:curried-axiom}) by using $\Rl$ as follows: |
364 | 2 | adas | \[ |
365 | 2 | adas | \vliiinf{\Rl}{}{ A_1 , \dots , A_m , !B_1 , \dots , !B_n \seqar C }{ \vlderivation{ |
366 | 2 | adas | \vlin{w}{}{ !B_1 , \dots , !B_n \seqar B_1 }{ |
367 | 2 | adas | \vlin{!}{}{!B_1 \seqar B_1 }{ |
368 | 2 | adas | \vlin{\id}{}{B_1 \seqar B_1 }{\vlhy{}} |
369 | 2 | adas | } |
370 | 2 | adas | } |
371 | 2 | adas | } }{\vldots}{ |
372 | 2 | adas | \vlderivation{ |
373 | 2 | adas | \vlin{w}{}{ !B_1 , \dots , !B_n \seqar B_n }{ |
374 | 2 | adas | \vlin{!}{}{!B_n \seqar B_n }{ |
375 | 2 | adas | \vlin{\id}{}{B_n \seqar B_n }{\vlhy{}} |
376 | 2 | adas | } |
377 | 2 | adas | } |
378 | 2 | adas | } |
379 | 2 | adas | } |
380 | 2 | adas | \] |
381 | 2 | adas | \end{proof} |
382 | 2 | adas | |
383 | 2 | adas | |
384 | 2 | adas | \textbf{NB:} The proof does not strictly require side formulae $? \Delta$ on the right of the sequent arrow $\seqar$, it would work without them, e.g.\ for the intuitionistic case. In a one-sided setting there is no difference. |
385 | 2 | adas | |
386 | 2 | adas | |
387 | 2 | adas | |
388 | 2 | adas | \begin{corollary} |
389 | 2 | adas | The induction axiom of $A^1_2$ is equivalent to the rule: |
390 | 2 | adas | \[ |
391 | 2 | adas | \vliinf{}{(x \notin \FV(\Gamma, \Delta))}{ !\Gamma , A(\epsilon) \seqar A(t) , ?\Delta }{ !\Gamma , A(x) \seqar A(s_0 x ), ?\Delta }{ !\Gamma, A(x) \seqar A( s_1 x ) , ?\Delta} |
392 | 2 | adas | \] |
393 | 2 | adas | \end{corollary} |
394 | 2 | adas | \begin{proof} |
395 | 2 | adas | By proposition above, generalisation and Currying. |
396 | 2 | adas | \end{proof} |
397 | 2 | adas | |
398 | 2 | adas | |
399 | 2 | adas | \subsection{Prenexing} |
400 | 2 | adas | %In the presence of weakening we have a prenex normal form due to the following: |
401 | 2 | adas | % |
402 | 2 | adas | %\[ |
403 | 2 | adas | %\vlderivation{ |
404 | 2 | adas | % \vlin{}{}{\exists x . A \lor B \seqar \exists x . (A(x) \lor B) }{ |
405 | 2 | adas | % |
406 | 2 | adas | % } |
407 | 2 | adas | % } |
408 | 2 | adas | %\] |
409 | 2 | adas | |
410 | 2 | adas | Cannot derive prenexing operations, e.g.\ a problem with $\exists x . A \lor B \seqar \exists x . (A(x) \lor B)$. Can safely add prenexing rules? Or not a problem due to Witness predicate? |
411 | 2 | adas | |
412 | 2 | adas | \section{Free-cut elimination in linear logic} |
413 | 2 | adas | |
414 | 4 | adas | |
415 | 8 | adas | \todo{patrick} |
416 | 4 | adas | |
417 | 8 | adas | \anupam{Possibly need to include the cases for affine logic too, e.g.\ if weakening is native, since it does not play nice as an axiom.} |
418 | 4 | adas | |
419 | 11 | adas | \todo{include some bounds on free-cut elimination? Look at paper "Corrected upper bounds for free-cut elimination" by Beckmann and Buss for comparison.} |
420 | 11 | adas | |
421 | 2 | adas | \section{Some variants of arithmetic in linear logic} |
422 | 2 | adas | |
423 | 2 | adas | For pretty much all variants discussed we will actually work in the \emph{affine} variant of linear logic, which validates weakening: $(A \land B )\limp A$. There are many reasons for this; essentially it has not much effect on complexity while also creating a more robust proof theory. For example it induces the following equivalence: |
424 | 2 | adas | \[ |
425 | 2 | adas | !(A\land B) \equiv (!A \land !B) |
426 | 2 | adas | \] |
427 | 2 | adas | (The right-left direction is already valid in usual linear logic, but the left-right direction requires weakening). |
428 | 2 | adas | |
429 | 2 | adas | We define a variant of arithmetic inspired by Bellantoni and Hofmann's $A^1_2$. We describe later some connections to bounded arithmetic. |
430 | 2 | adas | |
431 | 2 | adas | |
432 | 2 | adas | \subsection{Based on Bellantoni-Hoffmann, Leivant, etc.} |
433 | 2 | adas | |
434 | 2 | adas | \newcommand{\natcntr}{\nat\mathit{cntr}} |
435 | 2 | adas | \newcommand{\geneps}{\nat_{\epsilon}} |
436 | 2 | adas | \newcommand{\genzer}{\nat_{0}} |
437 | 2 | adas | \newcommand{\genone}{\nat_{1}} |
438 | 2 | adas | |
439 | 2 | adas | |
440 | 2 | adas | \newcommand{\sepeps}{\epsilon} |
441 | 2 | adas | \newcommand{\sepzer}{\succ_{0}} |
442 | 2 | adas | \newcommand{\sepone}{\succ_{1}} |
443 | 2 | adas | |
444 | 2 | adas | \newcommand{\inj}{\mathit{inj}} |
445 | 2 | adas | \newcommand{\surj}{\mathit{surj}} |
446 | 2 | adas | |
447 | 2 | adas | \begin{definition} |
448 | 2 | adas | [Arithmetic] |
449 | 2 | adas | We have the following axioms: |
450 | 2 | adas | \[ |
451 | 2 | adas | \begin{array}{rl} |
452 | 7 | adas | \wk & (A \land B )\limp A \\ |
453 | 2 | adas | \natcntr & \forall x^N . (N(x) \land N(x)) \\ |
454 | 2 | adas | \geneps & \nat(\epsilon) \\ |
455 | 2 | adas | \genzer & \forall x^N . N(\succ_0 x) \\ |
456 | 2 | adas | \genone & \forall x^N . N(\succ_1 x) \\ |
457 | 2 | adas | \sepeps & \forall x^N . (\epsilon \neq \succ_0 x \land \epsilon \neq \succ_1 x) \\ |
458 | 2 | adas | \sepzer & \forall x^N , y^N. ( \succ_0 x = \succ_0 y \limp x=y ) \\ |
459 | 2 | adas | \sepone & \forall x^N , y^N. ( \succ_1 x = \succ_1 y \limp x=y ) \\ |
460 | 2 | adas | \inj & \forall x^N . \succ_0 x \neq \succ_1 x \\ |
461 | 2 | adas | \surj & \forall x^N . (x = \epsilon \lor \exists y^N . x = \succ_0 y \lor \exists y^N . x = \succ_1 y ) \\ |
462 | 2 | adas | \noalign{\bigskip} |
463 | 7 | adas | \ind & A(\epsilon) \limp !( \forall x^{!\nat} . ( A(x) \limp A(\succ_0 x) ) ) \limp !( \forall x^{!\nat} . ( A(x) \limp A(\succ_1 x) ) ) \limp \forall x^{!\nat} . A(x) |
464 | 2 | adas | \end{array} |
465 | 2 | adas | \] |
466 | 2 | adas | |
467 | 2 | adas | Induction rule should be the following, to take account of relativised quantifiers? |
468 | 2 | adas | \[ |
469 | 2 | adas | \vliinf{\ind}{}{ !N(t) , !\Gamma , A(\epsilon) \seqar A(t), ?\Delta }{ !N(a) , !\Gamma, A(a) \seqar A(\succ_0 a) , ?\Delta }{ !N(a) , !\Gamma, A(a) \seqar A(\succ_0 a) , ?\Delta } |
470 | 2 | adas | \] |
471 | 2 | adas | |
472 | 2 | adas | \todo{in existential above, is there a prenexing problem?} |
473 | 2 | adas | |
474 | 2 | adas | \todo{what about $\leq$? Introducing this could solve prenexing problem, e.g.\ by induction?} |
475 | 2 | adas | \end{definition} |
476 | 2 | adas | |
477 | 2 | adas | \subsection{$\nat$-hierarchy} |
478 | 2 | adas | |
479 | 2 | adas | \begin{definition} |
480 | 2 | adas | |
481 | 2 | adas | \todo{replace N with nat.} |
482 | 2 | adas | |
483 | 2 | adas | Let us define the quantifiers $\exists x^N . A$ and $\forall x^N . A$ as $\exists x . (N(x) \land A)$ and $\forall x . (N(x) \limp A) $ respectively. |
484 | 2 | adas | |
485 | 2 | adas | We define $\Sigma^N_0 = \Pi^N_0 $ as the class of formulae that are free of quantifiers. For $i\geq 0$ we define: |
486 | 2 | adas | \begin{itemize} |
487 | 2 | adas | \item $\Sigma^N_{i+1}$ is the class of formulae $\exists x^N . A$ where $A \in \Pi^N_i$. |
488 | 2 | adas | \item $\Pi^N_{i+1}$ is the class of formulae $\forall x^N . A$ where $A \in \Sigma^N_i$. |
489 | 2 | adas | \item ($\Delta^N_i$ is the class $\Sigma^N_i \cap \Pi^N_i$.) |
490 | 2 | adas | \end{itemize} |
491 | 2 | adas | \end{definition} |
492 | 2 | adas | |
493 | 2 | adas | \todo{allow closure under positive Boolean operations?} |
494 | 2 | adas | |
495 | 2 | adas | \todo{What about prenexing rules? Should not change provably total functions!} |
496 | 2 | adas | |
497 | 2 | adas | \subsection{Equivalent rule systems} |
498 | 2 | adas | |
499 | 2 | adas | For the quantifiers $\exists x^N $ and $\forall x^N$ we introduce the following rules, which are compatible with free-cut elimination: |
500 | 2 | adas | |
501 | 2 | adas | \[ |
502 | 2 | adas | \begin{array}{cc} |
503 | 2 | adas | \vlinf{}{}{\Gamma \seqar \Delta, \forall x^N . A(x)}{\Gamma, N(a) \seqar \Delta , A(a)} |
504 | 2 | adas | \quad & \quad |
505 | 2 | adas | \vlinf{}{}{\Gamma, N(t),\forall x^N A(x) \seqar \Delta}{\Gamma, A(t) \seqar \Delta} |
506 | 2 | adas | \\ |
507 | 2 | adas | \noalign{\bigskip} |
508 | 2 | adas | \vlinf{}{}{\Gamma , \exists x^N A(x) \seqar \Delta}{\Gamma, N(a), A(a) \seqar \Delta} |
509 | 2 | adas | \quad &\quad |
510 | 2 | adas | \vlinf{}{}{\Gamma, N(t) \seqar \Delta , \exists x^N . A(x)}{\Gamma \seqar \Delta, A(t)} |
511 | 2 | adas | \end{array} |
512 | 2 | adas | \] |
513 | 2 | adas | |
514 | 2 | adas | CHECK THESE! |
515 | 2 | adas | |
516 | 2 | adas | \todo{Also include rules for contraction and weakening.} |
517 | 2 | adas | |
518 | 2 | adas | \section{Convergence of Bellantoni-Cook programs} |
519 | 2 | adas | |
520 | 2 | adas | \subsection{Bellantoni-Cook programs} |
521 | 2 | adas | We first recall the notion of safe recursion on notation from BC. TODO |
522 | 2 | adas | |
523 | 2 | adas | \subsection{Convergence in arithmetic} |
524 | 2 | adas | \begin{theorem} |
525 | 2 | adas | [Convergence] |
526 | 2 | adas | If $\Phi(f)$ is an equational specification corresponding to a BC-program defining $f()$, then $\cax{\Sigma^N_1}{\pind} \proves \ !\Phi(f) \limp \forall \vec{x}^{!N} . N(f(\vec x))$. |
527 | 2 | adas | \end{theorem} |
528 | 2 | adas | \begin{proof} |
529 | 2 | adas | We show by induction on the structure of a BC-program for $f(\vec x ; \vec y)$ that: |
530 | 2 | adas | \begin{equation} |
531 | 2 | adas | \Phi(f) , \cax{\Sigma^N_1}{\pind} \proves \ \forall \vec{x}^{!N} . \forall \vec{y}^N . N(f(\vec x ; \vec y)) |
532 | 2 | adas | \end{equation} |
533 | 2 | adas | We give some key cases in what follows. |
534 | 2 | adas | |
535 | 2 | adas | Suppose $f$ is defined by PRN by: |
536 | 2 | adas | \[ |
537 | 2 | adas | \begin{array}{rcl} |
538 | 2 | adas | f(0,\vec x ; \vec y) & = & g(\vec x ; \vec y) \\ |
539 | 2 | adas | f(\succ_i x , \vec x ; \vec y) & = & h_i (x, \vec x ; \vec y , f(x , \vec x ; \vec y)) |
540 | 2 | adas | \end{array} |
541 | 2 | adas | \] |
542 | 2 | adas | By the inductive hypothesis we already have that $g, h_0, h_1$ are provably convergent, so let us suppose that $N(\vec x)$ and prove, |
543 | 2 | adas | \begin{equation} |
544 | 2 | adas | \forall x^{!N} . ( N(\vec y) \limp N(f(x , \vec x ; \vec y) ) |
545 | 2 | adas | \end{equation} |
546 | 2 | adas | by $\cax{\Sigma^N_1}{\pind}$ on $x$. |
547 | 2 | adas | |
548 | 2 | adas | In the base case we have the following proof: |
549 | 2 | adas | \[ |
550 | 2 | adas | \vlderivation{ |
551 | 2 | adas | \vliin{}{}{N(\vec y) \limp N(f(0, \vec x ; \vec y))}{ |
552 | 2 | adas | \vltr{IH}{N(\vec y) \limp N(g(\vec x ; \vec y))}{\vlhy{\quad}}{\vlhy{}}{\vlhy{\quad}} |
553 | 2 | adas | }{ |
554 | 2 | adas | \vlin{}{}{N(g (\vec x ; \vec y) ) \limp N(f(0, \vec x ; \vec y)) }{ |
555 | 2 | adas | \vlin{}{}{g(\vec x ; \vec y) = f(0 , \vec x ; \vec y)}{\vlhy{}} |
556 | 2 | adas | } |
557 | 2 | adas | } |
558 | 2 | adas | } |
559 | 2 | adas | \] |
560 | 2 | adas | |
561 | 2 | adas | For the inductive step, we need to show that, |
562 | 2 | adas | \[ |
563 | 2 | adas | \forall x^{!N} . (( N(\vec y) \limp N( f(x, \vec x ; \vec y) ) ) \limp N(\vec y) \limp N(f(\succ_i x , \vec x ; \vec y) ) ) |
564 | 2 | adas | \] |
565 | 2 | adas | so let us suppose that $N(x)$ and we give the following proof: |
566 | 2 | adas | \[ |
567 | 2 | adas | \vlderivation{ |
568 | 2 | adas | \vlin{N\cntr}{}{N(y) \limp ( N(y ) \limp N(f( x , \vec x ; \vec y ) ) ) \limp N(f (\succ_i x , \vec x ; \vec y) ) }{ |
569 | 2 | adas | \vliin{}{}{N(y) \limp N(y) \limp ( N(y ) \limp N(f( x , \vec x ; \vec y ) ) ) \limp N(f (\succ_i x , \vec x ; \vec y) ) }{ |
570 | 2 | adas | \vliin{}{}{ N(y) \limp N(y) \limp ( N(y) \limp N( f(x, \vec x ; \vec y) ) ) \limp N( h_i (x , \vec x ; \vec y , f(x , \vec x ; \vec y) ) ) }{ |
571 | 2 | adas | \vltr{MLL}{( N(\vec y) \limp (N (\vec y) \limp N(f(x, \vec x ; \vec y) )) \limp N(f(x, \vec x ; \vec y)) }{\vlhy{\quad }}{\vlhy{\ }}{\vlhy{\quad }} |
572 | 2 | adas | }{ |
573 | 2 | adas | \vlhy{2} |
574 | 2 | adas | } |
575 | 2 | adas | }{ |
576 | 2 | adas | \vlhy{3} |
577 | 2 | adas | } |
578 | 2 | adas | } |
579 | 2 | adas | } |
580 | 2 | adas | \] |
581 | 2 | adas | TOFINISH |
582 | 2 | adas | \end{proof} |
583 | 2 | adas | |
584 | 2 | adas | \section{Witness function method} |
585 | 2 | adas | |
586 | 12 | adas | Key features/differences from realisability: |
587 | 12 | adas | \begin{itemize} |
588 | 12 | adas | \item De Morgan normal form: reduces type level to $0$, complementary to double-negation translation that \emph{increases} type level. |
589 | 12 | adas | \item Free-cut elimination: allows us to handles formulae of fixed logical complexity throughout the proof. |
590 | 12 | adas | \item Respects logical properties of formulae, e.g.\ quantifier complexity, exponential complexity. |
591 | 12 | adas | \end{itemize} |
592 | 2 | adas | |
593 | 12 | adas | \todo{say some more here} |
594 | 12 | adas | |
595 | 2 | adas | \newcommand{\type}{\mathtt{t}} |
596 | 2 | adas | \newcommand{\norm}{\nu} |
597 | 2 | adas | \newcommand{\safe}{\sigma} |
598 | 2 | adas | |
599 | 2 | adas | \subsection{Typing} |
600 | 2 | adas | |
601 | 2 | adas | \begin{definition} |
602 | 2 | adas | [Types] |
603 | 4 | adas | To each formula we associate a tuple type as follows: |
604 | 2 | adas | \[ |
605 | 2 | adas | \begin{array}{rcll} |
606 | 4 | adas | \type (\nat (t)) & := & \Nat & \\ |
607 | 4 | adas | \type(s = t) & := & \Nat & \\ |
608 | 2 | adas | \type (A \star B) & : = & \type (A) \times \type (B) & \text{for $\star \in \{ \lor, \land, \laor, \laand \} $.} \\ |
609 | 4 | adas | \type (! A) & : = & \type_\norm (A) & \\ |
610 | 4 | adas | \type (\exists x^N . A) & := & \Nat \times \type (A) & \\ |
611 | 4 | adas | % \type (\forall x^N . A) & := & \Nat \to \type(A) |
612 | 2 | adas | \end{array} |
613 | 2 | adas | \] |
614 | 4 | adas | where $\nu$ designates that the inputs are normal. |
615 | 2 | adas | \end{definition} |
616 | 2 | adas | |
617 | 4 | adas | \todo{compatibility with safety. To consider.} |
618 | 2 | adas | |
619 | 2 | adas | |
620 | 2 | adas | |
621 | 4 | adas | |
622 | 2 | adas | \newcommand{\witness}[2]{\mathit{Witness}^{#1}_{#2}} |
623 | 2 | adas | \begin{definition} |
624 | 2 | adas | [Witness predicate] |
625 | 2 | adas | We define the following formula: |
626 | 2 | adas | \[ |
627 | 2 | adas | \begin{array}{rcll} |
628 | 2 | adas | \witness{\vec a}{A} (w, \vec a) & := & A(\vec a) & \text{for $A$ quantifier-free.} \\ |
629 | 2 | adas | \witness{\vec a}{\exists x . A} (w, \vec w , \vec a) & := & \witness{\vec{a}, a}{A(a)}(\vec w , \vec a, w ) & \\ |
630 | 2 | adas | \witness{\vec a}{A \star B} ( \vec w^1 , \vec w^2 ) & := & \witness{\vec a}{A} (\vec w^1) \star \witness{\vec a}{B} (\vec w^2) & \text{for $\star \in \{ \land, \lor, \laand , \laor\}$.} \\ |
631 | 2 | adas | \end{array} |
632 | 2 | adas | \] |
633 | 2 | adas | \end{definition} |
634 | 2 | adas | \todo{problem: what about complexity of checking equality? } |
635 | 2 | adas | |
636 | 2 | adas | \todo{What about $\nat (t)$? What does it mean? Replace with true?} |
637 | 2 | adas | |
638 | 2 | adas | \todo{either use the witness predicate above, or use realizability predicate at meta-level and a model theory, like BH.} |
639 | 2 | adas | |
640 | 4 | adas | \anupam{Need to check above properly. $N(t)$ should be witnessed by the value of $t $ in the model. For equality of terms the witness should not do anything.} |
641 | 2 | adas | |
642 | 2 | adas | \subsection{The translation} |
643 | 2 | adas | Need witness predicate so that we know what is being preserved. |
644 | 2 | adas | |
645 | 2 | adas | \begin{definition} |
646 | 2 | adas | [Translation] |
647 | 2 | adas | We give a translation of proofs $\pi$ of sequents $\Gamma(\vec a) \seqar \Delta(\vec a)$ to BC-programs for a vector of functions $\vec f^\pi : \type(\bigotimes\Gamma) \times \Nat^{|\vec a|} \to \type(\bigparr\Delta)$ such that: |
648 | 2 | adas | \[ |
649 | 2 | adas | \witness{\vec a}{\bigotimes \Gamma} (\vec w , \vec a) \implies \witness{\vec a}{\bigparr \Delta } (\vec f(\vec w , \vec a), \vec a) |
650 | 2 | adas | \] |
651 | 2 | adas | We will be explicit about normal and safe inputs when necessary, for the most part we will simply rearrange inputs into lists $(\vec x; \vec a)$ as in BC framework. |
652 | 2 | adas | |
653 | 2 | adas | We often suppress the parameters $\vec a$ when it is not important. |
654 | 2 | adas | |
655 | 2 | adas | \anupam{Is this implication provable in Bellantoni's version of PV based on BC?} |
656 | 2 | adas | |
657 | 2 | adas | \anupam{for moment try ignore decoration on right? what about negation?} |
658 | 2 | adas | |
659 | 3 | adas | |
660 | 2 | adas | |
661 | 2 | adas | \[ |
662 | 2 | adas | \vlderivation{ |
663 | 2 | adas | \vliin{\land}{}{ \Gamma, \Sigma \seqar \Delta, \Pi, A\land B }{ |
664 | 2 | adas | \vltr{\pi_1}{ \Gamma \seqar \Delta, A }{\vlhy{\quad }}{\vlhy{ }}{\vlhy{\quad }} |
665 | 2 | adas | }{ |
666 | 2 | adas | \vltr{\pi_2}{ \Sigma \seqar \Pi, B }{\vlhy{\quad }}{\vlhy{ }}{\vlhy{\quad }} |
667 | 2 | adas | } |
668 | 2 | adas | } |
669 | 2 | adas | \] |
670 | 2 | adas | |
671 | 2 | adas | So we have $\vec f^{1} (\vec x ; \vec a)$ and $\vec f^2 (\vec y ; \vec b)$ for $\pi_1 $ and $\pi_2$ respectively, by the inductive hypothesis. We simply construct $\vec f^\pi$ by rearranging these functions: |
672 | 2 | adas | \[ |
673 | 2 | adas | \vec f^\pi (\vec x , \vec y ; \vec a , \vec b) \quad := \quad ( f^1_1 (\vec x ; \vec a) , \dots , f^1_{|\Delta|} (\vec x ; \vec a) , f^2_1 (\vec y; \vec b) , \dots , f^2_{|\Pi|} (\vec y ; \vec b) , f^1_{|\Delta|+1} (\vec x ; \vec a ) , f^2_{|\Pi|+1} (\vec y ; \vec b) |
674 | 2 | adas | \] |
675 | 2 | adas | |
676 | 2 | adas | \anupam{bad notation since need to include free variables of sequent too. (also of theory.) Reconsider.} |
677 | 2 | adas | |
678 | 2 | adas | \[ |
679 | 2 | adas | \vlderivation{ |
680 | 2 | adas | \vlin{\lefrul{\cntr}}{}{ !A , \Gamma \seqar \Delta }{ |
681 | 2 | adas | \vltr{\pi'}{ !A, !A , \Gamma \seqar \Delta}{\vlhy{\quad }}{\vlhy{ }}{\vlhy{\quad }} |
682 | 2 | adas | } |
683 | 2 | adas | } |
684 | 2 | adas | \] |
685 | 2 | adas | Have $\vec f' (x_1 , x_2 , \vec y ; \vec a)$ for $\pi'$. Define |
686 | 2 | adas | \[ |
687 | 2 | adas | \vec f (x_1 , \vec y ; \vec a) \quad := \quad \vec f'(x_1 , x_1 , \vec y ; \vec a) |
688 | 2 | adas | \] |
689 | 2 | adas | \[ |
690 | 2 | adas | \vlderivation{ |
691 | 2 | adas | \vlin{\rigrul{\cntr}}{}{\Gamma \seqar \Delta, ?A}{ |
692 | 2 | adas | \vltr{\pi'}{ \Gamma \seqar \Delta, ?A, ?A}{\vlhy{\quad }}{\vlhy{ }}{\vlhy{\quad }} |
693 | 2 | adas | } |
694 | 2 | adas | } |
695 | 2 | adas | \] |
696 | 2 | adas | (need test function against witness predicate?) |
697 | 2 | adas | |
698 | 2 | adas | \anupam{problem: how to test even equality of two terms? Maybe treat $?$ as $!$ on left?} |
699 | 2 | adas | |
700 | 2 | adas | \anupam{Not a problem by free-cut elimination! Can assume there are no $?$ in the proof! Is this equivalent to treaing $?$ as $!$ on left?} |
701 | 2 | adas | |
702 | 2 | adas | \anupam{Yes I think so. We can work in a left-sided calculus. only problem is for induction. But this can never be a problem for modalities since induction formulae are modality-free.} |
703 | 2 | adas | |
704 | 2 | adas | \anupam{this is actually the main point.} |
705 | 2 | adas | |
706 | 2 | adas | |
707 | 2 | adas | \[ |
708 | 2 | adas | \vlderivation{ |
709 | 2 | adas | \vliin{\rigrul{\laand}}{}{\Gamma \seqar \Delta, A \laand B}{ |
710 | 2 | adas | \vltr{\pi_1}{ \Gamma \seqar \Delta, A}{\vlhy{\quad }}{\vlhy{ }}{\vlhy{\quad }} |
711 | 2 | adas | }{ |
712 | 2 | adas | \vltr{\pi_2}{ \Gamma \seqar \Delta, B}{\vlhy{\quad }}{\vlhy{ }}{\vlhy{\quad }} |
713 | 2 | adas | } |
714 | 2 | adas | } |
715 | 2 | adas | \] |
716 | 2 | adas | |
717 | 2 | adas | Suppose we have $\vec f^i (\vec x , \vec a ; \vec y , \vec b)$ from $\pi_i$. |
718 | 2 | adas | |
719 | 2 | adas | \anupam{problem: does this require many tests, just like for contraction? Can we isolate a different complexity class? e.g.\ PH or Grzegorzyck?} |
720 | 2 | adas | \anupam{skip this case and consider later.} |
721 | 2 | adas | \[ |
722 | 2 | adas | \vlderivation{ |
723 | 2 | adas | \vliin{\cut}{}{\Gamma , \Sigma \seqar \Delta , \Pi}{ |
724 | 2 | adas | \vltr{\pi_1}{ \Gamma \seqar \Delta, A }{\vlhy{\quad }}{\vlhy{ }}{\vlhy{\quad }} |
725 | 2 | adas | }{ |
726 | 2 | adas | \vltr{\pi_2}{\Sigma , A \seqar \Pi}{\vlhy{\quad }}{\vlhy{ }}{\vlhy{\quad }} |
727 | 2 | adas | } |
728 | 2 | adas | } |
729 | 2 | adas | \] |
730 | 2 | adas | |
731 | 2 | adas | We can assume that $A$ in the conclusion of $\pi_2$ is free of modalities, since one of the $A$s must be directly descended from an induction formula, and so consists of only safe inputs. Therefore we have functions $\vec f^1 (\vec w; \vec x)$ and $\vec f^2 (\vec y ; \vec z , \vec u)$ for $\pi_1$ and $\pi_2 $ respectively (free variable parameters are suppressed), with $\vec u$ corresponding to the (safe) inputs for $A$. |
732 | 2 | adas | |
733 | 2 | adas | Let us write: |
734 | 2 | adas | \[ |
735 | 2 | adas | \begin{array}{rcl} |
736 | 2 | adas | \vec f^1 & = & ( \vec f^1_i )^{|\Delta|+1}_{i=1} \\ |
737 | 2 | adas | \vec f^2 & = & ( \vec f^2_i )^{|\Pi|}_{i=1} |
738 | 2 | adas | \end{array} |
739 | 2 | adas | \] |
740 | 2 | adas | to denote the parts of $\vec f^i$ corresponding to formulae in their sequents. |
741 | 2 | adas | |
742 | 2 | adas | |
743 | 2 | adas | We define: |
744 | 2 | adas | \[ |
745 | 2 | adas | \vec f (\vec w , \vec y ; \vec x , \vec z) |
746 | 2 | adas | \quad := \quad |
747 | 2 | adas | ( |
748 | 2 | adas | ( \vec f^1_i (\vec w ; \vec x) )_{i \leq |\Delta|} |
749 | 2 | adas | , |
750 | 2 | adas | \vec f^2 ( \vec y ; \vec z , \vec f^1_{|\Delta| +1 } (\vec w ; \vec x) ) |
751 | 2 | adas | ) |
752 | 2 | adas | \] |
753 | 2 | adas | |
754 | 2 | adas | Notice that all safe inputs are hereditarily right of a $;$, and so these terms are definable by safe composition and projection. |
755 | 2 | adas | |
756 | 5 | adas | \todo{another case for $!\nat(x)$ cut formula.} |
757 | 2 | adas | |
758 | 5 | adas | \anupam{should work for arbitrary $!$-cuts due to principal case for $!$} |
759 | 2 | adas | |
760 | 4 | adas | |
761 | 2 | adas | Right existential: |
762 | 2 | adas | \[ |
763 | 2 | adas | \vlderivation{ |
764 | 2 | adas | \vlin{\rigrul{\exists}}{}{ \Gamma, \nat(t) \seqar \Delta , \exists x^\nat . A(x) }{ |
765 | 2 | adas | \vltr{\pi'}{ \Gamma \seqar \Delta , A(t) }{\vlhy{\quad }}{\vlhy{ }}{\vlhy{\quad }} |
766 | 2 | adas | } |
767 | 2 | adas | } |
768 | 2 | adas | \] |
769 | 7 | adas | Suppose we have functions $\vec f^X (\vec x ; \vec y)$ from $\pi'$ for $X = \Delta$ or $ X=A$. |
770 | 4 | adas | \[ |
771 | 7 | adas | \vec f(\vec x ; \vec y , z) \quad := \quad ( \vec f^\Delta (\vec x ; \vec y) , z , \vec f^A ( \vec x ; \vec y ) ) |
772 | 4 | adas | \] |
773 | 2 | adas | |
774 | 2 | adas | |
775 | 2 | adas | Left existential: |
776 | 2 | adas | \[ |
777 | 2 | adas | \vlderivation{ |
778 | 2 | adas | \vlin{\lefrul{\exists}}{}{ \Gamma, \exists x^N . A(x) \seqar \Delta }{ |
779 | 4 | adas | \vltr{\pi'(a)}{ \Gamma, N(a) , A(a) \seqar \Delta }{\vlhy{\quad }}{\vlhy{ }}{\vlhy{\quad }} |
780 | 2 | adas | } |
781 | 2 | adas | } |
782 | 2 | adas | \] |
783 | 2 | adas | |
784 | 8 | adas | Suppose we have functions $\vec f' (\vec u , \vec v ; x , \vec y , \vec z)$ from $\pi'$ with $(\vec u ; \vec x )$ corresponding to $\Gamma$, $(;x)$ corresponding to $N(a)$ and $(\vec v ; \vec z)$ corresponding to $A(a)$. We define: |
785 | 4 | adas | \[ |
786 | 8 | adas | \vec f ( \vec u , \vec v ; ) |
787 | 4 | adas | \] |
788 | 4 | adas | |
789 | 8 | adas | \anupam{should just be same, no? To consider.} |
790 | 8 | adas | |
791 | 8 | adas | %Suppose we have functions $\vec g (\vec v , \vec w ; \vec x , y , \vec z)$ where $(\vec v ; \vec x) $ corresponds to $\Gamma$, $y$ corresponds to $\nat(a)$ and $(\vec w ; \vec z) $ corresponds to $A(a)$. Then we define: |
792 | 8 | adas | %\[ |
793 | 8 | adas | %\vec f ( \vec v , \vec w ; \vec x , y , \vec z ) |
794 | 8 | adas | %\] |
795 | 8 | adas | |
796 | 4 | adas | \todo{finish} |
797 | 4 | adas | |
798 | 2 | adas | !: |
799 | 2 | adas | \[ |
800 | 2 | adas | \vlderivation{ |
801 | 2 | adas | \vlin{!}{}{\Gamma, !A \seqar \Delta}{ |
802 | 2 | adas | \vltr{\pi'}{ \Gamma , A \seqar \Delta }{\vlhy{\quad }}{\vlhy{ }}{\vlhy{\quad }} |
803 | 2 | adas | } |
804 | 2 | adas | } |
805 | 2 | adas | \] |
806 | 2 | adas | \anupam{Again, use free-cut elimination to get rid of this case. We know $!$-ed formulae in advance, so just fix those as normal inputs in advance.} |
807 | 2 | adas | |
808 | 2 | adas | |
809 | 2 | adas | Induction: (can assume no side-formulae on right for same reason as no contraction.) |
810 | 2 | adas | \[ |
811 | 2 | adas | \vlderivation{ |
812 | 3 | adas | \vliin{\ind}{}{ !\Gamma , !\nat (t) , A(\epsilon) \seqar A(t) }{ |
813 | 2 | adas | \vltr{\pi_0}{ !\Gamma , !\nat(a) , A(a) \seqar A(\succ_0 a)}{\vlhy{\quad }}{\vlhy{ }}{\vlhy{\quad }} |
814 | 2 | adas | }{ |
815 | 2 | adas | \vltr{\pi_1}{ !\Gamma , !\nat(a), A(a)\seqar A(\succ_1 a) }{\vlhy{\quad }}{\vlhy{ }}{\vlhy{\quad }} |
816 | 2 | adas | } |
817 | 2 | adas | } |
818 | 2 | adas | \] |
819 | 2 | adas | |
820 | 2 | adas | Suppose we have functions $\vec f^i (\vec x , y ; \vec u)$ from proofs $\pi_i$ where $\vec x $ corresponds to $!\Gamma$, $y$ corresponds to $!N(a)$ and $\vec u$ corresponds to $A(a)$. |
821 | 2 | adas | |
822 | 2 | adas | |
823 | 2 | adas | \anupam{role of $!N(a)$ versus having $a$ as a parameter to function. To consider!} |
824 | 2 | adas | |
825 | 2 | adas | Define the function $f_k$ (for $k = 1 , \dots , |\vec u|$) by PRN: |
826 | 2 | adas | \[ |
827 | 2 | adas | \begin{array}{rcl} |
828 | 2 | adas | f_k(\epsilon, \vec x , y ; \vec u) & := & u_k \\ |
829 | 2 | adas | f_k (\succ_i w , \vec x , y ; \vec u) & : = & f^i_k ( \vec x , y ; \vec f ( w, \vec x , y ; \vec u ) ) |
830 | 2 | adas | \end{array} |
831 | 2 | adas | \] |
832 | 2 | adas | |
833 | 2 | adas | \anupam{check this, esp use of parameters, cf.\ above.} |
834 | 2 | adas | |
835 | 2 | adas | \anupam{Is this not using a simultaneous version of PRN? Might need concatenation of words/basic coding to deal with this.} |
836 | 2 | adas | |
837 | 3 | adas | |
838 | 2 | adas | \end{definition} |
839 | 2 | adas | |
840 | 3 | adas | \newcommand{\concat}{\mathit{concat}} |
841 | 3 | adas | \paragraph{Some points on concatenation \anupam{if necessary}} |
842 | 3 | adas | We can define the concatenation operation by PRN: |
843 | 3 | adas | \[ |
844 | 3 | adas | \begin{array}{rcl} |
845 | 3 | adas | \concat (\epsilon ; y) & : = & x \\ |
846 | 3 | adas | \concat (\succ_i x ; y) & := & \succ_i \concat (x ; y) |
847 | 3 | adas | \end{array} |
848 | 3 | adas | \] |
849 | 2 | adas | |
850 | 3 | adas | From here we can define iterated concatenation: |
851 | 3 | adas | \[ |
852 | 3 | adas | \concat (x_1 , \dots x_n ; y) \quad := \quad \concat (x_n ; \concat (x_{n-1} ; \vldots \concat (x_1 ; y) \vldots ) ) |
853 | 3 | adas | \] |
854 | 3 | adas | |
855 | 3 | adas | (notice all safe inputs are hereditarily to the right of $;$ so this is definable by safe composition and projection.) |
856 | 3 | adas | |
857 | 2 | adas | \section{Further work} |
858 | 2 | adas | |
859 | 2 | adas | Say something about minimisation and the polynomial hierarchy. Could be achieved by controlling contraction/additives, since this requires a notion of tests. |
860 | 2 | adas | |
861 | 2 | adas | \section{Conclusions} |
862 | 2 | adas | |
863 | 4 | adas | \appendix |
864 | 2 | adas | |
865 | 4 | adas | \section{Some cut-elimination cases} |
866 | 4 | adas | We work in a one-sided calculus for full linear logic. When working in the affine setting we simply drop the condition that weakened formulae are $?$-ed. |
867 | 4 | adas | |
868 | 4 | adas | As well as all usual rules, we have the induction rule: |
869 | 4 | adas | \[ |
870 | 4 | adas | \vlinf{\indr}{(x \notin FV (\Gamma) )}{? \Gamma, A^\perp (0) , A(t)}{? \Gamma , A^\perp (x) , A(s x) } |
871 | 4 | adas | \] |
872 | 4 | adas | |
873 | 4 | adas | We give all the various cut-reduction cases in the following section but first we give a simple cut-elimination argument. |
874 | 4 | adas | |
875 | 4 | adas | \subsection{A basic (free-)cut elimination argument} |
876 | 4 | adas | We give an argument that easily scales to free-cut elimination, i.e.\ in the presence of non-logical rules. |
877 | 4 | adas | |
878 | 4 | adas | \newcommand{\anarrow}[2]{\overset{#1}{\underset{#2}{\longrightarrow}}} |
879 | 4 | adas | \newcommand{\cutredlin}{\mathit{ma}} |
880 | 4 | adas | \newcommand{\cutredexp}{exp} |
881 | 4 | adas | |
882 | 4 | adas | \begin{definition} |
883 | 4 | adas | Let $\anarrow{}{\cutredexp}$ denote the reduction steps concerning exponential cuts, and $\anarrow{}{\cutredlin}$ be the set of cut-reduction steps concerning multiplicative and additive cuts. |
884 | 4 | adas | \end{definition} |
885 | 4 | adas | |
886 | 4 | adas | \newcommand{\rk}{\mathsf{rk}} |
887 | 4 | adas | \renewcommand{\deg}{\mathsf{deg}} |
888 | 4 | adas | \begin{definition} |
889 | 4 | adas | [Measures] |
890 | 4 | adas | For a $\anarrow{}{\cutredlin}$-redex $r$, let its \emph{degree} $\deg( r)$ be the number of logical connectives or quantifiers in its cut-formula. For a proof $\pi$, its \emph{degree} $\deg( \pi)$ is the multiset of the degree of its redexes. |
891 | 4 | adas | \end{definition} |
892 | 4 | adas | |
893 | 4 | adas | \begin{proposition} |
894 | 4 | adas | If $\pi$ is not $\anarrow{}{\cutredlin}$-normal then there is a derivation $L:\pi \anarrow{*}{\cutredlin} \pi'$ such that $\deg(\pi')< \deg(\pi)$. |
895 | 4 | adas | \end{proposition} |
896 | 4 | adas | \begin{proof} |
897 | 4 | adas | First let us show the statement in the special case that $\pi$ contains precisely one $\cut$-inference as its final step, by induction on $|\pi|$. Each commutative $\anarrow{}{\cutredlin}$-step results in us being able to apply the inductive hypothesis to smaller proofs,- in the case of $\vlan $ two smaller proofs. Each key $\anarrow{}{\cutredlin}$-case strictly reduces the degree of the proof. Consequently we can eventually transform $\pi$ to a proof $\pi'$ which has possibly several cuts of smaller degree, as required. |
898 | 4 | adas | |
899 | 4 | adas | Now to the general case, we simply apply the above procedure to the subproof above a topmost cut in $\pi$. |
900 | 4 | adas | \end{proof} |
901 | 4 | adas | \begin{corollary} |
902 | 4 | adas | $\anarrow{}{\cutredlin}$ is weakly normalising. |
903 | 4 | adas | \end{corollary} |
904 | 4 | adas | |
905 | 4 | adas | |
906 | 4 | adas | \newcommand{\cntdown}{\mathit{cn}} |
907 | 4 | adas | \begin{definition} |
908 | 4 | adas | [Lazy contraction] |
909 | 4 | adas | Let $\anarrow{}{\cntdown}$ comprise of the following reduction steps: |
910 | 4 | adas | \begin{enumerate} |
911 | 4 | adas | \item The commuting steps, |
912 | 4 | adas | \[ |
913 | 4 | adas | \vlderivation{ |
914 | 4 | adas | \vlin{\rho}{}{\Gamma', ?A, }{ |
915 | 4 | adas | \vlin{\cntr}{}{\Gamma, ?A}{\vlhy{\Gamma, ? A, ? A}} |
916 | 4 | adas | } |
917 | 4 | adas | } |
918 | 4 | adas | \quad\to \quad |
919 | 4 | adas | \vlderivation{ |
920 | 4 | adas | \vlin{\cntr}{}{\Gamma', ?A}{ |
921 | 4 | adas | \vlin{\rho}{}{\Gamma', ?A, ?A}{\vlhy{\Gamma, ? A, ? A}} |
922 | 4 | adas | } |
923 | 4 | adas | } |
924 | 4 | adas | \] |
925 | 4 | adas | for each unary rule $\rho$. |
926 | 4 | adas | \item |
927 | 4 | adas | The key steps: |
928 | 4 | adas | \[ |
929 | 4 | adas | \begin{array}{rcl} |
930 | 4 | adas | \vlderivation{ |
931 | 4 | adas | \vlin{\cntr}{}{\Gamma, ?A}{ |
932 | 4 | adas | \vlin{\wk}{}{\Gamma, ?A, ?A}{\vlhy{\Gamma, ?A}} |
933 | 4 | adas | } |
934 | 4 | adas | } |
935 | 4 | adas | \quad &\to & \quad |
936 | 4 | adas | \Gamma, ?A |
937 | 4 | adas | % \] |
938 | 4 | adas | % and |
939 | 4 | adas | % \[ |
940 | 4 | adas | \\ |
941 | 4 | adas | \noalign{\smallskip} |
942 | 4 | adas | \vlderivation{ |
943 | 4 | adas | \vlin{\wk}{}{\Gamma, ?A, ?A}{ |
944 | 4 | adas | \vlin{\cntr}{}{\Gamma, ?A}{\vlhy{\Gamma, ?A, ?A}} |
945 | 4 | adas | } |
946 | 4 | adas | } |
947 | 4 | adas | \quad &\to& \quad |
948 | 4 | adas | \Gamma, ?A, ?A |
949 | 4 | adas | \end{array} |
950 | 4 | adas | \]. |
951 | 4 | adas | \item The commuting steps, |
952 | 4 | adas | \[ |
953 | 4 | adas | \vlderivation{ |
954 | 4 | adas | \vliin{\rho}{}{\Gamma ,?A}{ |
955 | 4 | adas | \vlin{\cntr}{}{\Gamma_1, ?A}{\vlhy{\Gamma_1, ?A, ?A}} |
956 | 4 | adas | }{\vlhy{\Gamma_2}} |
957 | 4 | adas | } |
958 | 4 | adas | \quad \to \quad |
959 | 4 | adas | \vlderivation{ |
960 | 4 | adas | \vlin{\cntr}{}{\Gamma, ?A}{ |
961 | 4 | adas | \vliin{\rho}{}{\Gamma,?A, ?A}{\vlhy{\Gamma_1, ?A, ?A}}{ \vlhy{\Gamma_2} } |
962 | 4 | adas | } |
963 | 4 | adas | } |
964 | 4 | adas | \] |
965 | 4 | adas | %\[ |
966 | 4 | adas | %\begin{array}{rcl} |
967 | 4 | adas | % \vlderivation{ |
968 | 4 | adas | % \vliin{\land}{}{\Gamma, \Delta, ?A, B\land C}{ |
969 | 4 | adas | % \vlin{\cntr}{}{\Gamma, ?A, B}{\vlhy{\Gamma, ?A, ?A, B}} |
970 | 4 | adas | % }{\vlhy{\Delta, C}} |
971 | 4 | adas | % } |
972 | 4 | adas | % \quad &\to &\quad |
973 | 4 | adas | % \vlderivation{ |
974 | 4 | adas | % \vlin{\cntr}{}{\Gamma, \Delta, ?A, B\land C}{ |
975 | 4 | adas | % \vliin{\land}{}{\Gamma, \Delta, ?A, ?A, B\land C}{\vlhy{\Gamma, ?A, ?A, B}}{ \vlhy{\Delta, C} } |
976 | 4 | adas | % } |
977 | 4 | adas | % } |
978 | 4 | adas | %% \] |
979 | 4 | adas | %% |
980 | 4 | adas | %% \[ |
981 | 4 | adas | %\\ |
982 | 4 | adas | %\noalign{\smallskip} |
983 | 4 | adas | % \vlderivation{ |
984 | 4 | adas | % \vliin{\cut}{}{\Gamma, \Delta, ?A}{ |
985 | 4 | adas | % \vlin{\cntr}{}{\Gamma, ?A, B}{\vlhy{\Gamma, ?A, ?A, B}} |
986 | 4 | adas | % }{\vlhy{\Delta, \lnot{B}}} |
987 | 4 | adas | % } |
988 | 4 | adas | % \quad &\to& \quad |
989 | 4 | adas | % \vlderivation{ |
990 | 4 | adas | % \vlin{\cntr}{}{\Gamma, \Delta, ?A}{ |
991 | 4 | adas | % \vliin{\cut}{}{\Gamma, \Delta, ?A, ?A}{\vlhy{\Gamma, ?A, ?A, B}}{ \vlhy{\Delta, \lnot{B}} } |
992 | 4 | adas | % } |
993 | 4 | adas | % } |
994 | 4 | adas | %\end{array} |
995 | 4 | adas | %\] |
996 | 4 | adas | for each binary rule $\rho \in \{ \land, \cut \}$. |
997 | 4 | adas | \item The commuting step: |
998 | 4 | adas | \[ |
999 | 4 | adas | \vlderivation{ |
1000 | 4 | adas | \vliin{\vlan}{}{\Gamma, ?A, B\vlan C}{ |
1001 | 4 | adas | \vlin{\cntr}{}{\Gamma, ?A, B}{\vlhy{\Gamma, ?A, ?A, B}} |
1002 | 4 | adas | }{\vlhy{\Gamma, ?A, B}} |
1003 | 4 | adas | } |
1004 | 4 | adas | \quad \to \quad |
1005 | 4 | adas | \vlderivation{ |
1006 | 4 | adas | \vlin{\cntr}{}{\Gamma, ?A, B\vlan C}{ |
1007 | 4 | adas | \vliin{\vlan}{}{\Gamma, ?A, ?A, B\vlan C}{\vlhy{\Gamma, ?A, ?A, B}}{ |
1008 | 4 | adas | \vlin{\wk}{}{\Gamma, ?A, ?A, C}{\vlhy{\Gamma, ?A, C}} |
1009 | 4 | adas | } |
1010 | 4 | adas | } |
1011 | 4 | adas | } |
1012 | 4 | adas | \] |
1013 | 4 | adas | \end{enumerate} |
1014 | 4 | adas | For binary rules: |
1015 | 4 | adas | |
1016 | 4 | adas | \end{definition} |
1017 | 4 | adas | \begin{proposition} |
1018 | 4 | adas | $\anarrow{}{\cntdown}$ is weakly normalising |
1019 | 4 | adas | , modulo $\cntr$-$\cntr$ redexes, |
1020 | 4 | adas | and degree-preserving. |
1021 | 4 | adas | If $\pi$ is $\anarrow{}{\cutredlin}$-normal and $\pi \downarrow_\cntdown \pi'$, then so is $\pi'$. |
1022 | 4 | adas | \end{proposition} |
1023 | 4 | adas | \begin{proof} |
1024 | 4 | adas | By induction on the number of redexes in a proof. Start with bottommost redex, by induction on number of inference steps beneath it. |
1025 | 4 | adas | \end{proof} |
1026 | 4 | adas | |
1027 | 4 | adas | \begin{remark} |
1028 | 4 | adas | Only weakly normalising since $\cntr$ can commute with $\cntr$, allowing cycles. |
1029 | 4 | adas | \end{remark} |
1030 | 4 | adas | |
1031 | 4 | adas | \begin{proposition} |
1032 | 4 | adas | If $\pi$ is $\anarrow{}{\cutredexp}$-reducible but $\anarrow{}{\cutredlin}$- and $\anarrow{}{\cntdown}$-normal then there is a derivation $H:\pi \anarrow{*}{\cutredexp} \pi'$ such that $\deg (\pi')<\deg(\pi)$. |
1033 | 4 | adas | \end{proposition} |
1034 | 4 | adas | |
1035 | 4 | adas | |
1036 | 4 | adas | |
1037 | 4 | adas | \subsection{Base cases} |
1038 | 4 | adas | |
1039 | 4 | adas | \[ |
1040 | 4 | adas | \vlderivation{ |
1041 | 4 | adas | \vliin{\cut}{}{ \Gamma,a }{ \vlhy{\Gamma,a} }{ \vlin{\id}{}{a,a^\bot}{ \vlhy{} } } |
1042 | 4 | adas | } |
1043 | 4 | adas | \quad\to\quad |
1044 | 4 | adas | \vlderivation{ |
1045 | 4 | adas | \Gamma,a |
1046 | 4 | adas | } |
1047 | 4 | adas | \] |
1048 | 4 | adas | |
1049 | 4 | adas | \[ |
1050 | 4 | adas | \vlderivation{ |
1051 | 4 | adas | \vliin{\cut}{}{\Gamma}{ \vlin{\bot}{}{ \Gamma,\bot }{ \vlhy{\Gamma} } }{ \vlin{1}{}{1}{ \vlhy{} } } |
1052 | 4 | adas | } |
1053 | 4 | adas | \quad\to\quad |
1054 | 4 | adas | \vlderivation{ |
1055 | 4 | adas | \Gamma |
1056 | 4 | adas | } |
1057 | 4 | adas | \] |
1058 | 4 | adas | |
1059 | 4 | adas | \[ |
1060 | 4 | adas | \vlderivation{ |
1061 | 4 | adas | \vliin{\cut}{}{ \Gamma,\Delta,\top }{ \vlin{\top}{}{ \Gamma,\top,0 }{ \vlhy{} } }{ \vlhy{\Delta , \top } } |
1062 | 4 | adas | } |
1063 | 4 | adas | \quad\to\quad |
1064 | 4 | adas | \vlinf{\top}{}{ \Gamma,\Delta,\top }{} |
1065 | 4 | adas | \] |
1066 | 4 | adas | |
1067 | 4 | adas | \subsection{Commutative cases} |
1068 | 4 | adas | These are the cases when the principal formula of a step is not active for the cut-step below. |
1069 | 4 | adas | |
1070 | 4 | adas | \begin{enumerate} |
1071 | 4 | adas | \item The cut-step is immediately preceded by an initial step. Note that only the case for $\top$ applies: |
1072 | 4 | adas | \[ |
1073 | 4 | adas | \vlderivation{ |
1074 | 4 | adas | \vliin{\cut}{}{\Gamma,\Delta,\top}{ |
1075 | 4 | adas | \vlin{\top}{ }{ \Gamma,\top,A }{ \vlhy{} } |
1076 | 4 | adas | }{ \vlhy{\Delta,A^\bot } } |
1077 | 4 | adas | } |
1078 | 4 | adas | \quad\to\quad |
1079 | 4 | adas | \vlinf{\top}{}{ \Gamma,\Delta,\top }{} |
1080 | 4 | adas | \] |
1081 | 4 | adas | %Notice that this commutation eliminates the cut entirely and preserves the height of all cuts below. |
1082 | 4 | adas | \item\label{CaseCommOneStep} A cut-step is immediately preceded by a step $\rho$ with exactly one premiss: |
1083 | 4 | adas | \[ |
1084 | 4 | adas | \vlderivation{ |
1085 | 4 | adas | \vliin{\cut}{}{\Gamma',\Delta}{\vlin{\rho}{}{\Gamma',A}{\vlhy{\Gamma,A}}}{\vlhy{A^\bot , \Delta}} |
1086 | 4 | adas | } |
1087 | 4 | adas | \] |
1088 | 4 | adas | We have three subcases: |
1089 | 4 | adas | \begin{enumerate} |
1090 | 4 | adas | \item\label{subcase:unary-commutation-vanilla} |
1091 | 4 | adas | %$\Delta$ consists of only $?$-ed formulae or |
1092 | 4 | adas | If $\rho \notin \{! , \indr \}$ then we can simply permute as follows: |
1093 | 4 | adas | \begin{equation} |
1094 | 4 | adas | \label{eqn:com-case-unary-simple} |
1095 | 4 | adas | \vlderivation{ |
1096 | 4 | adas | \vliin{\cut}{}{\Gamma',\Delta}{\vlin{\rho}{}{\Gamma',A}{\vlhy{\Gamma,A}}}{\vlhy{A^\bot , \Delta}} |
1097 | 4 | adas | } |
1098 | 4 | adas | \quad \to \quad |
1099 | 4 | adas | \vlderivation{ |
1100 | 4 | adas | \vlin{\rho}{}{\Gamma',\Delta}{ |
1101 | 4 | adas | \vliin{\cut}{}{\Gamma,\Delta}{\vlhy{\Gamma,A}}{\vlhy{A^\bot , \Delta}} |
1102 | 4 | adas | } |
1103 | 4 | adas | } |
1104 | 4 | adas | \end{equation} |
1105 | 4 | adas | (If $\rho$ was $\forall$ then we might need to rename some free variables in $\Delta$.) |
1106 | 4 | adas | \item $\rho $ is a $!$-step. Therefore $\Gamma$ has the form $? \Sigma , B$ and $A$ has the form $?C$, yielding the following situation: |
1107 | 4 | adas | \[ |
1108 | 4 | adas | \vlderivation{ |
1109 | 4 | adas | \vliin{\cut}{}{? \Sigma, !B, \Delta }{ |
1110 | 4 | adas | \vlin{!}{}{? \Sigma, !B , ?C}{\vlhy{?\Sigma , B , ?C} } |
1111 | 4 | adas | }{ |
1112 | 4 | adas | \vlin{\rho'}{}{!C^\perp , \Delta}{\vlhy{\vlvdots}} |
1113 | 4 | adas | } |
1114 | 4 | adas | } |
1115 | 4 | adas | \] |
1116 | 4 | adas | Now, if $!C^\perp$ is principle for $\rho'$ then $\rho'\in \{! , \indr\}$ and so $\Delta $ must be $?$-ed; in this case we are able to apply the transformation \eqref{eqn:com-case-unary-simple}. Otherwise $A^\perp$ is not principal for $\rho'$ and so $\rho' \notin \{! , \indr \}$, which means we can apply \ref{subcase:unary-commutation-vanilla} along this side of the subproof. |
1117 | 4 | adas | \item $\rho$ is a $\indr$-step. Therefore $\Gamma$ has the form $? \Sigma , B^\perp(x), B(s x) $ and $A$ has the form $?C$, and the argument is similar to the case above. |
1118 | 4 | adas | % yielding the following situation: |
1119 | 4 | adas | %\[ |
1120 | 4 | adas | %\vlderivation{ |
1121 | 4 | adas | % \vliin{\cut}{}{? \Sigma, B^\perp (0) , B(t), \Delta }{ |
1122 | 4 | adas | % \vlin{\indr}{}{? \Sigma, B^\perp (0) , B(t) , ?C}{\vlhy{?\Sigma , B^\perp(x) , B(s x) , ?C} } |
1123 | 4 | adas | % }{ |
1124 | 4 | adas | % \vlin{\rho'}{}{!C^\perp , \Delta}{\vlhy{\vlvdots}} |
1125 | 4 | adas | %} |
1126 | 4 | adas | %} |
1127 | 4 | adas | %\] |
1128 | 4 | adas | \end{enumerate} |
1129 | 4 | adas | |
1130 | 4 | adas | |
1131 | 4 | adas | |
1132 | 4 | adas | \item A cut-step is immediately preceded by a $\vlte $-step: |
1133 | 4 | adas | \[ |
1134 | 4 | adas | \vlderivation{ |
1135 | 4 | adas | \vliin{\cut}{}{\Gamma,\Delta,\Sigma,A\vlte B }{ |
1136 | 4 | adas | \vliin{\vlte}{}{\Gamma,\Delta,A\vlte B,C }{\vlhy{\Gamma,A,C}}{\vlhy{\Delta,B}} |
1137 | 4 | adas | }{\vlhy{ \Sigma , C^\bot }} |
1138 | 4 | adas | } |
1139 | 4 | adas | \quad\to\quad |
1140 | 4 | adas | \vlderivation{ |
1141 | 4 | adas | \vliin{\vlte}{}{\Gamma,\Delta,\Sigma,A\vlte B}{ |
1142 | 4 | adas | \vliin{\cut}{}{\Gamma,\Sigma,A}{\vlhy{\Gamma,A,C}}{\vlhy{\Sigma,C^\bot}} |
1143 | 4 | adas | }{\vlhy{\Delta,B}} |
1144 | 4 | adas | } |
1145 | 4 | adas | \] |
1146 | 4 | adas | %Notice that this commutation might increase the height of any cuts below along the right branch of the indicated cut, but decreases the height along the left branch. |
1147 | 4 | adas | \item\label{CommCaseAmpersand} A cut-step is immediately preceded by a $\vlan$-step. |
1148 | 4 | adas | \[ |
1149 | 4 | adas | \vlderivation{ |
1150 | 4 | adas | \vliin{\cut}{}{ \Gamma,\Delta,A\vlan B }{ \vliin{\vlan}{}{\Gamma,A\vlan B,C}{ \vlhy{\Gamma,A,C} }{\vlhy{\Gamma,B,C}}}{ \vlhy{\Delta, C^\bot} } |
1151 | 4 | adas | } |
1152 | 4 | adas | \quad\to\quad |
1153 | 4 | adas | \vlderivation{ |
1154 | 4 | adas | \vliin{\vlan}{}{\Gamma,\Delta,A\vlan B }{ |
1155 | 4 | adas | \vliin{cut}{}{\Gamma,\Delta,A }{ \vlhy{\Gamma,A,C} }{ \vlhy{ \Delta,C^\bot } } |
1156 | 4 | adas | }{ |
1157 | 4 | adas | \vliin{ \cut }{}{\Gamma,\Delta,B}{ \vlhy{\Gamma,B,C } }{ \vlhy{\Delta,C^\bot} } |
1158 | 4 | adas | } |
1159 | 4 | adas | } |
1160 | 4 | adas | \] |
1161 | 4 | adas | \item (No rule for cuts commuting with cuts.) |
1162 | 4 | adas | %A cut-step is immediately preceded by another cut-step: |
1163 | 4 | adas | \[ |
1164 | 4 | adas | \vlderivation{ |
1165 | 4 | adas | \vliin{\cut}{}{\Gamma, \Delta, \Sigma}{ |
1166 | 4 | adas | \vliin{\cut}{}{\Gamma, \Delta, B}{\vlhy{\Gamma, A}}{\vlhy{\Delta, \lnot{A}, B}} |
1167 | 4 | adas | }{\vlhy{\Sigma, \lnot{B}}} |
1168 | 4 | adas | } |
1169 | 4 | adas | \quad\to\quad |
1170 | 4 | adas | \vlderivation{ |
1171 | 4 | adas | \vliin{\cut}{}{\Gamma, \Delta, \Sigma}{\vlhy{\Gamma, A}}{ |
1172 | 4 | adas | \vliin{\cut}{}{\Delta, \Sigma, \lnot{A}}{\vlhy{\Delta, \lnot{A}, B}}{\vlhy{\Sigma, \lnot{B}}} |
1173 | 4 | adas | } |
1174 | 4 | adas | } |
1175 | 4 | adas | \] |
1176 | 4 | adas | \end{enumerate} |
1177 | 4 | adas | |
1178 | 4 | adas | |
1179 | 4 | adas | |
1180 | 4 | adas | \subsection{Key cases: structural steps} |
1181 | 4 | adas | %[THIS SECTION MIGHT NOT BE NECESSARY] |
1182 | 4 | adas | We attempt to permute cuts on exponential formulae over structural steps whose principal formula is active for the cut. |
1183 | 4 | adas | |
1184 | 4 | adas | We use the commutative case \ref{CaseCommOneStep} to assume that the topmost cut-step in a sequence has already been permuted up to its origin on the $!$-side. |
1185 | 4 | adas | |
1186 | 4 | adas | We have two cases. |
1187 | 4 | adas | \begin{enumerate} |
1188 | 4 | adas | \item\label{StructStepCont} The structural step preceding the cut is a weakening: |
1189 | 4 | adas | \[ |
1190 | 4 | adas | \vlderivation{ |
1191 | 4 | adas | \vliin{\cut}{}{?\Gamma,\Delta}{ \vlin{!}{}{ ?\Gamma,!A }{ \vlhy{?\Gamma , A} } }{ \vlin{w}{}{ ?A^\bot }{ \vlhy{\Delta } } } |
1192 | 4 | adas | } |
1193 | 4 | adas | \quad\to\quad |
1194 | 4 | adas | \vlinf{w}{}{?\Gamma,\Delta}{ \Delta } |
1195 | 4 | adas | \] |
1196 | 4 | adas | %\item The structural step preceding the cut is a contraction: |
1197 | 4 | adas | %\[ |
1198 | 4 | adas | %\vlderivation{ |
1199 | 4 | adas | %\vliin{\cut}{}{ ?\Gamma,\Delta }{ |
1200 | 4 | adas | % \vlin{!}{}{ ?\Gamma,!A }{ \vlhy{?\Gamma , A} } |
1201 | 4 | adas | %}{ \vlin{c}{}{ ?A^\bot , \Delta }{ \vlhy{ ?A^\bot , ?A^\bot , \Delta} } } |
1202 | 4 | adas | %} |
1203 | 4 | adas | %\quad\to\quad |
1204 | 4 | adas | %\vlderivation{ |
1205 | 4 | adas | %\vliq{c}{}{?\Gamma, \Delta}{ |
1206 | 4 | adas | %\vliin{\cut}{}{?\Gamma, ?\Gamma,\Delta }{ |
1207 | 4 | adas | % \vlin{!}{}{ ?\Gamma,!A }{ \vlhy{?\Gamma , A} } |
1208 | 4 | adas | %}{ |
1209 | 4 | adas | %\vliin{\cut}{}{?\Gamma,?A^\bot , \Delta }{ |
1210 | 4 | adas | % \vlin{!}{}{ ?\Gamma,!A }{ \vlhy{?\Gamma , A} } |
1211 | 4 | adas | %}{ \vlhy{?A^\bot , ?A^\bot , \Delta } } |
1212 | 4 | adas | %} |
1213 | 4 | adas | %} |
1214 | 4 | adas | %} |
1215 | 4 | adas | %\] |
1216 | 4 | adas | %OR use a multicut: |
1217 | 4 | adas | %\[ |
1218 | 4 | adas | %\vlderivation{ |
1219 | 4 | adas | %\vliin{\cut}{}{ ?\Gamma,\Delta }{ |
1220 | 4 | adas | % \vlin{!}{}{ ?\Gamma,!A }{ \vlhy{?\Gamma , A} } |
1221 | 4 | adas | %}{ \vlin{c}{}{ ?A^\bot , \Delta }{ \vlhy{ ?A^\bot , ?A^\bot , \Delta} } } |
1222 | 4 | adas | %} |
1223 | 4 | adas | %\quad\to\quad |
1224 | 4 | adas | %\vlderivation{ |
1225 | 4 | adas | %\vliin{\multicut}{}{?\Gamma,?A^\bot , \Delta }{ |
1226 | 4 | adas | % \vlin{!}{}{ ?\Gamma,!A }{ \vlhy{?\Gamma , A} } |
1227 | 4 | adas | %}{ \vlhy{?A^\bot , ?A^\bot , \Delta } } |
1228 | 4 | adas | %} |
1229 | 4 | adas | %\] |
1230 | 4 | adas | \item The structural step preceding a cut is a contraction: |
1231 | 4 | adas | \[ |
1232 | 4 | adas | \vlderivation{ |
1233 | 4 | adas | \vliin{\cut}{}{?\Gamma, \Sigma }{ \vlhy{?\Gamma,!A^\bot} }{ |
1234 | 4 | adas | \vlin{\cntr}{}{ ?A,\Sigma }{ \vlhy{ ?A,?A,\Sigma } } |
1235 | 4 | adas | } |
1236 | 4 | adas | } |
1237 | 4 | adas | \quad\to\quad |
1238 | 4 | adas | \vlderivation{ |
1239 | 4 | adas | \vliq{\cntr}{}{ ?\Gamma,\Sigma }{ |
1240 | 4 | adas | \vliin{\cut}{}{ ?\Gamma,?\Gamma,\Sigma }{ \vlhy{?\Gamma,!A^\bot } }{ |
1241 | 4 | adas | \vliin{\cut}{}{ ?A,?\Gamma,\Sigma }{ \vlhy{?\Gamma,!A^\bot} }{ \vlhy{ ?A,?A,?\Delta,\Sigma } } |
1242 | 4 | adas | } |
1243 | 4 | adas | } |
1244 | 4 | adas | } |
1245 | 4 | adas | \] |
1246 | 4 | adas | %\item The structural step preceding a cut is a parallel contraction: |
1247 | 4 | adas | %\[ |
1248 | 4 | adas | %\vlderivation{ |
1249 | 4 | adas | %\vliin{\cut}{}{?\Gamma,?\Delta, \Sigma }{ \vlhy{?\Gamma,!A^\bot} }{ |
1250 | 4 | adas | %\vlin{}{}{ ?A,?\Delta,\Sigma }{ \vlhy{ ?A,?A,?\Delta,?\Delta,\Sigma } } |
1251 | 4 | adas | %} |
1252 | 4 | adas | %} |
1253 | 4 | adas | %\quad\to\quad |
1254 | 4 | adas | %\vlderivation{ |
1255 | 4 | adas | %\vlin{}{}{ ?\Gamma,?\Delta,\Sigma }{ |
1256 | 4 | adas | %\vliin{\cut}{}{ ?\Gamma,?\Gamma,?\Delta,?\Delta,\Sigma }{ \vlhy{?\Gamma,!A^\bot } }{ |
1257 | 4 | adas | %\vliin{\cut}{}{ ?A,?\Gamma,?\Delta,?\Delta,\Sigma }{ \vlhy{?\Gamma,!A^\bot} }{ \vlhy{ ?A,?A,?\Delta,?\Delta,\Sigma } } |
1258 | 4 | adas | %} |
1259 | 4 | adas | %} |
1260 | 4 | adas | %} |
1261 | 4 | adas | %\] |
1262 | 4 | adas | \end{enumerate} |
1263 | 4 | adas | |
1264 | 4 | adas | \subsection{Key cases: logical steps} |
1265 | 4 | adas | Finally, once all cuts have been permuted maximally on both sides, we have the cases when the cut-formula is principal for a preceding logical step on both sides. We have three cases, one for every pair of connectives. |
1266 | 4 | adas | \begin{enumerate} |
1267 | 4 | adas | \item The cut-formula is multiplicative: |
1268 | 4 | adas | \[ |
1269 | 4 | adas | \vlderivation{ |
1270 | 4 | adas | \vliin{\cut}{}{ \Gamma,\Delta,\Sigma }{ |
1271 | 4 | adas | \vliin{\vlte}{}{ \Gamma,\Delta,A\vlte B }{ \vlhy{\Gamma,A} }{ \vlhy{\Delta,B} } |
1272 | 4 | adas | }{ \vlin{\vlpa}{}{ \Sigma, A^\bot \vlpa B^\bot }{ \vlhy{\Sigma , A^\bot , B^\bot} } } |
1273 | 4 | adas | } |
1274 | 4 | adas | \quad\to\quad |
1275 | 4 | adas | \vlderivation{ |
1276 | 4 | adas | \vliin{\cut}{}{ \Gamma,\Delta,\Sigma }{ \vlhy{\Gamma,A} }{ |
1277 | 4 | adas | \vliin{\cut}{}{ \Delta,\Sigma,A^\bot }{ \vlhy{\Delta,B} }{ \vlhy{\Sigma , A^\bot,B^\bot } } |
1278 | 4 | adas | } |
1279 | 4 | adas | } |
1280 | 4 | adas | \] |
1281 | 4 | adas | \item The cut-formula is additive, |
1282 | 4 | adas | \[ |
1283 | 4 | adas | \vlderivation{ |
1284 | 4 | adas | \vliin{\cut}{}{ \Gamma,\Delta }{ |
1285 | 4 | adas | \vliin{\vlan}{}{ \Gamma,A\vlan B }{ \vlhy{\Gamma,A} }{ \vlhy{\Gamma,B} } |
1286 | 4 | adas | }{ \vlin{\vlor}{}{ \Delta,A^\bot\vlor B^\bot }{ \vlhy{\Delta, A^\bot } } } |
1287 | 4 | adas | } |
1288 | 4 | adas | \quad\to\quad |
1289 | 4 | adas | \vliinf{\cut}{}{ \Gamma,\Delta }{ \Gamma,A }{ \Delta,A^\bot } |
1290 | 4 | adas | \] |
1291 | 4 | adas | where the case for the other $\vlor$-rule is symmetric. |
1292 | 4 | adas | \item The cut-formula is exponential. |
1293 | 4 | adas | \[ |
1294 | 4 | adas | \vlderivation{ |
1295 | 4 | adas | \vliin{\cut}{}{ ?\Gamma,\Delta }{ |
1296 | 4 | adas | \vlin{!}{}{ ?\Gamma,!A }{ \vlhy{?\Gamma , A} } |
1297 | 4 | adas | }{ |
1298 | 4 | adas | \vlin{?}{}{ \Delta,?A^\bot }{ \vlhy{\Delta, A^\bot } } |
1299 | 4 | adas | } |
1300 | 4 | adas | } |
1301 | 4 | adas | \quad\to\quad |
1302 | 4 | adas | \vliinf{\cut}{}{ ?\Gamma,\Delta }{ ?\Gamma,A }{ \Delta,A^\bot } |
1303 | 4 | adas | \] |
1304 | 4 | adas | \item The cut-formula is quantified. |
1305 | 4 | adas | \[ |
1306 | 4 | adas | \vlderivation{ |
1307 | 4 | adas | \vliin{\cut}{}{\Gamma, \Delta}{ |
1308 | 4 | adas | \vlin{\forall}{}{\Gamma, \forall x. A(x)}{\vltr{\pi(a)}{\Gamma, A(a)}{\vlhy{\quad}}{\vlhy{}}{\vlhy{\quad}}} |
1309 | 4 | adas | }{ |
1310 | 4 | adas | \vlin{\exists}{}{\Delta, \exists x . \lnot{A}(x)}{\vlhy{\Delta, \lnot{A}(t)}} |
1311 | 4 | adas | } |
1312 | 4 | adas | } |
1313 | 4 | adas | \quad \to \quad |
1314 | 4 | adas | \vlderivation{ |
1315 | 4 | adas | \vliin{\cut}{}{\Gamma, \Delta}{ |
1316 | 4 | adas | \vltr{\pi(t)}{\Gamma, A(t)}{\vlhy{\quad}}{\vlhy{}}{\vlhy{\quad}} |
1317 | 4 | adas | }{\vlhy{\Delta, \lnot{A}(t)}} |
1318 | 4 | adas | } |
1319 | 4 | adas | \] |
1320 | 4 | adas | \end{enumerate} |
1321 | 4 | adas | |
1322 | 4 | adas | |
1323 | 2 | adas | \end{document} |