Statistiques
| Révision :

root / CSL16 / feas-arith-wfm.tex @ 13

Historique | Voir | Annoter | Télécharger (45,82 ko)

1 2 adas
\documentclass[a4paper,UKenglish]{lipics-v2016}
2 2 adas
%This is a template for producing LIPIcs articles.
3 2 adas
%See lipics-manual.pdf for further information.
4 2 adas
%for A4 paper format use option "a4paper", for US-letter use option "letterpaper"
5 2 adas
%for british hyphenation rules use option "UKenglish", for american hyphenation rules use option "USenglish"
6 2 adas
% for section-numbered lemmas etc., use "numberwithinsect"
7 2 adas
8 2 adas
\usepackage{microtype}%if unwanted, comment out or use option "draft"
9 2 adas
10 2 adas
%\graphicspath{{./graphics/}}%helpful if your graphic files are in another directory
11 2 adas
12 2 adas
\bibliographystyle{plainurl}% the recommended bibstyle
13 2 adas
14 2 adas
15 2 adas
16 2 adas
17 2 adas
\usepackage[lutzsyntax]{virginialake}
18 2 adas
\usepackage{amsmath}
19 2 adas
\usepackage{amssymb}
20 2 adas
\usepackage{amsthm}
21 2 adas
\usepackage{times}
22 2 adas
%\usepackage{sans}
23 2 adas
\usepackage{cmll}
24 10 adas
\usepackage{bm}
25 2 adas
26 2 adas
%\newtheorem{theorem}{Theorem}
27 2 adas
%\newtheorem{maintheorem}[theorem]{Main Theorem}
28 2 adas
%\newtheorem{observation}[theorem]{Observation}
29 2 adas
%\newtheorem{corollary}[theorem]{Corollary}
30 2 adas
%\newtheorem{lemma}[theorem]{Lemma}
31 2 adas
\newtheorem{proposition}[theorem]{Proposition}
32 2 adas
%\newtheorem{conjecture}[theorem]{Conjecture}
33 2 adas
%
34 2 adas
%\theoremstyle{definition}
35 2 adas
%\newtheorem{definition}[theorem]{Definition}
36 2 adas
%\newtheorem{example}[theorem]{Example}
37 2 adas
%\newtheorem{notation}[theorem]{Notation}
38 2 adas
%\newtheorem{convention}[theorem]{Convention}
39 2 adas
%\newtheorem{remark}[theorem]{Remark}
40 2 adas
%\newtheorem{discussion}[theorem]{Discussion}
41 2 adas
42 2 adas
\newcommand{\todo}[1]{{\color{red}{\textbf{Todo:} #1}}}
43 2 adas
\newcommand{\anupam}[1]{{\color{orange}{\textbf{Anupam:} #1}}}
44 2 adas
\newcommand{\patrick}[1]{{\color{blue}{\textbf{Patrick:} #1}}}
45 2 adas
46 2 adas
\newcommand{\defined}{:=}
47 2 adas
\begin{document}
48 2 adas
49 2 adas
	\newcommand{\LL}{\it{LL}}
50 2 adas
	\vllineartrue
51 2 adas
52 2 adas
53 2 adas
	\newcommand{\FV}{\mathit{FV}}
54 2 adas
55 2 adas
56 2 adas
	%terms
57 2 adas
	\renewcommand{\succ}{s}
58 2 adas
	\renewcommand{\epsilon}{\varepsilon}
59 2 adas
60 2 adas
	% linear connectives
61 2 adas
62 2 adas
	\newcommand{\limp}{\multimap}
63 2 adas
	\renewcommand{\land}{\otimes}
64 2 adas
	\newcommand{\laand}{\&}
65 2 adas
	\newcommand{\laor}{\oplus}
66 2 adas
	\renewcommand{\lor}{\vlpa}
67 2 adas
	\renewcommand{\lnot}[1]{{#1^{\perp}}}
68 2 adas
	\newcommand{\lnotnot}[1]{#1^{\perp \perp}}
69 2 adas
70 2 adas
	% classical connectives
71 2 adas
72 2 adas
	\newcommand{\cimp}{\supset}
73 2 adas
	\newcommand{\cand}{\wedge}
74 2 adas
	\newcommand{\cor}{\vee}
75 2 adas
	\newcommand{\cnot}{\neg}
76 2 adas
77 2 adas
78 2 adas
	\newcommand{\Ax}{\mathit{(Ax)}}
79 2 adas
	\newcommand{\Rl}{\mathit{(Rl)}}
80 2 adas
81 2 adas
	\newcommand{\MELL}{\mathit{MELL}}
82 2 adas
	\newcommand{\MEAL}{\mathit{MELLW}}
83 2 adas
	\newcommand{\MELLW}{\mathit{MELL(W)}}
84 2 adas
85 2 adas
	\newcommand{\Aonetwo}{\mathcal{A}^1_2}
86 2 adas
	\newcommand{\logic}{\mathit{L}_{\mathcal A} }
87 2 adas
88 2 adas
	% predicates
89 2 adas
	\newcommand{\nat}{N}
90 2 adas
91 2 adas
	\newcommand{\Nat}{\mathbb{N}}
92 2 adas
93 2 adas
	%axioms
94 2 adas
	\newcommand{\wk}{\mathit{wk}}
95 2 adas
	\newcommand{\impl}{\cimp\text{-}\mathit{l}}
96 2 adas
	\newcommand{\impcomm}{\mathit{com}}
97 2 adas
	\newcommand{\conint}{\cand\text{-}\mathit{i}}
98 2 adas
	\newcommand{\conel}{\cand\text{-}\mathit{e}}
99 2 adas
	\newcommand{\negclass}{\cnot}
100 2 adas
101 2 adas
	%rules
102 2 adas
	\renewcommand{\mp}{\mathit{mp}}
103 2 adas
	\newcommand{\gen}{\mathit{gen}}
104 2 adas
	\newcommand{\inst}{\mathit{ins}}
105 2 adas
	\newcommand{\id}{\it{id}}
106 2 adas
	\newcommand{\cut}{\it{cut}}
107 2 adas
	\newcommand{\multicut}{\it{mcut}}
108 2 adas
	\newcommand{\indr}{\mathit{IND}}
109 2 adas
	\newcommand{\nec}{\mathit{nec}}
110 2 adas
	\newcommand{\tax}{\mathit{T}}
111 2 adas
	\newcommand{\four}{\mathit{4}}
112 2 adas
	\newcommand{\kax}{\mathit{K}}
113 2 adas
	\newcommand{\cntr}{\mathit{cntr}}
114 2 adas
115 2 adas
	\newcommand{\lefrul}[1]{#1\text{-}\mathit{l}}
116 2 adas
	\newcommand{\rigrul}[1]{#1\text{-}\mathit{r}}
117 2 adas
118 2 adas
	%consequence relations
119 2 adas
	\newcommand{\admits}{\vDash}
120 2 adas
	\newcommand{\seqar}{\vdash}
121 10 adas
	\newcommand{\proves}{\vdash_e}
122 2 adas
123 2 adas
	%induction
124 2 adas
	\newcommand{\ind}{\mathit{IND}}
125 2 adas
	\newcommand{\pind}{\mathit{PIND}}
126 2 adas
	\newcommand{\cax}[2]{#1\text{-}#2}
127 2 adas
128 11 adas
129 11 adas
130 11 adas
% Author macros::begin %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
131 11 adas
\title{Free-cut elimination in linear logic: an application to implicit complexity}
132 11 adas
%\titlerunning{A Sample LIPIcs Article} %optional, in case that the title is too long; the running title should fit into the top page column
133 11 adas
134 11 adas
%% Please provide for each author the \author and \affil macro, even when authors have the same affiliation, i.e. for each author there needs to be the  \author and \affil macros
135 11 adas
\author[1]{Patrick Baillot}
136 11 adas
\author[2]{Anupam Das}
137 11 adas
\affil[1]{Dummy University Computing Laboratory, Address/City, Country\\
138 11 adas
  \texttt{open@dummyuniversity.org}}
139 11 adas
\affil[2]{Department of Informatics, Dummy College, Address/City, Country\\
140 11 adas
  \texttt{access@dummycollege.org}}
141 11 adas
\authorrunning{J.\,Q. Open and J.\,R. Access} %mandatory. First: Use abbreviated first/middle names. Second (only in severe cases): Use first author plus 'et. al.'
142 11 adas
143 11 adas
\Copyright{John Q. Open and Joan R. Access}%mandatory, please use full first names. LIPIcs license is "CC-BY";  http://creativecommons.org/licenses/by/3.0/
144 11 adas
145 11 adas
\subjclass{Dummy classification -- please refer to \url{http://www.acm.org/about/class/ccs98-html}}% mandatory: Please choose ACM 1998 classifications from http://www.acm.org/about/class/ccs98-html . E.g., cite as "F.1.1 Models of Computation".
146 11 adas
\keywords{Dummy keyword -- please provide 1--5 keywords}% mandatory: Please provide 1-5 keywords
147 11 adas
% Author macros::end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
148 11 adas
149 11 adas
%Editor-only macros:: begin (do not touch as author)%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
150 11 adas
\EventEditors{John Q. Open and Joan R. Acces}
151 11 adas
\EventNoEds{2}
152 11 adas
\EventLongTitle{42nd Conference on Very Important Topics (CVIT 2016)}
153 11 adas
\EventShortTitle{CVIT 2016}
154 11 adas
\EventAcronym{CVIT}
155 11 adas
\EventYear{2016}
156 11 adas
\EventDate{December 24--27, 2016}
157 11 adas
\EventLocation{Little Whinging, United Kingdom}
158 11 adas
\EventLogo{}
159 11 adas
\SeriesVolume{42}
160 11 adas
\ArticleNo{23}
161 11 adas
% Editor-only macros::end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
162 11 adas
163 2 adas
\maketitle
164 2 adas
165 2 adas
\begin{abstract}
166 2 adas
We prove a general form of free-cut elimination for first-order theories in linear logic. We consider a version of Peano Arithmetic in linear logic and prove a witnessing theorem via the Buss and Mints \emph{witness function method}, characterising polytime as the provably total functions.
167 2 adas
 \end{abstract}
168 2 adas
169 2 adas
\section{Introduction}
170 2 adas
171 5 adas
\todo{words or integers?}
172 5 adas
173 8 adas
174 8 adas
175 2 adas
\section{Preliminaries}
176 2 adas
177 2 adas
\todo{consider removing and just have a section on linear logic, including free-cut elimination.}
178 2 adas
179 8 adas
180 10 adas
181 10 adas
182 9 adas
\paragraph*{Notation}
183 8 adas
Fix conventions here for use throughout:
184 8 adas
\begin{itemize}
185 8 adas
\item Eigenvariables: $a, b , c$.
186 8 adas
\item (Normal) variables: $u,v,w$. (only when distinction is important, e.g.\ $u^{!\nat}$).
187 8 adas
\item (Safe) variables: $x,y,z$. (as above, e.g.\ $x^\nat$.)
188 8 adas
\item Terms: $r,s,t$.
189 8 adas
\item Formulae: $A,B,C$.
190 10 adas
\item Atomic formulae: $p,q$.
191 8 adas
\item Sequents: $\Gamma, \Delta, \Sigma, \Pi$.
192 9 adas
\item Proofs: $\pi, \rho, \sigma$.
193 8 adas
\item Theories: $\mathcal T$. Sequent systems: $\mathcal S$.
194 8 adas
\end{itemize}
195 8 adas
196 2 adas
\subsection{Linear logic}
197 2 adas
198 10 adas
\anupam{use a system that is already in De Morgan form, for simplicity.}
199 10 adas
\anupam{Have skipped units, can reconsider this when in arithmetic. Also in affine setting can be recovered by any contradiction/tautology.}
200 10 adas
201 13 pbaillot
\begin{definition}\label{def:LLsequentcalculus}
202 10 adas
[Sequent calculus for linear logic]
203 10 adas
We define the following calculus in De Morgan normal form:
204 10 adas
\[
205 10 adas
\begin{array}{l}
206 10 adas
\begin{array}{cccc}
207 10 adas
\vlinf{\lefrul{\bot}}{}{p, \lnot{p} \seqar }{}
208 10 adas
& \vlinf{\id}{}{p \seqar p}{}
209 10 adas
& \vlinf{\rigrul{\bot}}{}{\seqar p, \lnot{p}}{}
210 10 adas
& \vliinf{\cut}{}{\Gamma, \Sigma \seqar \Delta , \Pi}{ \Gamma \seqar \Delta, A }{\Sigma, A \seqar \Pi}
211 10 adas
\\
212 10 adas
\noalign{\bigskip}
213 10 adas
%\text{Multiplicatives:} & & & \\
214 10 adas
%\noalign{\bigskip}
215 10 adas
\vliinf{\lefrul{\lor}}{}{\Gamma,\Sigma, A \lor B \seqar \Delta, \Pi}{\Gamma, A \seqar \Delta}{\Sigma , B \seqar \Pi}
216 10 adas
&
217 10 adas
\vlinf{\lefrul{\land}}{}{\Gamma, A\land B \seqar \Delta}{\Gamma, A , B \seqar \Delta}
218 10 adas
&
219 10 adas
\vlinf{\rigrul{\lor}}{}{\Gamma \seqar \Delta, A \lor B}{\Gamma \seqar \Delta, A, B}
220 10 adas
&
221 10 adas
\vliinf{\rigrul{\land}}{}{\Gamma, \Sigma \seqar \Delta , \Pi , A \land B}{\Gamma \seqar \Delta , A}{\Sigma \seqar \Pi , B}
222 10 adas
\\
223 10 adas
\noalign{\bigskip}
224 10 adas
%\text{Additives:} & & & \\
225 10 adas
%\noalign{\bigskip}
226 10 adas
\vliinf{\lefrul{\laor}}{}{\Gamma, A \laor B \seqar \Delta}{\Gamma , A \seqar \Delta}{\Gamma, B \seqar \Delta}
227 10 adas
&
228 10 adas
\vlinf{\lefrul{\laand}}{}{\Gamma, A_1\laand A_2 \seqar \Delta}{\Gamma, A_i \seqar \Delta}
229 10 adas
&
230 10 adas
%\vlinf{\lefrul{\laand}}{}{\Gamma, A\laand B \seqar \Delta}{\Gamma, B \seqar \Delta}
231 10 adas
%\quad
232 13 pbaillot
\vlinf{\rigrul{\laor}}{}{\Gamma \seqar \Delta, A_1\laor A_2}{\Gamma \seqar \Delta, A_i}
233 10 adas
&
234 10 adas
%\vlinf{\rigrul{\laor}}{}{\Gamma \seqar \Delta, A\laor B}{\Gamma \seqar \Delta, B}
235 10 adas
%\quad
236 10 adas
\vliinf{\rigrul{\laand}}{}{\Gamma \seqar \Delta, A \laand B }{\Gamma \seqar \Delta, A}{\Gamma \seqar \Delta, B}
237 10 adas
\\
238 10 adas
\noalign{\bigskip}
239 10 adas
%\text{Exponentials:} & & & \\
240 10 adas
%\noalign{\bigskip}
241 10 adas
\vlinf{\lefrul{?}}{}{!\Gamma, ?A \seqar ?\Delta}{!\Gamma , A \seqar ?\Delta}
242 10 adas
&
243 10 adas
\vlinf{\lefrul{!}}{}{\Gamma, !A \seqar \Delta}{\Gamma, A \seqar \Delta}
244 10 adas
&
245 10 adas
\vlinf{\rigrul{?}}{}{\Gamma \seqar \Delta, ?A}{\Gamma \seqar \Delta, A}
246 10 adas
&
247 13 pbaillot
\vlinf{\rigrul{!}}{}{!\Gamma \seqar ?\Delta, !A}{!\Gamma \seqar ?\Delta, A}
248 10 adas
\\
249 10 adas
\noalign{\bigskip}
250 10 adas
%\text{Structural:} & & & \\
251 10 adas
%\noalign{\bigskip}
252 10 adas
\vlinf{\lefrul{\wk}}{}{\Gamma, !A \seqar \Delta}{\Gamma \seqar \Delta}
253 10 adas
&
254 10 adas
\vlinf{\lefrul{\cntr}}{}{\Gamma, !A \seqar \Delta}{\Gamma, !A, !A \seqar \Delta}
255 10 adas
&
256 10 adas
\vlinf{\rigrul{\wk}}{}{\Gamma \seqar \Delta, ?A }{\Gamma \seqar \Delta}
257 10 adas
&
258 10 adas
\vlinf{\rigrul{\cntr}}{}{\Gamma \seqar \Delta, ?A}{\Gamma \seqar \Delta, ?A, ?A}
259 10 adas
\\
260 10 adas
\noalign{\bigskip}
261 10 adas
\vlinf{\lefrul{\exists}}{}{\Gamma, \exists x . A(x) \seqar \Delta}{\Gamma, A(a) \seqar \Delta}
262 10 adas
&
263 10 adas
\vlinf{\lefrul{\forall}}{}{\Gamma, \forall x. A(x) \seqar \Delta}{\Gamma, A(t) \seqar \Delta}
264 10 adas
&
265 10 adas
\vlinf{\rigrul{\exists}}{}{\Gamma \seqar \Delta, \exists x . A(x)}{ \Gamma \seqar \Delta, A(t)}
266 10 adas
&
267 10 adas
\vlinf{\rigrul{\forall}}{}{\Gamma \seqar \Delta, \forall x . A(x)}{ \Gamma \seqar \Delta, A(a) }
268 10 adas
\end{array}
269 10 adas
\end{array}
270 10 adas
\]
271 10 adas
where $p$ atomic, $i \in \{ 1,2 \}$ and the eigenvariable $a$ does not occur free in $\Gamma$ or $\Delta$.
272 10 adas
\end{definition}
273 10 adas
274 13 pbaillot
  We will consider extensions of linear logic with a \textit{theory}  $\mathcal T$ consisting in a finite set of additional axioms and rules, depicted as:
275 10 adas
276 13 pbaillot
 \[
277 13 pbaillot
 \begin{array}{cc}
278 13 pbaillot
  \vlinf{(ax)}{}{ \seqar A}{}  &  \vlinf{(R)}{}{ !\Gamma , \Sigma' \seqar \Delta' , ? \Pi  }{ \{!\Gamma , \Sigma_i \seqar \Delta_i , ? \Pi \}_{i \in I} }
279 13 pbaillot
\end{array}
280 13 pbaillot
\]
281 13 pbaillot
282 13 pbaillot
 where in rule (R), $I$ is a finite set (indicating the number of premises) and we assume the following condition:
283 13 pbaillot
284 13 pbaillot
  \textit{for any $i\in I$, formulas in $\Sigma_i, \Delta_i$ do not share any free variable with   $\Gamma, \Pi$.}
285 13 pbaillot
286 13 pbaillot
  In the following we will be interested in an example of theory  $\mathcal T$ which is a form of arithmetic.
287 13 pbaillot
288 13 pbaillot
  A proof in this system will be called a \textit{ $\mathcal T$-proof}, or just \textit{proof} when there is no risk of confusion.
289 13 pbaillot
   The rules of Def. \ref{def:LLsequentcalculus} are called \textit{logical rules} while the rules (ax) and (R) of $\tau$ are called \textit{non-logical}.
290 13 pbaillot
291 13 pbaillot
  As usual rules come with a notion of \textit{active formulas}, which are a subset of the rules in the conclusion, e.g.:
292 13 pbaillot
  $A \lor B$ in rule $\lefrul{\lor}$ (and similarly for all rules for connectives); $?A$ in rule $\rigrul{\cntr}$; all conclusion formulas in axiom rules;
293 13 pbaillot
   $\Sigma', \Delta'$ in rule (R).
294 13 pbaillot
295 13 pbaillot
  While in usual logical systems such as linear logic cut rules can be eliminated, this is in general not the case anymore when one considers extension with a theory $\tau$. For this reason we need now to define the kind of cuts that  will remain in proofs after reduction.
296 13 pbaillot
  \begin{definition}\label{def:anchoredcut}
297 13 pbaillot
  An instance of cut rule in a  $\mathcal T$-proof is an \textit{anchored cut} if  its cut-formulas $A$ in the two premises are both principal for their rule, and at least one of these rules is non-logical.
298 13 pbaillot
  \end{definition}
299 13 pbaillot
  So for instance a cut on an (active) formula $A \lor B$ between a rule $\rigrul{\lor}$ and a rule (R) (where  $A \lor B$ occurs in $\Sigma'$) is anchored, while a cut between
300 13 pbaillot
  a rule $\rigrul{\lor}$ and a rule $\lefrul{\lor}$ is not.
301 13 pbaillot
302 13 pbaillot
   Now we can state the main result of this section:
303 13 pbaillot
   \begin{theorem}
304 13 pbaillot
    GIven a theory  $\mathcal T$, any  $\mathcal T$-proof $\pi$ can be transformed into a $\mathcal T$-proof $\pi'$ with same conclusion sequent and in which all cuts are anchored.
305 13 pbaillot
   \end{theorem}
306 13 pbaillot
307 2 adas
\subsection{Deduction theorem}
308 2 adas
309 2 adas
[cite Avron:`semantics and proof theory of linear logic']
310 2 adas
311 2 adas
We will make much use of the deduction theorem, allowing us to argue informally within a theory for hypotheses that have been promoted.
312 2 adas
313 13 pbaillot
%$$
314 13 pbaillot
%	\vliiinf{}{}{ \seqar A}{ \seqar C}
315 13 pbaillot
%	$$
316 13 pbaillot
317 13 pbaillot
%\[
318 13 pbaillot
%	\vliiinf{R}{}{ !\Gamma , \Sigma' \seqar \Delta' , ? \Pi  }{ \{!\Gamma , \Sigma_i \seqar \Delta_i , ? \Pi \}_{i \in I} }
319 13 pbaillot
%	\]
320 13 pbaillot
321 2 adas
\begin{theorem}
322 2 adas
	[Deduction]
323 2 adas
	If $\mathcal T , A \proves B$ then $\mathcal{T} \proves !A \limp B$.
324 2 adas
\end{theorem}
325 2 adas
326 2 adas
\todo{need that $A$ above is closed! Check for rules to axioms.}
327 2 adas
328 2 adas
329 2 adas
330 2 adas
\subsection{Converting axioms to rules in $\MELLW$}
331 2 adas
332 2 adas
\begin{proposition}
333 2 adas
	An axiom $\Ax$ of the form,
334 2 adas
	\[
335 2 adas
	A_1 \limp \vldots \limp A_m \limp !B_1 \limp \vldots \limp !B_n \limp C
336 2 adas
	\]
337 2 adas
	is equivalent (over propositional $\LL$) to the rule $\Rl$:
338 2 adas
	\[
339 2 adas
	\vliiinf{\Rl}{}{ !\Gamma , A_1 , \dots , A_m \seqar C , ? \Delta  }{ !\Gamma \seqar B_1 , ?\Delta }{\vldots }{ !\Gamma \seqar B_n , ?\Delta}
340 2 adas
	\]
341 2 adas
\end{proposition}
342 2 adas
\begin{proof}
343 2 adas
	Let us first assume $\Ax$ and derive $\Rl$. From the axiom and Currying, we have a proof of:
344 2 adas
	\begin{equation}\label{eqn:curried-axiom}
345 2 adas
	A_1 , \dots , A_m , !B_1 , \dots , !B_n \seqar C
346 2 adas
	\end{equation}
347 2 adas
348 2 adas
	This can simply be cut against each of the premisses of $\Rl$, applying appropriate contractions and necessitations, to derive it:
349 2 adas
	\[
350 2 adas
	\vlderivation{
351 2 adas
		\vliq{c}{}{!\Gamma , A_1 , \dots , A_m \seqar C , ?\Delta }{
352 2 adas
			\vliin{\cut}{}{!\Gamma, \dots , !\Gamma , A_1 , \dots , A_m \seqar C , ?\Delta, \dots , ?\Delta }{
353 2 adas
				\vlin{!}{}{!\Gamma \seqar !B_n, ?\Delta }{\vlhy{!\Gamma \seqar B_n , ?\Delta }}
354 2 adas
			}{
355 2 adas
			\vliin{\cut}{}{\qquad \qquad \qquad \qquad  \vlvdots \qquad \qquad \qquad \qquad }{
356 2 adas
				\vlin{!}{}{!\Gamma \seqar !B_1 , ?\Delta}{\vlhy{!\Gamma \seqar B_1, ?\Delta }}
357 2 adas
			}{\vlhy{ A_1 , \dots , A_m , !B_1 , \dots , !B_n \seqar C } }
358 2 adas
		}
359 2 adas
	}
360 2 adas
}
361 2 adas
\]
362 2 adas
363 2 adas
Now let us prove $\Ax$ (again in the form of \eqref{eqn:curried-axiom}) by using $\Rl$ as follows:
364 2 adas
\[
365 2 adas
\vliiinf{\Rl}{}{ A_1 , \dots , A_m , !B_1 , \dots , !B_n \seqar C }{  \vlderivation{
366 2 adas
		\vlin{w}{}{ !B_1 , \dots , !B_n \seqar B_1 }{
367 2 adas
			\vlin{!}{}{!B_1 \seqar B_1 }{
368 2 adas
				\vlin{\id}{}{B_1 \seqar B_1 }{\vlhy{}}
369 2 adas
			}
370 2 adas
		}
371 2 adas
	}  }{\vldots}{
372 2 adas
	\vlderivation{
373 2 adas
		\vlin{w}{}{ !B_1 , \dots , !B_n \seqar B_n }{
374 2 adas
			\vlin{!}{}{!B_n \seqar B_n }{
375 2 adas
				\vlin{\id}{}{B_n \seqar B_n }{\vlhy{}}
376 2 adas
			}
377 2 adas
		}
378 2 adas
	}
379 2 adas
}
380 2 adas
\]
381 2 adas
\end{proof}
382 2 adas
383 2 adas
384 2 adas
\textbf{NB:} The proof does not strictly require side formulae $? \Delta$ on the right of the sequent arrow $\seqar$, it would work without them, e.g.\ for the intuitionistic case. In a one-sided setting there is no difference.
385 2 adas
386 2 adas
387 2 adas
388 2 adas
\begin{corollary}
389 2 adas
	The induction axiom of $A^1_2$ is equivalent to the rule:
390 2 adas
	\[
391 2 adas
	\vliinf{}{(x \notin \FV(\Gamma, \Delta))}{ !\Gamma , A(\epsilon) \seqar A(t) , ?\Delta }{ !\Gamma , A(x) \seqar A(s_0 x ), ?\Delta }{ !\Gamma, A(x) \seqar A( s_1 x ) , ?\Delta}
392 2 adas
	\]
393 2 adas
\end{corollary}
394 2 adas
\begin{proof}
395 2 adas
	By proposition above, generalisation and Currying.
396 2 adas
\end{proof}
397 2 adas
398 2 adas
399 2 adas
\subsection{Prenexing}
400 2 adas
%In the presence of weakening we have a prenex normal form due to the following:
401 2 adas
%
402 2 adas
%\[
403 2 adas
%\vlderivation{
404 2 adas
%	\vlin{}{}{\exists x . A \lor B \seqar \exists x . (A(x) \lor B) }{
405 2 adas
%
406 2 adas
%		}
407 2 adas
%	}
408 2 adas
%\]
409 2 adas
410 2 adas
Cannot derive prenexing operations, e.g.\ a problem with $\exists x . A \lor B \seqar \exists x . (A(x) \lor B)$. Can safely add prenexing rules? Or not a problem due to Witness predicate?
411 2 adas
412 2 adas
\section{Free-cut elimination in linear logic}
413 2 adas
414 4 adas
415 8 adas
\todo{patrick}
416 4 adas
417 8 adas
\anupam{Possibly need to include the cases for affine logic too, e.g.\ if weakening is native, since it does not play nice as an axiom.}
418 4 adas
419 11 adas
\todo{include some bounds on free-cut elimination? Look at paper "Corrected upper bounds for free-cut elimination" by Beckmann and Buss for comparison.}
420 11 adas
421 2 adas
\section{Some variants of arithmetic in linear logic}
422 2 adas
423 2 adas
For pretty much all variants discussed we will actually work in the \emph{affine} variant of linear logic, which validates weakening: $(A \land B )\limp A$. There are many reasons for this; essentially it has not much effect on complexity while also creating a more robust proof theory. For example it induces the following equivalence:
424 2 adas
\[
425 2 adas
!(A\land B) \equiv (!A \land !B)
426 2 adas
\]
427 2 adas
(The right-left direction is already valid in usual linear logic, but the left-right direction requires weakening).
428 2 adas
429 2 adas
We define a variant of arithmetic inspired by Bellantoni and Hofmann's $A^1_2$. We describe later some connections to bounded arithmetic.
430 2 adas
431 2 adas
432 2 adas
\subsection{Based on Bellantoni-Hoffmann, Leivant, etc.}
433 2 adas
434 2 adas
\newcommand{\natcntr}{\nat\mathit{cntr}}
435 2 adas
\newcommand{\geneps}{\nat_{\epsilon}}
436 2 adas
\newcommand{\genzer}{\nat_{0}}
437 2 adas
\newcommand{\genone}{\nat_{1}}
438 2 adas
439 2 adas
440 2 adas
\newcommand{\sepeps}{\epsilon}
441 2 adas
\newcommand{\sepzer}{\succ_{0}}
442 2 adas
\newcommand{\sepone}{\succ_{1}}
443 2 adas
444 2 adas
\newcommand{\inj}{\mathit{inj}}
445 2 adas
\newcommand{\surj}{\mathit{surj}}
446 2 adas
447 2 adas
\begin{definition}
448 2 adas
[Arithmetic]
449 2 adas
We have the following axioms:
450 2 adas
\[
451 2 adas
\begin{array}{rl}
452 7 adas
\wk & (A \land B )\limp A \\
453 2 adas
\natcntr & \forall x^N . (N(x) \land N(x)) \\
454 2 adas
\geneps & \nat(\epsilon) \\
455 2 adas
\genzer & \forall x^N . N(\succ_0 x) \\
456 2 adas
\genone & \forall x^N . N(\succ_1 x) \\
457 2 adas
\sepeps & \forall x^N . (\epsilon \neq \succ_0 x \land \epsilon \neq \succ_1 x) \\
458 2 adas
\sepzer & \forall x^N , y^N. ( \succ_0 x = \succ_0 y \limp x=y ) \\
459 2 adas
\sepone & \forall x^N , y^N. ( \succ_1 x = \succ_1 y \limp x=y ) \\
460 2 adas
\inj & \forall x^N . \succ_0 x \neq \succ_1 x \\
461 2 adas
\surj & \forall x^N . (x = \epsilon \lor \exists y^N . x = \succ_0 y \lor \exists y^N . x = \succ_1 y ) \\
462 2 adas
\noalign{\bigskip}
463 7 adas
\ind & A(\epsilon) \limp !( \forall x^{!\nat} . ( A(x) \limp A(\succ_0 x) ) ) \limp !( \forall x^{!\nat} . ( A(x) \limp A(\succ_1 x) ) ) \limp \forall x^{!\nat} . A(x)
464 2 adas
\end{array}
465 2 adas
\]
466 2 adas
467 2 adas
Induction rule should be the following, to take account of relativised quantifiers?
468 2 adas
\[
469 2 adas
\vliinf{\ind}{}{ !N(t) , !\Gamma , A(\epsilon) \seqar A(t), ?\Delta }{ !N(a) , !\Gamma, A(a) \seqar A(\succ_0 a) , ?\Delta }{ !N(a) , !\Gamma, A(a) \seqar A(\succ_0 a) , ?\Delta  }
470 2 adas
\]
471 2 adas
472 2 adas
\todo{in existential above, is there a prenexing problem?}
473 2 adas
474 2 adas
\todo{what about $\leq$? Introducing this could solve prenexing problem, e.g.\ by induction?}
475 2 adas
\end{definition}
476 2 adas
477 2 adas
\subsection{$\nat$-hierarchy}
478 2 adas
479 2 adas
\begin{definition}
480 2 adas
481 2 adas
\todo{replace N with nat.}
482 2 adas
483 2 adas
	Let us define the quantifiers $\exists x^N . A$ and $\forall x^N . A$ as $\exists x . (N(x) \land A)$ and $\forall x . (N(x) \limp A) $ respectively.
484 2 adas
485 2 adas
	We define $\Sigma^N_0 = \Pi^N_0 $ as the class of formulae that are free of quantifiers. For $i\geq 0$ we define:
486 2 adas
	\begin{itemize}
487 2 adas
		\item $\Sigma^N_{i+1}$ is the class of formulae $\exists x^N . A$ where $A \in \Pi^N_i$.
488 2 adas
		\item $\Pi^N_{i+1}$ is the class of formulae $\forall x^N . A$ where $A \in \Sigma^N_i$.
489 2 adas
		\item ($\Delta^N_i$ is the class $\Sigma^N_i \cap \Pi^N_i$.)
490 2 adas
	\end{itemize}
491 2 adas
\end{definition}
492 2 adas
493 2 adas
\todo{allow closure under positive Boolean operations?}
494 2 adas
495 2 adas
\todo{What about prenexing rules? Should not change provably total functions!}
496 2 adas
497 2 adas
\subsection{Equivalent rule systems}
498 2 adas
499 2 adas
For the quantifiers $\exists x^N $ and $\forall x^N$ we introduce the following rules, which are compatible with free-cut elimination:
500 2 adas
501 2 adas
\[
502 2 adas
\begin{array}{cc}
503 2 adas
\vlinf{}{}{\Gamma \seqar \Delta, \forall x^N . A(x)}{\Gamma, N(a) \seqar \Delta , A(a)}
504 2 adas
\quad & \quad
505 2 adas
\vlinf{}{}{\Gamma, N(t),\forall x^N A(x) \seqar \Delta}{\Gamma,  A(t) \seqar \Delta}
506 2 adas
\\
507 2 adas
\noalign{\bigskip}
508 2 adas
\vlinf{}{}{\Gamma , \exists x^N A(x) \seqar \Delta}{\Gamma, N(a), A(a) \seqar \Delta}
509 2 adas
\quad &\quad
510 2 adas
\vlinf{}{}{\Gamma, N(t) \seqar \Delta , \exists x^N . A(x)}{\Gamma  \seqar \Delta, A(t)}
511 2 adas
\end{array}
512 2 adas
\]
513 2 adas
514 2 adas
CHECK THESE!
515 2 adas
516 2 adas
\todo{Also include rules for contraction and weakening.}
517 2 adas
518 2 adas
\section{Convergence of Bellantoni-Cook programs}
519 2 adas
520 2 adas
\subsection{Bellantoni-Cook programs}
521 2 adas
We first recall the notion of safe recursion on notation from BC. TODO
522 2 adas
523 2 adas
\subsection{Convergence in arithmetic}
524 2 adas
\begin{theorem}
525 2 adas
	[Convergence]
526 2 adas
	If $\Phi(f)$ is an equational specification corresponding to a BC-program defining $f()$, then $\cax{\Sigma^N_1}{\pind} \proves  \ !\Phi(f) \limp \forall \vec{x}^{!N} . N(f(\vec x))$.
527 2 adas
\end{theorem}
528 2 adas
\begin{proof}
529 2 adas
	We show by induction on the structure of a BC-program for $f(\vec x ; \vec y)$ that:
530 2 adas
	\begin{equation}
531 2 adas
	\Phi(f) , \cax{\Sigma^N_1}{\pind} \proves \ \forall \vec{x}^{!N} . \forall \vec{y}^N . N(f(\vec x ; \vec y))
532 2 adas
	\end{equation}
533 2 adas
	We give some key cases in what follows.
534 2 adas
535 2 adas
	Suppose $f$ is defined by PRN by:
536 2 adas
	\[
537 2 adas
	\begin{array}{rcl}
538 2 adas
	f(0,\vec x ; \vec y) & = & g(\vec x ; \vec y) \\
539 2 adas
	f(\succ_i x , \vec x ; \vec y) & = & h_i (x, \vec x ; \vec y , f(x , \vec x ; \vec y))
540 2 adas
	\end{array}
541 2 adas
	\]
542 2 adas
	By the inductive hypothesis we already have that $g, h_0, h_1$ are provably convergent, so let us suppose that $N(\vec x)$ and prove,
543 2 adas
	\begin{equation}
544 2 adas
	\forall x^{!N} . ( N(\vec y) \limp N(f(x , \vec x ; \vec y)  )
545 2 adas
	\end{equation}
546 2 adas
	by $\cax{\Sigma^N_1}{\pind}$ on $x$.
547 2 adas
548 2 adas
	In the base case we have the following proof:
549 2 adas
	\[
550 2 adas
	\vlderivation{
551 2 adas
		\vliin{}{}{N(\vec y) \limp N(f(0, \vec x ; \vec y))}{
552 2 adas
			\vltr{IH}{N(\vec y) \limp N(g(\vec x ; \vec y))}{\vlhy{\quad}}{\vlhy{}}{\vlhy{\quad}}
553 2 adas
		}{
554 2 adas
		\vlin{}{}{N(g (\vec x ; \vec y) ) \limp N(f(0, \vec x ; \vec y)) }{
555 2 adas
			\vlin{}{}{g(\vec x ; \vec y) = f(0 , \vec x ; \vec y)}{\vlhy{}}
556 2 adas
		}
557 2 adas
	}
558 2 adas
}
559 2 adas
\]
560 2 adas
561 2 adas
For the inductive step, we need to show that,
562 2 adas
\[
563 2 adas
\forall x^{!N} . (( N(\vec y) \limp N( f(x, \vec x ; \vec y) ) ) \limp N(\vec y) \limp N(f(\succ_i x , \vec x ; \vec y) )   )
564 2 adas
\]
565 2 adas
so let us suppose that $N(x)$ and we give the following proof:
566 2 adas
\[
567 2 adas
\vlderivation{
568 2 adas
	\vlin{N\cntr}{}{N(y) \limp ( N(y ) \limp N(f( x , \vec x ; \vec y ) ) ) \limp N(f (\succ_i x , \vec x ; \vec y)  ) }{
569 2 adas
		\vliin{}{}{N(y) \limp N(y) \limp ( N(y ) \limp N(f( x , \vec x ; \vec y ) ) ) \limp N(f (\succ_i x , \vec x ; \vec y)  ) }{
570 2 adas
			\vliin{}{}{ N(y) \limp N(y) \limp ( N(y) \limp N( f(x, \vec x ; \vec y) ) ) \limp N( h_i (x , \vec x ; \vec y , f(x , \vec x ; \vec y) ) ) }{
571 2 adas
				\vltr{MLL}{( N(\vec y) \limp (N (\vec y) \limp N(f(x, \vec x ; \vec y) )) \limp N(f(x, \vec x ; \vec y)) }{\vlhy{\quad }}{\vlhy{\ }}{\vlhy{\quad }}
572 2 adas
			}{
573 2 adas
			\vlhy{2}
574 2 adas
		}
575 2 adas
	}{
576 2 adas
	\vlhy{3}
577 2 adas
}
578 2 adas
}
579 2 adas
}
580 2 adas
\]
581 2 adas
TOFINISH
582 2 adas
\end{proof}
583 2 adas
584 2 adas
\section{Witness function method}
585 2 adas
586 12 adas
Key features/differences from realisability:
587 12 adas
\begin{itemize}
588 12 adas
\item De Morgan normal form: reduces type level to $0$, complementary to double-negation translation that \emph{increases} type level.
589 12 adas
\item Free-cut elimination: allows us to handles formulae of fixed logical complexity throughout the proof.
590 12 adas
\item Respects logical properties of formulae, e.g.\ quantifier complexity, exponential complexity.
591 12 adas
\end{itemize}
592 2 adas
593 12 adas
\todo{say some more here}
594 12 adas
595 2 adas
\newcommand{\type}{\mathtt{t}}
596 2 adas
\newcommand{\norm}{\nu}
597 2 adas
\newcommand{\safe}{\sigma}
598 2 adas
599 2 adas
\subsection{Typing}
600 2 adas
601 2 adas
\begin{definition}
602 2 adas
	[Types]
603 4 adas
	To each formula we associate a tuple type as follows:
604 2 adas
	\[
605 2 adas
	\begin{array}{rcll}
606 4 adas
	\type (\nat (t)) & := & \Nat & \\
607 4 adas
	\type(s = t) & := & \Nat & \\
608 2 adas
	\type (A \star B)  & : = & \type (A) \times \type (B) & \text{for $\star \in \{ \lor, \land, \laor, \laand \} $.} \\
609 4 adas
	\type (! A) & : = & \type_\norm (A) & \\
610 4 adas
	\type (\exists x^N . A) & := & \Nat \times \type (A) & \\
611 4 adas
%	\type (\forall x^N . A) & := & \Nat \to \type(A)
612 2 adas
	\end{array}
613 2 adas
	\]
614 4 adas
	where $\nu$ designates that the inputs are normal.
615 2 adas
	\end{definition}
616 2 adas
617 4 adas
	\todo{compatibility with safety. To consider.}
618 2 adas
619 2 adas
620 2 adas
621 4 adas
622 2 adas
	\newcommand{\witness}[2]{\mathit{Witness}^{#1}_{#2}}
623 2 adas
	\begin{definition}
624 2 adas
		[Witness predicate]
625 2 adas
		We define the following formula:
626 2 adas
		\[
627 2 adas
		\begin{array}{rcll}
628 2 adas
		\witness{\vec a}{A} (w, \vec a) & := & A(\vec a) & \text{for $A$ quantifier-free.} \\
629 2 adas
		\witness{\vec a}{\exists x . A} (w, \vec w , \vec a) & := & \witness{\vec{a}, a}{A(a)}(\vec w , \vec a, w ) & \\
630 2 adas
		\witness{\vec a}{A \star B} ( \vec w^1 , \vec w^2 ) & := &  \witness{\vec a}{A} (\vec w^1) \star \witness{\vec a}{B} (\vec w^2) & \text{for $\star \in \{ \land, \lor, \laand , \laor\}$.} \\
631 2 adas
		\end{array}
632 2 adas
		\]
633 2 adas
	\end{definition}
634 2 adas
	\todo{problem: what about complexity of checking equality? }
635 2 adas
636 2 adas
	\todo{What about $\nat (t)$? What does it mean? Replace with true?}
637 2 adas
638 2 adas
	\todo{either use the witness predicate above, or use realizability predicate at meta-level and a model theory, like BH.}
639 2 adas
640 4 adas
	\anupam{Need to check above properly. $N(t)$ should be witnessed by the value of $t $ in the model. For equality of terms the witness should not do anything.}
641 2 adas
642 2 adas
	\subsection{The translation}
643 2 adas
	Need witness predicate so that we know what is being preserved.
644 2 adas
645 2 adas
\begin{definition}
646 2 adas
	[Translation]
647 2 adas
	We give a translation of proofs $\pi$ of sequents $\Gamma(\vec a) \seqar \Delta(\vec a)$ to BC-programs for a vector of functions $\vec f^\pi : \type(\bigotimes\Gamma) \times \Nat^{|\vec a|} \to \type(\bigparr\Delta)$ such that:
648 2 adas
	\[
649 2 adas
	\witness{\vec a}{\bigotimes \Gamma} (\vec w , \vec a) \implies \witness{\vec a}{\bigparr \Delta } (\vec f(\vec w , \vec a), \vec a)
650 2 adas
	\]
651 2 adas
	We will be explicit about normal and safe inputs when necessary, for the most part we will simply rearrange inputs into lists $(\vec x; \vec a)$ as in BC framework.
652 2 adas
653 2 adas
	We often suppress the parameters $\vec a$ when it is not important.
654 2 adas
655 2 adas
	\anupam{Is this implication provable in Bellantoni's version of PV based on BC?}
656 2 adas
657 2 adas
	\anupam{for moment try ignore decoration on right? what about negation?}
658 2 adas
659 3 adas
660 2 adas
661 2 adas
	\[
662 2 adas
	\vlderivation{
663 2 adas
		\vliin{\land}{}{ \Gamma, \Sigma \seqar \Delta, \Pi, A\land B }{
664 2 adas
			\vltr{\pi_1}{ \Gamma \seqar \Delta, A }{\vlhy{\quad }}{\vlhy{ }}{\vlhy{\quad }}
665 2 adas
			}{
666 2 adas
			\vltr{\pi_2}{ \Sigma \seqar \Pi, B }{\vlhy{\quad }}{\vlhy{ }}{\vlhy{\quad }}
667 2 adas
			}
668 2 adas
		}
669 2 adas
	\]
670 2 adas
671 2 adas
	So we have $\vec f^{1} (\vec x ; \vec a)$ and $\vec f^2 (\vec y ; \vec b)$ for $\pi_1 $ and $\pi_2$ respectively, by the inductive hypothesis. We simply construct $\vec f^\pi$ by rearranging these functions:
672 2 adas
	\[
673 2 adas
	\vec f^\pi (\vec x , \vec y ; \vec a , \vec b) \quad := \quad ( f^1_1 (\vec x ; \vec a) , \dots , f^1_{|\Delta|} (\vec x ; \vec a) , f^2_1 (\vec y; \vec b) , \dots , f^2_{|\Pi|} (\vec y ; \vec b) , f^1_{|\Delta|+1} (\vec x ; \vec a ) , f^2_{|\Pi|+1} (\vec y ; \vec b)
674 2 adas
	\]
675 2 adas
676 2 adas
	\anupam{bad notation since need to include free variables of sequent too. (also of theory.) Reconsider.}
677 2 adas
678 2 adas
	\[
679 2 adas
	\vlderivation{
680 2 adas
		\vlin{\lefrul{\cntr}}{}{ !A , \Gamma \seqar \Delta }{
681 2 adas
			\vltr{\pi'}{  !A, !A , \Gamma \seqar \Delta}{\vlhy{\quad }}{\vlhy{ }}{\vlhy{\quad }}
682 2 adas
			}
683 2 adas
		}
684 2 adas
	\]
685 2 adas
	Have $\vec f' (x_1 , x_2 , \vec y ; \vec a)$ for $\pi'$. Define
686 2 adas
	\[
687 2 adas
	\vec f (x_1 , \vec y ; \vec a) \quad := \quad \vec f'(x_1 , x_1 , \vec y ; \vec a)
688 2 adas
	\]
689 2 adas
	\[
690 2 adas
	\vlderivation{
691 2 adas
	\vlin{\rigrul{\cntr}}{}{\Gamma \seqar \Delta, ?A}{
692 2 adas
	\vltr{\pi'}{  \Gamma \seqar \Delta, ?A, ?A}{\vlhy{\quad }}{\vlhy{ }}{\vlhy{\quad }}
693 2 adas
	}
694 2 adas
	}
695 2 adas
	\]
696 2 adas
	(need test function against witness predicate?)
697 2 adas
698 2 adas
	\anupam{problem: how to test even equality of two terms? Maybe treat $?$ as $!$ on left?}
699 2 adas
700 2 adas
	\anupam{Not a problem by free-cut elimination! Can assume there are no $?$ in the proof! Is this equivalent to treaing $?$ as $!$ on left?}
701 2 adas
702 2 adas
	\anupam{Yes I think so. We can work in a left-sided calculus. only problem is for induction. But this can never be a problem for modalities since induction formulae are modality-free.}
703 2 adas
704 2 adas
	\anupam{this is actually the main point.}
705 2 adas
706 2 adas
707 2 adas
	\[
708 2 adas
	\vlderivation{
709 2 adas
	\vliin{\rigrul{\laand}}{}{\Gamma \seqar \Delta, A \laand B}{
710 2 adas
	\vltr{\pi_1}{  \Gamma \seqar \Delta, A}{\vlhy{\quad }}{\vlhy{ }}{\vlhy{\quad }}
711 2 adas
	}{
712 2 adas
	\vltr{\pi_2}{  \Gamma \seqar \Delta, B}{\vlhy{\quad }}{\vlhy{ }}{\vlhy{\quad }}
713 2 adas
	}
714 2 adas
	}
715 2 adas
	\]
716 2 adas
717 2 adas
	Suppose we have $\vec f^i (\vec x , \vec a ; \vec y , \vec b)$ from $\pi_i$.
718 2 adas
719 2 adas
	\anupam{problem: does this require many tests, just like for contraction? Can we isolate a different complexity class? e.g.\ PH or Grzegorzyck?}
720 2 adas
	\anupam{skip this case and consider later.}
721 2 adas
\[
722 2 adas
\vlderivation{
723 2 adas
\vliin{\cut}{}{\Gamma , \Sigma \seqar \Delta , \Pi}{
724 2 adas
\vltr{\pi_1}{ \Gamma \seqar \Delta, A }{\vlhy{\quad }}{\vlhy{ }}{\vlhy{\quad }}
725 2 adas
}{
726 2 adas
\vltr{\pi_2}{\Sigma , A \seqar \Pi}{\vlhy{\quad }}{\vlhy{ }}{\vlhy{\quad }}
727 2 adas
}
728 2 adas
}
729 2 adas
	\]
730 2 adas
731 2 adas
We can assume that $A$ in the conclusion of $\pi_2$ is free of modalities, since one of the $A$s must be directly descended from an induction formula, and so consists of only safe inputs. Therefore we have functions $\vec f^1 (\vec w; \vec x)$ and $\vec f^2 (\vec y ; \vec z , \vec u)$ for $\pi_1$ and $\pi_2 $ respectively (free variable parameters are suppressed), with $\vec u$ corresponding to the (safe) inputs for $A$.
732 2 adas
733 2 adas
Let us write:
734 2 adas
\[
735 2 adas
\begin{array}{rcl}
736 2 adas
\vec f^1 & = & ( \vec f^1_i )^{|\Delta|+1}_{i=1} \\
737 2 adas
\vec f^2 & = & ( \vec f^2_i )^{|\Pi|}_{i=1}
738 2 adas
\end{array}
739 2 adas
\]
740 2 adas
to denote the parts of $\vec f^i$ corresponding to formulae in their sequents.
741 2 adas
742 2 adas
743 2 adas
We define:
744 2 adas
\[
745 2 adas
\vec f (\vec w , \vec y ; \vec x , \vec z)
746 2 adas
\quad := \quad
747 2 adas
(
748 2 adas
( \vec f^1_i (\vec w ; \vec x) )_{i \leq |\Delta|}
749 2 adas
,
750 2 adas
\vec f^2 ( \vec y ; \vec z , \vec f^1_{|\Delta| +1 } (\vec w ; \vec x) )
751 2 adas
)
752 2 adas
\]
753 2 adas
754 2 adas
Notice that all safe inputs are hereditarily right of a $;$, and so these terms are definable by safe composition and projection.
755 2 adas
756 5 adas
\todo{another case for $!\nat(x)$ cut formula.}
757 2 adas
758 5 adas
\anupam{should work for arbitrary $!$-cuts due to principal case for $!$}
759 2 adas
760 4 adas
761 2 adas
Right existential:
762 2 adas
\[
763 2 adas
\vlderivation{
764 2 adas
\vlin{\rigrul{\exists}}{}{ \Gamma, \nat(t) \seqar \Delta , \exists x^\nat . A(x) }{
765 2 adas
\vltr{\pi'}{ \Gamma \seqar \Delta , A(t) }{\vlhy{\quad }}{\vlhy{ }}{\vlhy{\quad }}
766 2 adas
}
767 2 adas
}
768 2 adas
\]
769 7 adas
Suppose we have functions $\vec f^X (\vec x ; \vec y)$ from $\pi'$ for $X = \Delta$ or $ X=A$.
770 4 adas
\[
771 7 adas
\vec f(\vec x ; \vec y , z) \quad := \quad ( \vec f^\Delta (\vec x ; \vec y)   ,  z , \vec f^A ( \vec x ; \vec y ) )
772 4 adas
\]
773 2 adas
774 2 adas
775 2 adas
Left existential:
776 2 adas
\[
777 2 adas
\vlderivation{
778 2 adas
\vlin{\lefrul{\exists}}{}{ \Gamma, \exists x^N . A(x) \seqar \Delta }{
779 4 adas
\vltr{\pi'(a)}{ \Gamma,  N(a) , A(a) \seqar \Delta  }{\vlhy{\quad }}{\vlhy{ }}{\vlhy{\quad }}
780 2 adas
}
781 2 adas
}
782 2 adas
\]
783 2 adas
784 8 adas
Suppose we have functions $\vec f' (\vec u , \vec v ; x , \vec y , \vec z)$ from $\pi'$ with $(\vec u ; \vec x )$ corresponding to $\Gamma$, $(;x)$ corresponding to $N(a)$ and $(\vec v ; \vec z)$ corresponding to $A(a)$. We define:
785 4 adas
\[
786 8 adas
\vec f ( \vec u , \vec v ;  )
787 4 adas
\]
788 4 adas
789 8 adas
\anupam{should just be same, no? To consider.}
790 8 adas
791 8 adas
%Suppose we have functions $\vec g (\vec v  , \vec w ; \vec x , y , \vec z)$ where $(\vec v ; \vec x) $ corresponds to $\Gamma$, $y$ corresponds to $\nat(a)$ and $(\vec w ; \vec z) $ corresponds to $A(a)$. Then we define:
792 8 adas
%\[
793 8 adas
%\vec f ( \vec v , \vec w ; \vec x , y , \vec z )
794 8 adas
%\]
795 8 adas
796 4 adas
\todo{finish}
797 4 adas
798 2 adas
!:
799 2 adas
\[
800 2 adas
\vlderivation{
801 2 adas
\vlin{!}{}{\Gamma, !A \seqar \Delta}{
802 2 adas
\vltr{\pi'}{ \Gamma , A \seqar \Delta  }{\vlhy{\quad }}{\vlhy{ }}{\vlhy{\quad }}
803 2 adas
}
804 2 adas
}
805 2 adas
\]
806 2 adas
\anupam{Again, use free-cut elimination to get rid of this case. We know $!$-ed formulae in advance, so just fix those as normal inputs in advance.}
807 2 adas
808 2 adas
809 2 adas
Induction: (can assume no side-formulae on right for same reason as no contraction.)
810 2 adas
\[
811 2 adas
\vlderivation{
812 3 adas
\vliin{\ind}{}{ !\Gamma , !\nat (t) ,  A(\epsilon) \seqar A(t) }{
813 2 adas
\vltr{\pi_0}{ !\Gamma , !\nat(a) , A(a) \seqar A(\succ_0 a)}{\vlhy{\quad }}{\vlhy{ }}{\vlhy{\quad }}
814 2 adas
}{
815 2 adas
\vltr{\pi_1}{ !\Gamma , !\nat(a), A(a)\seqar A(\succ_1 a) }{\vlhy{\quad }}{\vlhy{ }}{\vlhy{\quad }}
816 2 adas
}
817 2 adas
}
818 2 adas
\]
819 2 adas
820 2 adas
Suppose we have functions $\vec f^i (\vec x , y ; \vec u)$ from proofs $\pi_i$ where $\vec x $ corresponds to $!\Gamma$, $y$ corresponds to $!N(a)$ and $\vec u$ corresponds to $A(a)$.
821 2 adas
822 2 adas
823 2 adas
\anupam{role of $!N(a)$ versus having $a$ as a parameter to function. To consider!}
824 2 adas
825 2 adas
Define the function $f_k$ (for $k = 1 , \dots , |\vec u|$) by PRN:
826 2 adas
\[
827 2 adas
\begin{array}{rcl}
828 2 adas
f_k(\epsilon, \vec x , y ; \vec u) & := & u_k \\
829 2 adas
f_k (\succ_i w , \vec x , y ; \vec u) & : = & f^i_k ( \vec x ,  y ; \vec f ( w, \vec x , y ; \vec u ) )
830 2 adas
\end{array}
831 2 adas
\]
832 2 adas
833 2 adas
\anupam{check this, esp use of parameters, cf.\ above.}
834 2 adas
835 2 adas
\anupam{Is this not using a simultaneous version of PRN? Might need concatenation of words/basic coding to deal with this.}
836 2 adas
837 3 adas
838 2 adas
\end{definition}
839 2 adas
840 3 adas
\newcommand{\concat}{\mathit{concat}}
841 3 adas
\paragraph{Some points on concatenation \anupam{if necessary}}
842 3 adas
We can define the concatenation operation by PRN:
843 3 adas
\[
844 3 adas
\begin{array}{rcl}
845 3 adas
\concat (\epsilon ; y) & : = & x \\
846 3 adas
\concat (\succ_i x ; y) & := & \succ_i \concat (x ; y)
847 3 adas
\end{array}
848 3 adas
\]
849 2 adas
850 3 adas
From here we can define iterated concatenation:
851 3 adas
\[
852 3 adas
\concat (x_1 , \dots x_n ; y) \quad := \quad \concat (x_n ; \concat (x_{n-1} ; \vldots \concat (x_1 ; y) \vldots ) )
853 3 adas
\]
854 3 adas
855 3 adas
(notice all safe inputs are hereditarily to the right of $;$ so this is definable by safe composition and projection.)
856 3 adas
857 2 adas
\section{Further work}
858 2 adas
859 2 adas
Say something about minimisation and the polynomial hierarchy. Could be achieved by controlling contraction/additives, since this requires a notion of tests.
860 2 adas
861 2 adas
\section{Conclusions}
862 2 adas
863 4 adas
\appendix
864 2 adas
865 4 adas
\section{Some cut-elimination cases}
866 4 adas
We work in a one-sided calculus for full linear logic. When working in the affine setting we simply drop the condition that weakened formulae are $?$-ed.
867 4 adas
868 4 adas
As well as all usual rules, we have the induction rule:
869 4 adas
\[
870 4 adas
\vlinf{\indr}{(x \notin FV (\Gamma) )}{? \Gamma, A^\perp (0) , A(t)}{? \Gamma , A^\perp (x) , A(s x) }
871 4 adas
\]
872 4 adas
873 4 adas
We give all the various cut-reduction cases in the following section but first we give a simple cut-elimination argument.
874 4 adas
875 4 adas
\subsection{A basic (free-)cut elimination argument}
876 4 adas
We give an argument that easily scales to free-cut elimination, i.e.\ in the presence of non-logical rules.
877 4 adas
878 4 adas
\newcommand{\anarrow}[2]{\overset{#1}{\underset{#2}{\longrightarrow}}}
879 4 adas
\newcommand{\cutredlin}{\mathit{ma}}
880 4 adas
\newcommand{\cutredexp}{exp}
881 4 adas
882 4 adas
\begin{definition}
883 4 adas
	Let $\anarrow{}{\cutredexp}$ denote the reduction steps concerning exponential cuts, and $\anarrow{}{\cutredlin}$ be the set of cut-reduction steps concerning multiplicative and additive cuts.
884 4 adas
\end{definition}
885 4 adas
886 4 adas
\newcommand{\rk}{\mathsf{rk}}
887 4 adas
	\renewcommand{\deg}{\mathsf{deg}}
888 4 adas
\begin{definition}
889 4 adas
	[Measures]
890 4 adas
	For a $\anarrow{}{\cutredlin}$-redex $r$, let its \emph{degree} $\deg( r)$ be the number of logical connectives or quantifiers in its cut-formula. For a proof $\pi$, its \emph{degree} $\deg( \pi)$ is the multiset of the degree of its redexes.
891 4 adas
\end{definition}
892 4 adas
893 4 adas
\begin{proposition}
894 4 adas
If $\pi$ is not $\anarrow{}{\cutredlin}$-normal then there is a derivation $L:\pi \anarrow{*}{\cutredlin} \pi'$ such that $\deg(\pi')< \deg(\pi)$.
895 4 adas
\end{proposition}
896 4 adas
\begin{proof}
897 4 adas
	First let us show the statement in the special case that $\pi$ contains precisely one $\cut$-inference as its final step, by induction on $|\pi|$. Each commutative $\anarrow{}{\cutredlin}$-step results in us being able to apply the inductive hypothesis to smaller proofs,- in the case of $\vlan $ two smaller proofs. Each key $\anarrow{}{\cutredlin}$-case strictly reduces the degree of the proof. Consequently we can eventually transform $\pi$ to a proof $\pi'$ which has possibly several cuts of smaller degree, as required.
898 4 adas
899 4 adas
	Now to the general case, we simply apply the above procedure to the subproof above a topmost cut in $\pi$.
900 4 adas
\end{proof}
901 4 adas
\begin{corollary}
902 4 adas
	$\anarrow{}{\cutredlin}$ is weakly normalising.
903 4 adas
\end{corollary}
904 4 adas
905 4 adas
906 4 adas
\newcommand{\cntdown}{\mathit{cn}}
907 4 adas
\begin{definition}
908 4 adas
	[Lazy contraction]
909 4 adas
	Let $\anarrow{}{\cntdown}$ comprise of the following reduction steps:
910 4 adas
	\begin{enumerate}
911 4 adas
		\item The commuting steps,
912 4 adas
			\[
913 4 adas
			\vlderivation{
914 4 adas
				\vlin{\rho}{}{\Gamma', ?A, }{
915 4 adas
					\vlin{\cntr}{}{\Gamma, ?A}{\vlhy{\Gamma, ? A, ? A}}
916 4 adas
				}
917 4 adas
			}
918 4 adas
			\quad\to \quad
919 4 adas
			\vlderivation{
920 4 adas
				\vlin{\cntr}{}{\Gamma', ?A}{
921 4 adas
					\vlin{\rho}{}{\Gamma', ?A, ?A}{\vlhy{\Gamma, ? A, ? A}}
922 4 adas
				}
923 4 adas
			}
924 4 adas
			\]
925 4 adas
			for each unary rule $\rho$.
926 4 adas
			\item
927 4 adas
			The key steps:
928 4 adas
			\[
929 4 adas
			\begin{array}{rcl}
930 4 adas
			\vlderivation{
931 4 adas
				\vlin{\cntr}{}{\Gamma, ?A}{
932 4 adas
					\vlin{\wk}{}{\Gamma, ?A, ?A}{\vlhy{\Gamma, ?A}}
933 4 adas
				}
934 4 adas
			}
935 4 adas
			\quad &\to & \quad
936 4 adas
			\Gamma, ?A
937 4 adas
%			\]
938 4 adas
%			and
939 4 adas
%			\[
940 4 adas
\\
941 4 adas
\noalign{\smallskip}
942 4 adas
				\vlderivation{
943 4 adas
					\vlin{\wk}{}{\Gamma, ?A, ?A}{
944 4 adas
						\vlin{\cntr}{}{\Gamma, ?A}{\vlhy{\Gamma, ?A, ?A}}
945 4 adas
					}
946 4 adas
				}
947 4 adas
				\quad &\to& \quad
948 4 adas
				\Gamma, ?A, ?A
949 4 adas
							\end{array}
950 4 adas
			\].
951 4 adas
\item The commuting steps,
952 4 adas
\[
953 4 adas
	\vlderivation{
954 4 adas
		\vliin{\rho}{}{\Gamma ,?A}{
955 4 adas
			\vlin{\cntr}{}{\Gamma_1, ?A}{\vlhy{\Gamma_1, ?A, ?A}}
956 4 adas
		}{\vlhy{\Gamma_2}}
957 4 adas
	}
958 4 adas
	\quad \to \quad
959 4 adas
	\vlderivation{
960 4 adas
		\vlin{\cntr}{}{\Gamma, ?A}{
961 4 adas
			\vliin{\rho}{}{\Gamma,?A, ?A}{\vlhy{\Gamma_1, ?A, ?A}}{ \vlhy{\Gamma_2} }
962 4 adas
		}
963 4 adas
	}
964 4 adas
\]
965 4 adas
%\[
966 4 adas
%\begin{array}{rcl}
967 4 adas
%	\vlderivation{
968 4 adas
%		\vliin{\land}{}{\Gamma, \Delta, ?A, B\land C}{
969 4 adas
%			\vlin{\cntr}{}{\Gamma, ?A, B}{\vlhy{\Gamma, ?A, ?A, B}}
970 4 adas
%		}{\vlhy{\Delta, C}}
971 4 adas
%	}
972 4 adas
%	\quad &\to &\quad
973 4 adas
%	\vlderivation{
974 4 adas
%		\vlin{\cntr}{}{\Gamma, \Delta, ?A, B\land C}{
975 4 adas
%			\vliin{\land}{}{\Gamma, \Delta, ?A, ?A, B\land C}{\vlhy{\Gamma, ?A, ?A, B}}{ \vlhy{\Delta, C} }
976 4 adas
%		}
977 4 adas
%	}
978 4 adas
%%	\]
979 4 adas
%%
980 4 adas
%%	\[
981 4 adas
%\\
982 4 adas
%\noalign{\smallskip}
983 4 adas
%	\vlderivation{
984 4 adas
%		\vliin{\cut}{}{\Gamma, \Delta, ?A}{
985 4 adas
%			\vlin{\cntr}{}{\Gamma, ?A, B}{\vlhy{\Gamma, ?A, ?A, B}}
986 4 adas
%		}{\vlhy{\Delta, \lnot{B}}}
987 4 adas
%	}
988 4 adas
%	\quad &\to& \quad
989 4 adas
%	\vlderivation{
990 4 adas
%		\vlin{\cntr}{}{\Gamma, \Delta, ?A}{
991 4 adas
%			\vliin{\cut}{}{\Gamma, \Delta, ?A, ?A}{\vlhy{\Gamma, ?A, ?A, B}}{ \vlhy{\Delta, \lnot{B}} }
992 4 adas
%		}
993 4 adas
%	}
994 4 adas
%\end{array}
995 4 adas
%\]
996 4 adas
for each binary rule $\rho \in \{ \land, \cut \}$.
997 4 adas
\item The commuting step:
998 4 adas
	\[
999 4 adas
	\vlderivation{
1000 4 adas
		\vliin{\vlan}{}{\Gamma, ?A, B\vlan C}{
1001 4 adas
			\vlin{\cntr}{}{\Gamma, ?A, B}{\vlhy{\Gamma, ?A, ?A, B}}
1002 4 adas
		}{\vlhy{\Gamma, ?A, B}}
1003 4 adas
	}
1004 4 adas
	\quad \to \quad
1005 4 adas
	\vlderivation{
1006 4 adas
		\vlin{\cntr}{}{\Gamma, ?A, B\vlan C}{
1007 4 adas
			\vliin{\vlan}{}{\Gamma, ?A, ?A, B\vlan C}{\vlhy{\Gamma, ?A, ?A, B}}{
1008 4 adas
				\vlin{\wk}{}{\Gamma, ?A, ?A, C}{\vlhy{\Gamma, ?A, C}}
1009 4 adas
			}
1010 4 adas
		}
1011 4 adas
	}
1012 4 adas
	\]
1013 4 adas
	\end{enumerate}
1014 4 adas
	For binary rules:
1015 4 adas
1016 4 adas
\end{definition}
1017 4 adas
\begin{proposition}
1018 4 adas
	$\anarrow{}{\cntdown}$ is weakly normalising
1019 4 adas
	, modulo $\cntr$-$\cntr$ redexes,
1020 4 adas
	and degree-preserving.
1021 4 adas
	If $\pi$ is $\anarrow{}{\cutredlin}$-normal and $\pi \downarrow_\cntdown \pi'$, then so is $\pi'$.
1022 4 adas
\end{proposition}
1023 4 adas
\begin{proof}
1024 4 adas
	By induction on the number of redexes in a proof. Start with bottommost redex, by induction on number of inference steps beneath it.
1025 4 adas
\end{proof}
1026 4 adas
1027 4 adas
\begin{remark}
1028 4 adas
	Only weakly normalising since $\cntr$ can commute with $\cntr$, allowing cycles.
1029 4 adas
\end{remark}
1030 4 adas
1031 4 adas
\begin{proposition}
1032 4 adas
	If $\pi$ is $\anarrow{}{\cutredexp}$-reducible but $\anarrow{}{\cutredlin}$- and $\anarrow{}{\cntdown}$-normal then there is a derivation $H:\pi \anarrow{*}{\cutredexp} \pi'$ such that $\deg (\pi')<\deg(\pi)$.
1033 4 adas
\end{proposition}
1034 4 adas
1035 4 adas
1036 4 adas
1037 4 adas
\subsection{Base cases}
1038 4 adas
1039 4 adas
\[
1040 4 adas
\vlderivation{
1041 4 adas
\vliin{\cut}{}{ \Gamma,a }{ \vlhy{\Gamma,a} }{ \vlin{\id}{}{a,a^\bot}{ \vlhy{} } }
1042 4 adas
}
1043 4 adas
\quad\to\quad
1044 4 adas
\vlderivation{
1045 4 adas
\Gamma,a
1046 4 adas
}
1047 4 adas
\]
1048 4 adas
1049 4 adas
\[
1050 4 adas
\vlderivation{
1051 4 adas
\vliin{\cut}{}{\Gamma}{ \vlin{\bot}{}{ \Gamma,\bot }{ \vlhy{\Gamma} } }{ \vlin{1}{}{1}{ \vlhy{} } }
1052 4 adas
}
1053 4 adas
\quad\to\quad
1054 4 adas
\vlderivation{
1055 4 adas
\Gamma
1056 4 adas
}
1057 4 adas
\]
1058 4 adas
1059 4 adas
\[
1060 4 adas
\vlderivation{
1061 4 adas
\vliin{\cut}{}{ \Gamma,\Delta,\top }{ \vlin{\top}{}{ \Gamma,\top,0 }{ \vlhy{} } }{ \vlhy{\Delta , \top } }
1062 4 adas
}
1063 4 adas
\quad\to\quad
1064 4 adas
\vlinf{\top}{}{ \Gamma,\Delta,\top }{}
1065 4 adas
\]
1066 4 adas
1067 4 adas
\subsection{Commutative cases}
1068 4 adas
These are the cases when the principal formula of a step is not active for the cut-step below.
1069 4 adas
1070 4 adas
\begin{enumerate}
1071 4 adas
\item The cut-step is immediately preceded by an initial step. Note that only the case for $\top$ applies:
1072 4 adas
\[
1073 4 adas
\vlderivation{
1074 4 adas
\vliin{\cut}{}{\Gamma,\Delta,\top}{
1075 4 adas
\vlin{\top}{  }{ \Gamma,\top,A }{ \vlhy{} }
1076 4 adas
 }{ \vlhy{\Delta,A^\bot } }
1077 4 adas
}
1078 4 adas
\quad\to\quad
1079 4 adas
\vlinf{\top}{}{ \Gamma,\Delta,\top }{}
1080 4 adas
\]
1081 4 adas
%Notice that this commutation eliminates the cut entirely and preserves the height of all cuts below.
1082 4 adas
\item\label{CaseCommOneStep} A cut-step is immediately preceded by a step $\rho$ with exactly one premiss:
1083 4 adas
\[
1084 4 adas
\vlderivation{
1085 4 adas
\vliin{\cut}{}{\Gamma',\Delta}{\vlin{\rho}{}{\Gamma',A}{\vlhy{\Gamma,A}}}{\vlhy{A^\bot , \Delta}}
1086 4 adas
}
1087 4 adas
\]
1088 4 adas
We have three subcases:
1089 4 adas
\begin{enumerate}
1090 4 adas
\item\label{subcase:unary-commutation-vanilla}
1091 4 adas
%$\Delta$ consists of only $?$-ed formulae or
1092 4 adas
If $\rho \notin \{! , \indr \}$ then we can simply permute as follows:
1093 4 adas
\begin{equation}
1094 4 adas
\label{eqn:com-case-unary-simple}
1095 4 adas
\vlderivation{
1096 4 adas
\vliin{\cut}{}{\Gamma',\Delta}{\vlin{\rho}{}{\Gamma',A}{\vlhy{\Gamma,A}}}{\vlhy{A^\bot , \Delta}}
1097 4 adas
}
1098 4 adas
\quad \to \quad
1099 4 adas
\vlderivation{
1100 4 adas
\vlin{\rho}{}{\Gamma',\Delta}{
1101 4 adas
\vliin{\cut}{}{\Gamma,\Delta}{\vlhy{\Gamma,A}}{\vlhy{A^\bot , \Delta}}
1102 4 adas
}
1103 4 adas
}
1104 4 adas
\end{equation}
1105 4 adas
(If $\rho$ was $\forall$ then we might need to rename some free variables in $\Delta$.)
1106 4 adas
\item $\rho $ is a $!$-step. Therefore $\Gamma$ has the form $? \Sigma , B$ and $A$ has the form $?C$, yielding the following situation:
1107 4 adas
\[
1108 4 adas
\vlderivation{
1109 4 adas
\vliin{\cut}{}{? \Sigma, !B, \Delta }{
1110 4 adas
\vlin{!}{}{? \Sigma, !B , ?C}{\vlhy{?\Sigma , B , ?C}  }
1111 4 adas
}{
1112 4 adas
\vlin{\rho'}{}{!C^\perp , \Delta}{\vlhy{\vlvdots}}
1113 4 adas
}
1114 4 adas
}
1115 4 adas
\]
1116 4 adas
Now, if $!C^\perp$ is principle for $\rho'$ then $\rho'\in \{! , \indr\}$ and so $\Delta $ must be $?$-ed; in this case we are able to apply the transformation \eqref{eqn:com-case-unary-simple}. Otherwise $A^\perp$ is not principal for $\rho'$ and so $\rho' \notin \{! , \indr \}$, which means we can apply \ref{subcase:unary-commutation-vanilla} along this side of the subproof.
1117 4 adas
\item $\rho$ is a $\indr$-step. Therefore $\Gamma$ has the form $? \Sigma , B^\perp(x), B(s x) $ and $A$ has the form $?C$, and the argument is similar to the case above.
1118 4 adas
% yielding the following situation:
1119 4 adas
%\[
1120 4 adas
%\vlderivation{
1121 4 adas
%	\vliin{\cut}{}{? \Sigma, B^\perp (0) , B(t), \Delta }{
1122 4 adas
%		\vlin{\indr}{}{? \Sigma, B^\perp (0) , B(t) , ?C}{\vlhy{?\Sigma , B^\perp(x) , B(s x) , ?C}  }
1123 4 adas
%	}{
1124 4 adas
%	\vlin{\rho'}{}{!C^\perp , \Delta}{\vlhy{\vlvdots}}
1125 4 adas
%}
1126 4 adas
%}
1127 4 adas
%\]
1128 4 adas
\end{enumerate}
1129 4 adas
1130 4 adas
1131 4 adas
1132 4 adas
\item A cut-step is immediately preceded by a $\vlte $-step:
1133 4 adas
\[
1134 4 adas
\vlderivation{
1135 4 adas
\vliin{\cut}{}{\Gamma,\Delta,\Sigma,A\vlte B }{
1136 4 adas
\vliin{\vlte}{}{\Gamma,\Delta,A\vlte B,C }{\vlhy{\Gamma,A,C}}{\vlhy{\Delta,B}}
1137 4 adas
}{\vlhy{ \Sigma , C^\bot  }}
1138 4 adas
}
1139 4 adas
\quad\to\quad
1140 4 adas
\vlderivation{
1141 4 adas
\vliin{\vlte}{}{\Gamma,\Delta,\Sigma,A\vlte B}{
1142 4 adas
\vliin{\cut}{}{\Gamma,\Sigma,A}{\vlhy{\Gamma,A,C}}{\vlhy{\Sigma,C^\bot}}
1143 4 adas
}{\vlhy{\Delta,B}}
1144 4 adas
}
1145 4 adas
\]
1146 4 adas
%Notice that this commutation might increase the height of any cuts below along the right branch of the indicated cut, but decreases the height along the left branch.
1147 4 adas
\item\label{CommCaseAmpersand} A cut-step is immediately preceded by a $\vlan$-step.
1148 4 adas
\[
1149 4 adas
\vlderivation{
1150 4 adas
\vliin{\cut}{}{ \Gamma,\Delta,A\vlan B }{ \vliin{\vlan}{}{\Gamma,A\vlan B,C}{ \vlhy{\Gamma,A,C} }{\vlhy{\Gamma,B,C}}}{ \vlhy{\Delta, C^\bot} }
1151 4 adas
}
1152 4 adas
\quad\to\quad
1153 4 adas
\vlderivation{
1154 4 adas
\vliin{\vlan}{}{\Gamma,\Delta,A\vlan B }{
1155 4 adas
\vliin{cut}{}{\Gamma,\Delta,A }{ \vlhy{\Gamma,A,C} }{ \vlhy{ \Delta,C^\bot } }
1156 4 adas
}{
1157 4 adas
\vliin{ \cut }{}{\Gamma,\Delta,B}{ \vlhy{\Gamma,B,C } }{ \vlhy{\Delta,C^\bot} }
1158 4 adas
}
1159 4 adas
}
1160 4 adas
\]
1161 4 adas
\item (No rule for cuts commuting with cuts.)
1162 4 adas
%A cut-step is immediately preceded by another cut-step:
1163 4 adas
\[
1164 4 adas
\vlderivation{
1165 4 adas
	\vliin{\cut}{}{\Gamma, \Delta, \Sigma}{
1166 4 adas
		\vliin{\cut}{}{\Gamma, \Delta, B}{\vlhy{\Gamma, A}}{\vlhy{\Delta, \lnot{A}, B}}
1167 4 adas
		}{\vlhy{\Sigma, \lnot{B}}}
1168 4 adas
	}
1169 4 adas
	\quad\to\quad
1170 4 adas
\vlderivation{
1171 4 adas
	\vliin{\cut}{}{\Gamma, \Delta, \Sigma}{\vlhy{\Gamma, A}}{
1172 4 adas
		\vliin{\cut}{}{\Delta, \Sigma, \lnot{A}}{\vlhy{\Delta, \lnot{A}, B}}{\vlhy{\Sigma, \lnot{B}}}
1173 4 adas
		}
1174 4 adas
	}
1175 4 adas
\]
1176 4 adas
\end{enumerate}
1177 4 adas
1178 4 adas
1179 4 adas
1180 4 adas
\subsection{Key cases: structural steps}
1181 4 adas
%[THIS SECTION MIGHT NOT BE NECESSARY]
1182 4 adas
We attempt to permute cuts on exponential formulae over structural steps whose principal formula is active for the cut.
1183 4 adas
1184 4 adas
We use the commutative case \ref{CaseCommOneStep} to assume that the topmost cut-step in a sequence has already been permuted up to its origin on the $!$-side.
1185 4 adas
1186 4 adas
We have two cases.
1187 4 adas
\begin{enumerate}
1188 4 adas
\item\label{StructStepCont} The structural step preceding the cut is a weakening:
1189 4 adas
\[
1190 4 adas
\vlderivation{
1191 4 adas
\vliin{\cut}{}{?\Gamma,\Delta}{ \vlin{!}{}{ ?\Gamma,!A }{ \vlhy{?\Gamma , A} } }{ \vlin{w}{}{ ?A^\bot }{ \vlhy{\Delta	} } }
1192 4 adas
}
1193 4 adas
\quad\to\quad
1194 4 adas
\vlinf{w}{}{?\Gamma,\Delta}{ \Delta }
1195 4 adas
\]
1196 4 adas
%\item The structural step preceding the cut is a contraction:
1197 4 adas
%\[
1198 4 adas
%\vlderivation{
1199 4 adas
%\vliin{\cut}{}{ ?\Gamma,\Delta }{
1200 4 adas
% \vlin{!}{}{ ?\Gamma,!A }{ \vlhy{?\Gamma , A} }
1201 4 adas
%}{ \vlin{c}{}{ ?A^\bot , \Delta }{ \vlhy{ ?A^\bot , ?A^\bot ,  \Delta} } }
1202 4 adas
%}
1203 4 adas
%\quad\to\quad
1204 4 adas
%\vlderivation{
1205 4 adas
%\vliq{c}{}{?\Gamma, \Delta}{
1206 4 adas
%\vliin{\cut}{}{?\Gamma, ?\Gamma,\Delta }{
1207 4 adas
% \vlin{!}{}{ ?\Gamma,!A }{ \vlhy{?\Gamma , A} }
1208 4 adas
%}{
1209 4 adas
%\vliin{\cut}{}{?\Gamma,?A^\bot , \Delta }{
1210 4 adas
% \vlin{!}{}{ ?\Gamma,!A }{ \vlhy{?\Gamma , A} }
1211 4 adas
%}{ \vlhy{?A^\bot , ?A^\bot , \Delta } }
1212 4 adas
%}
1213 4 adas
%}
1214 4 adas
%}
1215 4 adas
%\]
1216 4 adas
%OR use a multicut:
1217 4 adas
%\[
1218 4 adas
%\vlderivation{
1219 4 adas
%\vliin{\cut}{}{ ?\Gamma,\Delta }{
1220 4 adas
% \vlin{!}{}{ ?\Gamma,!A }{ \vlhy{?\Gamma , A} }
1221 4 adas
%}{ \vlin{c}{}{ ?A^\bot , \Delta }{ \vlhy{ ?A^\bot , ?A^\bot ,  \Delta} } }
1222 4 adas
%}
1223 4 adas
%\quad\to\quad
1224 4 adas
%\vlderivation{
1225 4 adas
%\vliin{\multicut}{}{?\Gamma,?A^\bot , \Delta }{
1226 4 adas
% \vlin{!}{}{ ?\Gamma,!A }{ \vlhy{?\Gamma , A} }
1227 4 adas
%}{ \vlhy{?A^\bot , ?A^\bot , \Delta } }
1228 4 adas
%}
1229 4 adas
%\]
1230 4 adas
\item The structural step preceding a cut is a contraction:
1231 4 adas
\[
1232 4 adas
\vlderivation{
1233 4 adas
	\vliin{\cut}{}{?\Gamma, \Sigma }{ \vlhy{?\Gamma,!A^\bot} }{
1234 4 adas
		\vlin{\cntr}{}{ ?A,\Sigma }{ \vlhy{ ?A,?A,\Sigma } }
1235 4 adas
	}
1236 4 adas
}
1237 4 adas
\quad\to\quad
1238 4 adas
\vlderivation{
1239 4 adas
	\vliq{\cntr}{}{ ?\Gamma,\Sigma }{
1240 4 adas
		\vliin{\cut}{}{ ?\Gamma,?\Gamma,\Sigma }{ \vlhy{?\Gamma,!A^\bot } }{
1241 4 adas
			\vliin{\cut}{}{ ?A,?\Gamma,\Sigma }{ \vlhy{?\Gamma,!A^\bot} }{ \vlhy{ ?A,?A,?\Delta,\Sigma } }
1242 4 adas
		}
1243 4 adas
	}
1244 4 adas
}
1245 4 adas
\]
1246 4 adas
%\item The structural step preceding a cut is a parallel contraction:
1247 4 adas
%\[
1248 4 adas
%\vlderivation{
1249 4 adas
%\vliin{\cut}{}{?\Gamma,?\Delta, \Sigma }{ \vlhy{?\Gamma,!A^\bot} }{
1250 4 adas
%\vlin{}{}{ ?A,?\Delta,\Sigma }{ \vlhy{ ?A,?A,?\Delta,?\Delta,\Sigma } }
1251 4 adas
%}
1252 4 adas
%}
1253 4 adas
%\quad\to\quad
1254 4 adas
%\vlderivation{
1255 4 adas
%\vlin{}{}{ ?\Gamma,?\Delta,\Sigma }{
1256 4 adas
%\vliin{\cut}{}{ ?\Gamma,?\Gamma,?\Delta,?\Delta,\Sigma }{ \vlhy{?\Gamma,!A^\bot } }{
1257 4 adas
%\vliin{\cut}{}{ ?A,?\Gamma,?\Delta,?\Delta,\Sigma }{ \vlhy{?\Gamma,!A^\bot} }{ \vlhy{ ?A,?A,?\Delta,?\Delta,\Sigma } }
1258 4 adas
%}
1259 4 adas
%}
1260 4 adas
%}
1261 4 adas
%\]
1262 4 adas
\end{enumerate}
1263 4 adas
1264 4 adas
\subsection{Key cases: logical steps}
1265 4 adas
Finally, once all cuts have been permuted maximally on both sides, we have the cases when the cut-formula is principal for a preceding logical step on both sides. We have three cases, one for every pair of connectives.
1266 4 adas
\begin{enumerate}
1267 4 adas
\item The cut-formula is multiplicative:
1268 4 adas
\[
1269 4 adas
\vlderivation{
1270 4 adas
\vliin{\cut}{}{ \Gamma,\Delta,\Sigma }{
1271 4 adas
\vliin{\vlte}{}{ \Gamma,\Delta,A\vlte B }{ \vlhy{\Gamma,A} }{ \vlhy{\Delta,B} }
1272 4 adas
}{ \vlin{\vlpa}{}{ \Sigma, A^\bot \vlpa B^\bot }{ \vlhy{\Sigma , A^\bot , B^\bot} } }
1273 4 adas
}
1274 4 adas
\quad\to\quad
1275 4 adas
\vlderivation{
1276 4 adas
\vliin{\cut}{}{ \Gamma,\Delta,\Sigma }{ \vlhy{\Gamma,A} }{
1277 4 adas
\vliin{\cut}{}{ \Delta,\Sigma,A^\bot }{ \vlhy{\Delta,B} }{ \vlhy{\Sigma , A^\bot,B^\bot } }
1278 4 adas
}
1279 4 adas
}
1280 4 adas
\]
1281 4 adas
\item The cut-formula is additive,
1282 4 adas
\[
1283 4 adas
\vlderivation{
1284 4 adas
\vliin{\cut}{}{ \Gamma,\Delta }{
1285 4 adas
\vliin{\vlan}{}{ \Gamma,A\vlan B }{ \vlhy{\Gamma,A} }{ \vlhy{\Gamma,B} }
1286 4 adas
 }{ \vlin{\vlor}{}{ \Delta,A^\bot\vlor B^\bot }{ \vlhy{\Delta, A^\bot } } }
1287 4 adas
}
1288 4 adas
\quad\to\quad
1289 4 adas
\vliinf{\cut}{}{ \Gamma,\Delta }{ \Gamma,A }{ \Delta,A^\bot }
1290 4 adas
\]
1291 4 adas
where the case for the other $\vlor$-rule is symmetric.
1292 4 adas
\item The cut-formula is exponential.
1293 4 adas
\[
1294 4 adas
\vlderivation{
1295 4 adas
\vliin{\cut}{}{ ?\Gamma,\Delta }{
1296 4 adas
 \vlin{!}{}{ ?\Gamma,!A }{ \vlhy{?\Gamma , A} }
1297 4 adas
}{
1298 4 adas
\vlin{?}{}{ \Delta,?A^\bot }{ \vlhy{\Delta, A^\bot } }
1299 4 adas
}
1300 4 adas
}
1301 4 adas
\quad\to\quad
1302 4 adas
\vliinf{\cut}{}{ ?\Gamma,\Delta }{ ?\Gamma,A }{ \Delta,A^\bot }
1303 4 adas
\]
1304 4 adas
\item The cut-formula is quantified.
1305 4 adas
\[
1306 4 adas
\vlderivation{
1307 4 adas
	\vliin{\cut}{}{\Gamma, \Delta}{
1308 4 adas
		\vlin{\forall}{}{\Gamma, \forall x. A(x)}{\vltr{\pi(a)}{\Gamma, A(a)}{\vlhy{\quad}}{\vlhy{}}{\vlhy{\quad}}}
1309 4 adas
		}{
1310 4 adas
		\vlin{\exists}{}{\Delta, \exists x . \lnot{A}(x)}{\vlhy{\Delta, \lnot{A}(t)}}
1311 4 adas
		}
1312 4 adas
	}
1313 4 adas
	\quad \to \quad
1314 4 adas
	\vlderivation{
1315 4 adas
		\vliin{\cut}{}{\Gamma, \Delta}{
1316 4 adas
			\vltr{\pi(t)}{\Gamma, A(t)}{\vlhy{\quad}}{\vlhy{}}{\vlhy{\quad}}
1317 4 adas
			}{\vlhy{\Delta, \lnot{A}(t)}}
1318 4 adas
		}
1319 4 adas
\]
1320 4 adas
\end{enumerate}
1321 4 adas
1322 4 adas
1323 2 adas
\end{document}