Statistiques
| Révision :

root / CSL16 / appendix-free-cut-elim.tex @ 126

Historique | Voir | Annoter | Télécharger (28,47 ko)

1 113 adas
\section{Proofs and further remarks for Sect.~\ref{sect:free-cut-elim}}
2 106 pbaillot
3 113 adas
\paragraph*{Discussion on Dfn.~\ref{def:anchoredcut}}
4 113 adas
 Our first idea would be to consider as anchored  a cut whose cut-formulas  $A$ in the two premises are both principal for their rule, and at least one of these rules is non-logical. Now, the problem with this tentative definition is that a rule (R) of  $\mathcal T$ can contain several principal formulas  (in $\Sigma'$, $\Delta'$) and so we would like to allow an anchored cut on each of these principal formulas.
5 113 adas
  % Consider for instance the following derivation, where we have underlined principal formulas:
6 113 adas
  Consider the following derivation, where principal formulas are underlined:
7 113 adas
\[
8 113 adas
\vlderivation{
9 113 adas
\vliin{\cut_2}{}{\seqar \Pi}{
10 113 adas
\vliin{\cut_1}{}{\seqar C \land D}{
11 113 adas
\vlin{\rigrul{\lor}}{}{ \seqar\underline{ A \lor B} }{\vlhy{\seqar A,B}}
12 113 adas
}{
13 113 adas
\vlin{(R)}{}{ \underline{A\lor B} \seqar \underline{C\land D} }{ \vlhy{\Sigma \seqar \Delta} }
14 113 adas
}
15 113 adas
}{
16 113 adas
\vlin{\lefrul{\land}}{}{ \underline{C\land D} \seqar \Pi }{\vlhy{C, D \seqar \Pi}}
17 113 adas
}
18 113 adas
}
19 113 adas
\]
20 113 adas
21 113 adas
  Here $cut_1$ is anchored in this sense, but not $cut_2$. This is why we need the more general definition of \emph{hereditarily principal formula}.
22 113 adas
23 113 adas
24 110 adas
 \begin{proof}
25 110 adas
 	[Proof of Lemma~\ref{lem:hereditaryprincipalnonlogical}]
26 113 adas
 	Assume that $A$ is an occurrence of formula on the LHS of the sequent and hereditarily principal for a non-logical rule (R), then a direct ancestor of this formula is principal for (R) and thus by condition 4. $A$ cannot be of the form $?A'$. The other case is identical.
27 110 adas
 \end{proof}
28 110 adas
29 106 pbaillot
     Define the  \textit{degree} of a formula as the number of logical connectives or quantifiers in it.  Let us first state an easy building-block of the proof, which comes from standard linear logic:
30 106 pbaillot
    \begin{lemma}[Logical non-exponential cut-elimination steps]\label{lem:logical steps}
31 106 pbaillot
    Any cut $c$ whose cut-formulas $A$ are both principal formulas of logical rules distinct from $?$, $!$, $wk$, $cntr$ rules can be replaced in one step by cuts on formulas of strictly lower degree (0, 1 or 2 cuts).
32 106 pbaillot
    \end{lemma}
33 106 pbaillot
    \begin{proof}
34 106 pbaillot
    This is exactly as in plain linear logic. Just note that the case of a quantifier formula involves a substitution by a term $t$ throughout the proof, and this is where we need condition 3 on non-logical rules requiring that they are closed by substitution.
35 106 pbaillot
    \end{proof}
36 106 pbaillot
37 113 adas
Now we have all the necessary lemmas to proceed with the proof of the main theorem.
38 113 adas
    \begin{proof}[Proof of Thm  \ref{thm:free-cut-elim}]
39 106 pbaillot
    Given a cut rule $c$ in a proof $\pi$, we call  \emph{degree} $\deg( c)$  the number of connectives and quantifiers of its  cut-formula. Now the \emph{degree} of the proof $\deg( \pi)$ is the multiset of the degrees of its non-anchored formulas. The degrees will be compared with the multiset ordering.
40 106 pbaillot
       The demonstration proceeds by induction on the degree  $\deg( \pi)$.  For a given degree we proceed with a sub-induction on the \textit{height} $\height{\pi}$ of the proof.
41 106 pbaillot
42 106 pbaillot
    Consider a proof $\pi$ of non-null degree. We want to show how to reduce it to a proof of strictly lower degree. Consider a top-most non-anchored cut $c$ in $\pi$, that is to say such that there is no non-anchored cut above $c$.  Let us call $A$ the cut-formula, and $(S_1)$ (resp. $(S_2)$) the rule above the left (resp. right) premise of $c$.
43 106 pbaillot
\[
44 106 pbaillot
     \vliinf{c \; \; \cut}{}{\Gamma, \Sigma \seqar \Delta , \Pi}{ \vlinf{S_1}{}{\Gamma \seqar \Delta, A}{} }{\vlinf{S_2}{}{\Sigma, A \seqar \Pi}{}}
45 106 pbaillot
\]
46 116 pbaillot
    Intuitively we proceed as follows: if $A$ is not hereditarily principal in one of its premises  we will try to commute $c$ with the rule along its left premise  $(S_1)$, and if it is not possible commute it   with the rule along its right premise  $(S_2)$, by using Lemmas \ref{lem:hereditaryprincipalnonlogical}, \ref{lem:standardcommutations} and \ref{lem:keycommutations}; if $A$ is hereditarily principal in both premises we proceed with a cut-elimination step, as in standard linear logic. For this second step, the delicate part is the elimination of exponential cuts, for which we use a big-step reduction; it works well because the contexts in the non-logical rules $(R)$ are marked with $!$ (resp. $?$) on the LHS (resp. RHS).
47 106 pbaillot
48 106 pbaillot
    So, let us distinguish the various cases:
49 106 pbaillot
       \begin{itemize}
50 113 adas
    \item \textbf{First case}: the cut-formula $A$ on the LHS of  $c$ is not hereditarily principal.
51 106 pbaillot
52 106 pbaillot
\begin{itemize}
53 106 pbaillot
\item Consider first the situation where $(S_1)$ is not one of the rules $(\rigrul{!})$, $(\lefrul{?})$, $(R)$.
54 106 pbaillot
55 106 pbaillot
In this case the commutation of $c$ with $(S_1)$ can be done in the usual way, by using Lemma \ref{lem:standardcommutations}. Let us handle as an example the case where $(S_1)=(\rigrul{\laand})$.
56 113 adas
57 106 pbaillot
\[
58 113 adas
\begin{array}{cc}
59 113 adas
& \vlderivation{
60 106 pbaillot
\vliin{c}{}{ \Gamma, \Sigma \seqar B_1\vlan B_2, \Delta, \Pi }{ \vliin{S_1=\rigrul{\vlan}}{}{\Gamma  \seqar B_1\vlan B_2, \Delta, A}{ \vlhy{\Gamma  \seqar B_1, \Delta, A} }{\vlhy{\Gamma  \seqar  B_2,\Delta, A}}}{ \vlhy{ \Sigma, A \seqar  \Pi} }
61 113 adas
} \\
62 113 adas
\noalign{\bigskip}
63 113 adas
\to\qquad\qquad
64 113 adas
& \vlderivation{
65 106 pbaillot
\vliin{\rigrul{\vlan}}{}{  \Gamma, \Sigma \seqar B_1\vlan B_2, \Delta, \Pi  }{
66 106 pbaillot
\vliin{c_1}{}{\Gamma,\Sigma \seqar B_1, \Delta, \Pi }{ \vlhy{\Gamma  \seqar B_1, \Delta, A} }{\vlhy{ \Sigma, A \seqar  \Pi} }
67 106 pbaillot
}{
68 106 pbaillot
\vliin{c_2}{}{\Gamma,\Sigma \seqar B_2, \Delta, \Pi }{ \vlhy{\Gamma  \seqar B_2, \Delta, A} }{\vlhy{ \Sigma, A \seqar  \Pi} }
69 106 pbaillot
}
70 106 pbaillot
}
71 113 adas
\end{array}
72 106 pbaillot
\]
73 106 pbaillot
74 113 adas
75 106 pbaillot
Observe that here $c$ is replaced by two cuts $c_1$ and $c_2$. Call $\pi_i$ the sub-derivation of last rule $c_i$, for $i=1,2$. As for $i=1, 2$ we have
76 106 pbaillot
$\deg{\pi_i}\leq \deg{\pi}$ and $\height{\pi_i}< \height{\pi}$ we can apply the induction hypothesis, and reduce $\pi_i$ to a proof $\pi'_i$ of same conclusion and with
77 106 pbaillot
$\deg{\pi'_i} < \deg{\pi_i}$. Therefore  by replacing $\pi_i$ by $\pi'_i$ for $i=1, 2$ we obtain a proof $\pi'$ such that $\deg{\pi'}<\deg{\pi}$.
78 106 pbaillot
79 113 adas
The case (S)=($\lefrul{\laor}$) is identical, and the other cases are simpler. % (see the Appendix for more examples).
80 106 pbaillot
81 113 adas
\item Consider now the case where $(S_1)$ is equal to $(\rigrul{!})$, $(\lefrul{?})$ or $(R)$. Let us also assume that the cut-formula is hereditarily principal in its RHS premise, because if this does not hold we can move to the second case below.
82 106 pbaillot
83 113 adas
First consider  $(S_1)=(\rigrul{!})$. As $A$ is not principal in the conclusion of $(\rigrul{!})$ it is of the form $A=?A'$. By assumption we know that  $A=?A'$ in the conclusion of $(S_2)$ is hereditarily principal on the LHS, so by Lemma \ref{lem:hereditaryprincipalnonlogical} it cannot be hereditarily principal for a non-logical rule, so by definition of hereditarily principal we deduce that $(S_2)$ is not an $(R)$ rule. It cannot be an  $(\rigrul{!})$ rule either because then $?A'$ could not be a principal formula in its conclusion. Therefore the only possibility is that
84 113 adas
 $(S_2)$ is an  $(\lefrul{?})$ rule. So the RHS premise is of the shape $?A',!\Gamma' \seqar ?\Pi'$ and by Lemma \ref{lem:keycommutations} the commutation on the LHS is possible. We can conclude as previously. The case where  $(S_1)=(\lefrul{?})$ is the same.
85 106 pbaillot
86 113 adas
 Now consider the case where $(S_1)=(R)$.  As $A$ is not hereditarily principal in the conclusion of $(R)$, it is a context formula and it is on the RHS, so by definition of $(R)$ rules it is  the form $A=?A'$. So as before by Lemma \ref{lem:hereditaryprincipalnonlogical} we deduce that   $(S_2)=(\lefrul{?})$, and  so the RHS premise is of the shape $?A',!\Gamma' \seqar ?\Pi'$.  By Lemma \ref{lem:keycommutations} the commutation on the LHS is possible, and so again we conclude as previously.
87 106 pbaillot
 \end{itemize}
88 113 adas
    \item \textbf{Second case}: the cut-formulas on the LHS and RHS of  $c$ are both not hereditarily principal.
89 106 pbaillot
90 106 pbaillot
   After the first case we are here left with the situation where  $(S_1)$ is equal to $(\rigrul{!})$, $(\lefrul{?})$ or $(R)$.
91 106 pbaillot
   \begin{itemize}
92 106 pbaillot
    \item Consider the case where  $(S_1)$=$(\rigrul{!})$, $(\lefrul{?})$, so $A$ is of the form $A=?A'$. All cases of commutation of $c$ with $(S_2)$ are as in standard linear logic, except if $(S_2)=(R)$. In this case though we cannot have $A=?A'$ because of the shape of rule $(R)$. So we are done.
93 113 adas
    \item Consider  $(S_1)=(R)$. Again as $A$ is not principal in the conclusion of $(S_1)$ and on the RHS of the sequent it is a context formula, and thus of the form  $A=?A'$. As $?A'$ is not principal in the conclusion of $(S_2)$, it is thus a context formula on the LHS of sequent, and therefore $(S_2)$ is not a rule $(R)$. So $(S_2)$ is a logical rule. If it is not an $(\rigrul{!})$ or an $(\lefrul{?})$ it admits commutation with the cut, and we are done. If it is equal to $(\rigrul{!})$ or $(\lefrul{?})$ it cannot have $?A'$ as a context formula in the LHS of its conclusion, so these subcases do not occur.
94 106 pbaillot
   \end{itemize}
95 106 pbaillot
96 106 pbaillot
97 113 adas
    \item \textbf{Third case}: the cut-formulas on the LHS and RHS of  $c$ are both  hereditarily principal.
98 106 pbaillot
99 106 pbaillot
    By assumption $c$ is non anchored, so none of the two cut-formulas is hereditarily principal for a non-logical rule $(R)$. We can deduce from that
100 113 adas
    that the LHS cut-formula is principal for $(S_1)$ and the RHS cut-formula is principal for $(S_2)$. Call $\pi_1$ (resp. $\pi_2$) the subderivation
101 106 pbaillot
    of last rule $(S_1)$ (resp. $(S_2)$).
102 106 pbaillot
103 106 pbaillot
    Then we consider the following sub-cases, in order:
104 106 pbaillot
     \begin{itemize}
105 113 adas
         \item \textbf{weakening sub-case}: this is the case  when one of the premises of $c$ is a $wk$ rule. Without loss of generality assume that it is the left premise of $c$ which is conclusion of $\rigrul{\wk}$, with principal formula $A$. We eliminate the cut by keeping only the LHS proof $\pi_1$, removing the last cut $c$ and last    $\rigrul{\wk}$ rule    on $A$, and by adding enough
106 106 pbaillot
        $\rigrul{\wk}$, $\lefrul{\wk}$ rules to introduce all the new formulas in the final sequent.  The degree has decreased.
107 106 pbaillot
108 106 pbaillot
      \item \textbf{exponential sub-case}: this is when one of the premises of $c$ is conclusion of a $cntr$, $\rigrul{?}$ or $\lefrul{!}$ rule on a formula $?A$ or $!A$, and the other one is not a conclusion of $\wk$.
109 106 pbaillot
110 113 adas
       Assume without loss of generality that it is the right premise which is conclusion of $\lefrul{\cntr}$ or $\lefrul{!}$ on $!A$, and thus the only possibility for the left premise is to  be conclusion of $\rigrul{!}$.  This is rule $(S_1)$ on the picture, last rule of the subderivation $\pi_1$, and we denote its conclusion as $!\Gamma' \seqar ?\Delta', !A$. We will use here a global rewriting step. For that consider in $\pi_2$ all the top-most direct ancestors of the cut-formula $!A$, that is to say direct ancestors which do not have any more direct ancestors above. Let us denote them as $!A^{j}$ for $1\leq j \leq k$. Observe that each $!A^{j}$ is principal formula of a rule $\lefrul{!}$ or $\lefrul{wk}$. Denote by $\rho$ the subderivation
111 106 pbaillot
       of $\pi_2$ which has as leaves the sequents premises of these  $\lefrul{!}$ or $\lefrul{wk}$ rules with conclusion containing $!A^{j}$.
112 113 adas
       Let $\rho'$ be a derivation obtained from $\rho$ by renaming if necessary eigenvariables occurring in premises of rules $\lefrul{\exists}$, $\rigrul{\forall}$, $(R)$  so that none of them belongs to $FV(!\Gamma', ?\Delta')$, where we recall that $!\Gamma' \seqar ?\Delta',!A$ is the LHS premise of the cut $c$.
113 106 pbaillot
  Now, let $\pi'_1$ be the immediate subderivation of $\pi_1$, of conclusion       $!\Gamma' \seqar ?\Delta',A$.  We then define the derivation
114 106 pbaillot
  $\rho''$ obtained from   $\rho'$ in the following way:
115 106 pbaillot
  \begin{itemize}
116 106 pbaillot
  \item add a cut $c_j$ with (a copy) of $\pi'_1$ on $A^j$ at each leaf which is premise of a rule  $\lefrul{!}$;
117 113 adas
  \item add to each sequent coming from $\rho'$  an additional context $!\Gamma'$ on the LHS and an additional context $?\Delta'$ on the RHS, and additional $wk$ rules to introduce these formulas below the $\lefrul{wk}$ rules on formulas $!A^{j}$;
118 106 pbaillot
  \item introduce suitable $\lefrul{cntr}$ and $\rigrul{cntr}$ rules after multiplicative binary rules $\rigrul{\land}$, $\lefrul{\lor}$  in such a way to replace $!\Gamma', !\Gamma'$ (resp. $?\Delta', ?\Delta'$) by  $!\Gamma'$ (resp. $?\Delta'$).
119 106 pbaillot
  \end{itemize}
120 106 pbaillot
121 113 adas
  It can be checked that  $\rho''$ is a valid derivation, because all the conditions for context-sensitive rules $(\rigrul{\forall})$, $(\lefrul{\exists})$, $(\rigrul{!})$, $(\lefrul{?})$, $(R)$ are satisfied. In particular the rules $(\rigrul{!})$, $(\lefrul{?})$, $(R)$ are satisfied because the contexts have been enlarged with $!$ formulas on the LHS of the sequents ($!\Gamma'$) and ?  formulas on the RHS. of the sequents ($?\Gamma'$).
122 106 pbaillot
123 106 pbaillot
  Now, let $\pi'$ be the derivation obtained from $\pi$ by removing the cut $c$ and replacing the subderivation $\rho$ by $\rho''$. The derivation $\pi'$ is a valid one, it has the same conclusion $!\Gamma', \Sigma \seqar ?\Delta', \Pi$ and with respect to $\pi$ we have replaced one non-anchored cut $c$ with at most $k$ ones $c_j$, but which are of strictly lower degree. So $\deg(\pi')<\deg(\pi)$ and we are done.
124 106 pbaillot
125 106 pbaillot
126 106 pbaillot
      \item \textbf{logical sub-case}: we are now left with the case where both premises of $c$ are conclusions of rules others than $?$, $!$, $wk$, $cntr$. We can thus apply Lemma \ref{lem:logical steps}.
127 106 pbaillot
         If one of the premises is an axiom $\lefrul{\bot}$, $\id$ or $\rigrul{\bot}$, then $\pi$ can be rewritten to a suitable proof $\pi'$ by removing $c$ and the axiom rule. Otherwise both premises introduce the same connective, either  $\land$, $\lor$, $\laor$, $\laand$, $\forall$ or $\exists$. In each case a specific rewriting rule replaces the cut $c$ with one cut of strictly lower degree.
128 106 pbaillot
      %See the Appendix.
129 106 pbaillot
           \end{itemize}
130 106 pbaillot
     \end{itemize}
131 106 pbaillot
     \end{proof}
132 113 adas
133 113 adas
134 113 adas
%\begin{remark}
135 113 adas
%[Complexity]
136 113 adas
%The exponential sub-case replaces a cut of degree $d$ by at most $|\pi|$ cuts of degree $d-1$, and also at most squares the size of the proof.
137 113 adas
%\end{remark}
138 106 pbaillot
139 106 pbaillot
%\section{Some cut-elimination cases}
140 106 pbaillot
%We work in a one-sided calculus for full linear logic. When working in the affine setting we simply drop the condition that weakened formulae are $?$-ed.
141 106 pbaillot
%
142 106 pbaillot
%As well as all usual rules, we have the induction rule:
143 106 pbaillot
%\[
144 106 pbaillot
%\vlinf{\indr}{(x \notin FV (\Gamma) )}{? \Gamma, A^\perp (0) , A(t)}{? \Gamma , A^\perp (x) , A(s x) }
145 106 pbaillot
%\]
146 106 pbaillot
%
147 106 pbaillot
%We give all the various cut-reduction cases in the following section but first we give a simple cut-elimination argument.
148 106 pbaillot
%
149 106 pbaillot
%\subsection{A basic (free-)cut elimination argument}
150 106 pbaillot
%We give an argument that easily scales to free-cut elimination, i.e.\ in the presence of non-logical rules.
151 106 pbaillot
%
152 106 pbaillot
%\newcommand{\anarrow}[2]{\overset{#1}{\underset{#2}{\longrightarrow}}}
153 106 pbaillot
%\newcommand{\cutredlin}{\mathit{ma}}
154 106 pbaillot
%\newcommand{\cutredexp}{exp}
155 106 pbaillot
%
156 106 pbaillot
%\begin{definition}
157 106 pbaillot
%	Let $\anarrow{}{\cutredexp}$ denote the reduction steps concerning exponential cuts, and $\anarrow{}{\cutredlin}$ be the set of cut-reduction steps concerning multiplicative and additive cuts.
158 106 pbaillot
%\end{definition}
159 106 pbaillot
%
160 106 pbaillot
%\newcommand{\rk}{\mathsf{rk}}
161 106 pbaillot
%	\renewcommand{\deg}{\mathsf{deg}}
162 106 pbaillot
%\begin{definition}
163 106 pbaillot
%	[Measures]
164 106 pbaillot
%	For a $\anarrow{}{\cutredlin}$-redex $r$, let its \emph{degree} $\deg( r)$ be the number of logical connectives or quantifiers in its cut-formula. For a proof $\pi$, its \emph{degree} $\deg( \pi)$ is the multiset of the degree of its redexes.
165 106 pbaillot
%\end{definition}
166 106 pbaillot
%
167 106 pbaillot
%\begin{proposition}
168 106 pbaillot
%If $\pi$ is not $\anarrow{}{\cutredlin}$-normal then there is a derivation $L:\pi \anarrow{*}{\cutredlin} \pi'$ such that $\deg(\pi')< \deg(\pi)$.
169 106 pbaillot
%\end{proposition}
170 106 pbaillot
%\begin{proof}
171 106 pbaillot
%	First let us show the statement in the special case that $\pi$ contains precisely one $\cut$-inference as its final step, by induction on $|\pi|$. Each commutative $\anarrow{}{\cutredlin}$-step results in us being able to apply the inductive hypothesis to smaller proofs,- in the case of $\vlan $ two smaller proofs. Each key $\anarrow{}{\cutredlin}$-case strictly reduces the degree of the proof. Consequently we can eventually transform $\pi$ to a proof $\pi'$ which has possibly several cuts of smaller degree, as required.
172 106 pbaillot
%
173 106 pbaillot
%	Now to the general case, we simply apply the above procedure to the subproof above a topmost cut in $\pi$.
174 106 pbaillot
%\end{proof}
175 106 pbaillot
%\begin{corollary}
176 106 pbaillot
%	$\anarrow{}{\cutredlin}$ is weakly normalising.
177 106 pbaillot
%\end{corollary}
178 106 pbaillot
%
179 106 pbaillot
%
180 106 pbaillot
%\newcommand{\cntdown}{\mathit{cn}}
181 106 pbaillot
%\begin{definition}
182 106 pbaillot
%	[Lazy contraction]
183 106 pbaillot
%	Let $\anarrow{}{\cntdown}$ comprise of the following reduction steps:
184 106 pbaillot
%	\begin{enumerate}
185 106 pbaillot
%		\item The commuting steps,
186 106 pbaillot
%			\[
187 106 pbaillot
%			\vlderivation{
188 106 pbaillot
%				\vlin{\rho}{}{\Gamma', ?A, }{
189 106 pbaillot
%					\vlin{\cntr}{}{\Gamma, ?A}{\vlhy{\Gamma, ? A, ? A}}
190 106 pbaillot
%				}
191 106 pbaillot
%			}
192 106 pbaillot
%			\quad\to \quad
193 106 pbaillot
%			\vlderivation{
194 106 pbaillot
%				\vlin{\cntr}{}{\Gamma', ?A}{
195 106 pbaillot
%					\vlin{\rho}{}{\Gamma', ?A, ?A}{\vlhy{\Gamma, ? A, ? A}}
196 106 pbaillot
%				}
197 106 pbaillot
%			}
198 106 pbaillot
%			\]
199 106 pbaillot
%			for each unary rule $\rho$.
200 106 pbaillot
%			\item
201 106 pbaillot
%			The key steps:
202 106 pbaillot
%			\[
203 106 pbaillot
%			\begin{array}{rcl}
204 106 pbaillot
%			\vlderivation{
205 106 pbaillot
%				\vlin{\cntr}{}{\Gamma, ?A}{
206 106 pbaillot
%					\vlin{\wk}{}{\Gamma, ?A, ?A}{\vlhy{\Gamma, ?A}}
207 106 pbaillot
%				}
208 106 pbaillot
%			}
209 106 pbaillot
%			\quad &\to & \quad
210 106 pbaillot
%			\Gamma, ?A
211 106 pbaillot
%%			\]
212 106 pbaillot
%%			and
213 106 pbaillot
%%			\[
214 106 pbaillot
%\\
215 106 pbaillot
%\noalign{\smallskip}
216 106 pbaillot
%				\vlderivation{
217 106 pbaillot
%					\vlin{\wk}{}{\Gamma, ?A, ?A}{
218 106 pbaillot
%						\vlin{\cntr}{}{\Gamma, ?A}{\vlhy{\Gamma, ?A, ?A}}
219 106 pbaillot
%					}
220 106 pbaillot
%				}
221 106 pbaillot
%				\quad &\to& \quad
222 106 pbaillot
%				\Gamma, ?A, ?A
223 106 pbaillot
%							\end{array}
224 106 pbaillot
%			\].
225 106 pbaillot
%\item The commuting steps,
226 106 pbaillot
%\[
227 106 pbaillot
%	\vlderivation{
228 106 pbaillot
%		\vliin{\rho}{}{\Gamma ,?A}{
229 106 pbaillot
%			\vlin{\cntr}{}{\Gamma_1, ?A}{\vlhy{\Gamma_1, ?A, ?A}}
230 106 pbaillot
%		}{\vlhy{\Gamma_2}}
231 106 pbaillot
%	}
232 106 pbaillot
%	\quad \to \quad
233 106 pbaillot
%	\vlderivation{
234 106 pbaillot
%		\vlin{\cntr}{}{\Gamma, ?A}{
235 106 pbaillot
%			\vliin{\rho}{}{\Gamma,?A, ?A}{\vlhy{\Gamma_1, ?A, ?A}}{ \vlhy{\Gamma_2} }
236 106 pbaillot
%		}
237 106 pbaillot
%	}
238 106 pbaillot
%\]
239 106 pbaillot
%%\[
240 106 pbaillot
%%\begin{array}{rcl}
241 106 pbaillot
%%	\vlderivation{
242 106 pbaillot
%%		\vliin{\land}{}{\Gamma, \Delta, ?A, B\land C}{
243 106 pbaillot
%%			\vlin{\cntr}{}{\Gamma, ?A, B}{\vlhy{\Gamma, ?A, ?A, B}}
244 106 pbaillot
%%		}{\vlhy{\Delta, C}}
245 106 pbaillot
%%	}
246 106 pbaillot
%%	\quad &\to &\quad
247 106 pbaillot
%%	\vlderivation{
248 106 pbaillot
%%		\vlin{\cntr}{}{\Gamma, \Delta, ?A, B\land C}{
249 106 pbaillot
%%			\vliin{\land}{}{\Gamma, \Delta, ?A, ?A, B\land C}{\vlhy{\Gamma, ?A, ?A, B}}{ \vlhy{\Delta, C} }
250 106 pbaillot
%%		}
251 106 pbaillot
%%	}
252 106 pbaillot
%%%	\]
253 106 pbaillot
%%%
254 106 pbaillot
%%%	\[
255 106 pbaillot
%%\\
256 106 pbaillot
%%\noalign{\smallskip}
257 106 pbaillot
%%	\vlderivation{
258 106 pbaillot
%%		\vliin{\cut}{}{\Gamma, \Delta, ?A}{
259 106 pbaillot
%%			\vlin{\cntr}{}{\Gamma, ?A, B}{\vlhy{\Gamma, ?A, ?A, B}}
260 106 pbaillot
%%		}{\vlhy{\Delta, \lnot{B}}}
261 106 pbaillot
%%	}
262 106 pbaillot
%%	\quad &\to& \quad
263 106 pbaillot
%%	\vlderivation{
264 106 pbaillot
%%		\vlin{\cntr}{}{\Gamma, \Delta, ?A}{
265 106 pbaillot
%%			\vliin{\cut}{}{\Gamma, \Delta, ?A, ?A}{\vlhy{\Gamma, ?A, ?A, B}}{ \vlhy{\Delta, \lnot{B}} }
266 106 pbaillot
%%		}
267 106 pbaillot
%%	}
268 106 pbaillot
%%\end{array}
269 106 pbaillot
%%\]
270 106 pbaillot
%for each binary rule $\rho \in \{ \land, \cut \}$.
271 106 pbaillot
%\item The commuting step:
272 106 pbaillot
%	\[
273 106 pbaillot
%	\vlderivation{
274 106 pbaillot
%		\vliin{\vlan}{}{\Gamma, ?A, B\vlan C}{
275 106 pbaillot
%			\vlin{\cntr}{}{\Gamma, ?A, B}{\vlhy{\Gamma, ?A, ?A, B}}
276 106 pbaillot
%		}{\vlhy{\Gamma, ?A, B}}
277 106 pbaillot
%	}
278 106 pbaillot
%	\quad \to \quad
279 106 pbaillot
%	\vlderivation{
280 106 pbaillot
%		\vlin{\cntr}{}{\Gamma, ?A, B\vlan C}{
281 106 pbaillot
%			\vliin{\vlan}{}{\Gamma, ?A, ?A, B\vlan C}{\vlhy{\Gamma, ?A, ?A, B}}{
282 106 pbaillot
%				\vlin{\wk}{}{\Gamma, ?A, ?A, C}{\vlhy{\Gamma, ?A, C}}
283 106 pbaillot
%			}
284 106 pbaillot
%		}
285 106 pbaillot
%	}
286 106 pbaillot
%	\]
287 106 pbaillot
%	\end{enumerate}
288 106 pbaillot
%	For binary rules:
289 106 pbaillot
%
290 106 pbaillot
%\end{definition}
291 106 pbaillot
%\begin{proposition}
292 106 pbaillot
%	$\anarrow{}{\cntdown}$ is weakly normalising
293 106 pbaillot
%	, modulo $\cntr$-$\cntr$ redexes,
294 106 pbaillot
%	and degree-preserving.
295 106 pbaillot
%	If $\pi$ is $\anarrow{}{\cutredlin}$-normal and $\pi \downarrow_\cntdown \pi'$, then so is $\pi'$.
296 106 pbaillot
%\end{proposition}
297 106 pbaillot
%\begin{proof}
298 106 pbaillot
%	By induction on the number of redexes in a proof. Start with bottommost redex, by induction on number of inference steps beneath it.
299 106 pbaillot
%\end{proof}
300 106 pbaillot
%
301 106 pbaillot
%\begin{remark}
302 106 pbaillot
%	Only weakly normalising since $\cntr$ can commute with $\cntr$, allowing cycles.
303 106 pbaillot
%\end{remark}
304 106 pbaillot
%
305 106 pbaillot
%\begin{proposition}
306 106 pbaillot
%	If $\pi$ is $\anarrow{}{\cutredexp}$-reducible but $\anarrow{}{\cutredlin}$- and $\anarrow{}{\cntdown}$-normal then there is a derivation $H:\pi \anarrow{*}{\cutredexp} \pi'$ such that $\deg (\pi')<\deg(\pi)$.
307 106 pbaillot
%\end{proposition}
308 106 pbaillot
%
309 106 pbaillot
%
310 106 pbaillot
%
311 106 pbaillot
%\subsection{Base cases}
312 106 pbaillot
%
313 106 pbaillot
%\[
314 106 pbaillot
%\vlderivation{
315 106 pbaillot
%\vliin{\cut}{}{ \Gamma,a }{ \vlhy{\Gamma,a} }{ \vlin{\id}{}{a,a^\bot}{ \vlhy{} } }
316 106 pbaillot
%}
317 106 pbaillot
%\quad\to\quad
318 106 pbaillot
%\vlderivation{
319 106 pbaillot
%\Gamma,a
320 106 pbaillot
%}
321 106 pbaillot
%\]
322 106 pbaillot
%
323 106 pbaillot
%\[
324 106 pbaillot
%\vlderivation{
325 106 pbaillot
%\vliin{\cut}{}{\Gamma}{ \vlin{\bot}{}{ \Gamma,\bot }{ \vlhy{\Gamma} } }{ \vlin{1}{}{1}{ \vlhy{} } }
326 106 pbaillot
%}
327 106 pbaillot
%\quad\to\quad
328 106 pbaillot
%\vlderivation{
329 106 pbaillot
%\Gamma
330 106 pbaillot
%}
331 106 pbaillot
%\]
332 106 pbaillot
%
333 106 pbaillot
%\[
334 106 pbaillot
%\vlderivation{
335 106 pbaillot
%\vliin{\cut}{}{ \Gamma,\Delta,\top }{ \vlin{\top}{}{ \Gamma,\top,0 }{ \vlhy{} } }{ \vlhy{\Delta , \top } }
336 106 pbaillot
%}
337 106 pbaillot
%\quad\to\quad
338 106 pbaillot
%\vlinf{\top}{}{ \Gamma,\Delta,\top }{}
339 106 pbaillot
%\]
340 106 pbaillot
%
341 106 pbaillot
%\subsection{Commutative cases}
342 106 pbaillot
%These are the cases when the principal formula of a step is not active for the cut-step below.
343 106 pbaillot
%
344 106 pbaillot
%\begin{enumerate}
345 106 pbaillot
%\item The cut-step is immediately preceded by an initial step. Note that only the case for $\top$ applies:
346 106 pbaillot
%\[
347 106 pbaillot
%\vlderivation{
348 106 pbaillot
%\vliin{\cut}{}{\Gamma,\Delta,\top}{
349 106 pbaillot
%\vlin{\top}{  }{ \Gamma,\top,A }{ \vlhy{} }
350 106 pbaillot
% }{ \vlhy{\Delta,A^\bot } }
351 106 pbaillot
%}
352 106 pbaillot
%\quad\to\quad
353 106 pbaillot
%\vlinf{\top}{}{ \Gamma,\Delta,\top }{}
354 106 pbaillot
%\]
355 106 pbaillot
%%Notice that this commutation eliminates the cut entirely and preserves the height of all cuts below.
356 106 pbaillot
%\item\label{CaseCommOneStep} A cut-step is immediately preceded by a step $\rho$ with exactly one premiss:
357 106 pbaillot
%\[
358 106 pbaillot
%\vlderivation{
359 106 pbaillot
%\vliin{\cut}{}{\Gamma',\Delta}{\vlin{\rho}{}{\Gamma',A}{\vlhy{\Gamma,A}}}{\vlhy{A^\bot , \Delta}}
360 106 pbaillot
%}
361 106 pbaillot
%\]
362 106 pbaillot
%We have three subcases:
363 106 pbaillot
%\begin{enumerate}
364 106 pbaillot
%\item\label{subcase:unary-commutation-vanilla}
365 106 pbaillot
%%$\Delta$ consists of only $?$-ed formulae or
366 106 pbaillot
%If $\rho \notin \{! , \indr \}$ then we can simply permute as follows:
367 106 pbaillot
%\begin{equation}
368 106 pbaillot
%\label{eqn:com-case-unary-simple}
369 106 pbaillot
%\vlderivation{
370 106 pbaillot
%\vliin{\cut}{}{\Gamma',\Delta}{\vlin{\rho}{}{\Gamma',A}{\vlhy{\Gamma,A}}}{\vlhy{A^\bot , \Delta}}
371 106 pbaillot
%}
372 106 pbaillot
%\quad \to \quad
373 106 pbaillot
%\vlderivation{
374 106 pbaillot
%\vlin{\rho}{}{\Gamma',\Delta}{
375 106 pbaillot
%\vliin{\cut}{}{\Gamma,\Delta}{\vlhy{\Gamma,A}}{\vlhy{A^\bot , \Delta}}
376 106 pbaillot
%}
377 106 pbaillot
%}
378 106 pbaillot
%\end{equation}
379 106 pbaillot
%(If $\rho$ was $\forall$ then we might need to rename some free variables in $\Delta$.)
380 106 pbaillot
%\item $\rho $ is a $!$-step. Therefore $\Gamma$ has the form $? \Sigma , B$ and $A$ has the form $?C$, yielding the following situation:
381 106 pbaillot
%\[
382 106 pbaillot
%\vlderivation{
383 106 pbaillot
%\vliin{\cut}{}{? \Sigma, !B, \Delta }{
384 106 pbaillot
%\vlin{!}{}{? \Sigma, !B , ?C}{\vlhy{?\Sigma , B , ?C}  }
385 106 pbaillot
%}{
386 106 pbaillot
%\vlin{\rho'}{}{!C^\perp , \Delta}{\vlhy{\vlvdots}}
387 106 pbaillot
%}
388 106 pbaillot
%}
389 106 pbaillot
%\]
390 106 pbaillot
%Now, if $!C^\perp$ is principle for $\rho'$ then $\rho'\in \{! , \indr\}$ and so $\Delta $ must be $?$-ed; in this case we are able to apply the transformation \eqref{eqn:com-case-unary-simple}. Otherwise $A^\perp$ is not principal for $\rho'$ and so $\rho' \notin \{! , \indr \}$, which means we can apply \ref{subcase:unary-commutation-vanilla} along this side of the subproof.
391 106 pbaillot
%\item $\rho$ is a $\indr$-step. Therefore $\Gamma$ has the form $? \Sigma , B^\perp(x), B(s x) $ and $A$ has the form $?C$, and the argument is similar to the case above.
392 106 pbaillot
%% yielding the following situation:
393 106 pbaillot
%%\[
394 106 pbaillot
%%\vlderivation{
395 106 pbaillot
%%	\vliin{\cut}{}{? \Sigma, B^\perp (0) , B(t), \Delta }{
396 106 pbaillot
%%		\vlin{\indr}{}{? \Sigma, B^\perp (0) , B(t) , ?C}{\vlhy{?\Sigma , B^\perp(x) , B(s x) , ?C}  }
397 106 pbaillot
%%	}{
398 106 pbaillot
%%	\vlin{\rho'}{}{!C^\perp , \Delta}{\vlhy{\vlvdots}}
399 106 pbaillot
%%}
400 106 pbaillot
%%}
401 106 pbaillot
%%\]
402 106 pbaillot
%\end{enumerate}
403 106 pbaillot
%
404 106 pbaillot
%
405 106 pbaillot
%
406 106 pbaillot
%\item A cut-step is immediately preceded by a $\vlte $-step:
407 106 pbaillot
%\[
408 106 pbaillot
%\vlderivation{
409 106 pbaillot
%\vliin{\cut}{}{\Gamma,\Delta,\Sigma,A\vlte B }{
410 106 pbaillot
%\vliin{\vlte}{}{\Gamma,\Delta,A\vlte B,C }{\vlhy{\Gamma,A,C}}{\vlhy{\Delta,B}}
411 106 pbaillot
%}{\vlhy{ \Sigma , C^\bot  }}
412 106 pbaillot
%}
413 106 pbaillot
%\quad\to\quad
414 106 pbaillot
%\vlderivation{
415 106 pbaillot
%\vliin{\vlte}{}{\Gamma,\Delta,\Sigma,A\vlte B}{
416 106 pbaillot
%\vliin{\cut}{}{\Gamma,\Sigma,A}{\vlhy{\Gamma,A,C}}{\vlhy{\Sigma,C^\bot}}
417 106 pbaillot
%}{\vlhy{\Delta,B}}
418 106 pbaillot
%}
419 106 pbaillot
%\]
420 106 pbaillot
%%Notice that this commutation might increase the height of any cuts below along the right branch of the indicated cut, but decreases the height along the left branch.
421 106 pbaillot
%\item\label{CommCaseAmpersand} A cut-step is immediately preceded by a $\vlan$-step.
422 106 pbaillot
%\[
423 106 pbaillot
%\vlderivation{
424 106 pbaillot
%\vliin{\cut}{}{ \Gamma,\Delta,A\vlan B }{ \vliin{\vlan}{}{\Gamma,A\vlan B,C}{ \vlhy{\Gamma,A,C} }{\vlhy{\Gamma,B,C}}}{ \vlhy{\Delta, C^\bot} }
425 106 pbaillot
%}
426 106 pbaillot
%\quad\to\quad
427 106 pbaillot
%\vlderivation{
428 106 pbaillot
%\vliin{\vlan}{}{\Gamma,\Delta,A\vlan B }{
429 106 pbaillot
%\vliin{cut}{}{\Gamma,\Delta,A }{ \vlhy{\Gamma,A,C} }{ \vlhy{ \Delta,C^\bot } }
430 106 pbaillot
%}{
431 106 pbaillot
%\vliin{ \cut }{}{\Gamma,\Delta,B}{ \vlhy{\Gamma,B,C } }{ \vlhy{\Delta,C^\bot} }
432 106 pbaillot
%}
433 106 pbaillot
%}
434 106 pbaillot
%\]
435 106 pbaillot
%\item (No rule for cuts commuting with cuts.)
436 106 pbaillot
%%A cut-step is immediately preceded by another cut-step:
437 106 pbaillot
%\[
438 106 pbaillot
%\vlderivation{
439 106 pbaillot
%	\vliin{\cut}{}{\Gamma, \Delta, \Sigma}{
440 106 pbaillot
%		\vliin{\cut}{}{\Gamma, \Delta, B}{\vlhy{\Gamma, A}}{\vlhy{\Delta, \lnot{A}, B}}
441 106 pbaillot
%		}{\vlhy{\Sigma, \lnot{B}}}
442 106 pbaillot
%	}
443 106 pbaillot
%	\quad\to\quad
444 106 pbaillot
%\vlderivation{
445 106 pbaillot
%	\vliin{\cut}{}{\Gamma, \Delta, \Sigma}{\vlhy{\Gamma, A}}{
446 106 pbaillot
%		\vliin{\cut}{}{\Delta, \Sigma, \lnot{A}}{\vlhy{\Delta, \lnot{A}, B}}{\vlhy{\Sigma, \lnot{B}}}
447 106 pbaillot
%		}
448 106 pbaillot
%	}
449 106 pbaillot
%\]
450 106 pbaillot
%\end{enumerate}
451 106 pbaillot
%
452 106 pbaillot
%
453 106 pbaillot
%
454 106 pbaillot
%\subsection{Key cases: structural steps}
455 106 pbaillot
%%[THIS SECTION MIGHT NOT BE NECESSARY]
456 106 pbaillot
%We attempt to permute cuts on exponential formulae over structural steps whose principal formula is active for the cut.
457 106 pbaillot
%
458 106 pbaillot
%We use the commutative case \ref{CaseCommOneStep} to assume that the topmost cut-step in a sequence has already been permuted up to its origin on the $!$-side.
459 106 pbaillot
%
460 106 pbaillot
%We have two cases.
461 106 pbaillot
%\begin{enumerate}
462 106 pbaillot
%\item\label{StructStepCont} The structural step preceding the cut is a weakening:
463 106 pbaillot
%\[
464 106 pbaillot
%\vlderivation{
465 106 pbaillot
%\vliin{\cut}{}{?\Gamma,\Delta}{ \vlin{!}{}{ ?\Gamma,!A }{ \vlhy{?\Gamma , A} } }{ \vlin{w}{}{ ?A^\bot }{ \vlhy{\Delta	} } }
466 106 pbaillot
%}
467 106 pbaillot
%\quad\to\quad
468 106 pbaillot
%\vlinf{w}{}{?\Gamma,\Delta}{ \Delta }
469 106 pbaillot
%\]
470 106 pbaillot
%%\item The structural step preceding the cut is a contraction:
471 106 pbaillot
%%\[
472 106 pbaillot
%%\vlderivation{
473 106 pbaillot
%%\vliin{\cut}{}{ ?\Gamma,\Delta }{
474 106 pbaillot
%% \vlin{!}{}{ ?\Gamma,!A }{ \vlhy{?\Gamma , A} }
475 106 pbaillot
%%}{ \vlin{c}{}{ ?A^\bot , \Delta }{ \vlhy{ ?A^\bot , ?A^\bot ,  \Delta} } }
476 106 pbaillot
%%}
477 106 pbaillot
%%\quad\to\quad
478 106 pbaillot
%%\vlderivation{
479 106 pbaillot
%%\vliq{c}{}{?\Gamma, \Delta}{
480 106 pbaillot
%%\vliin{\cut}{}{?\Gamma, ?\Gamma,\Delta }{
481 106 pbaillot
%% \vlin{!}{}{ ?\Gamma,!A }{ \vlhy{?\Gamma , A} }
482 106 pbaillot
%%}{
483 106 pbaillot
%%\vliin{\cut}{}{?\Gamma,?A^\bot , \Delta }{
484 106 pbaillot
%% \vlin{!}{}{ ?\Gamma,!A }{ \vlhy{?\Gamma , A} }
485 106 pbaillot
%%}{ \vlhy{?A^\bot , ?A^\bot , \Delta } }
486 106 pbaillot
%%}
487 106 pbaillot
%%}
488 106 pbaillot
%%}
489 106 pbaillot
%%\]
490 106 pbaillot
%%OR use a multicut:
491 106 pbaillot
%%\[
492 106 pbaillot
%%\vlderivation{
493 106 pbaillot
%%\vliin{\cut}{}{ ?\Gamma,\Delta }{
494 106 pbaillot
%% \vlin{!}{}{ ?\Gamma,!A }{ \vlhy{?\Gamma , A} }
495 106 pbaillot
%%}{ \vlin{c}{}{ ?A^\bot , \Delta }{ \vlhy{ ?A^\bot , ?A^\bot ,  \Delta} } }
496 106 pbaillot
%%}
497 106 pbaillot
%%\quad\to\quad
498 106 pbaillot
%%\vlderivation{
499 106 pbaillot
%%\vliin{\multicut}{}{?\Gamma,?A^\bot , \Delta }{
500 106 pbaillot
%% \vlin{!}{}{ ?\Gamma,!A }{ \vlhy{?\Gamma , A} }
501 106 pbaillot
%%}{ \vlhy{?A^\bot , ?A^\bot , \Delta } }
502 106 pbaillot
%%}
503 106 pbaillot
%%\]
504 106 pbaillot
%\item The structural step preceding a cut is a contraction:
505 106 pbaillot
%\[
506 106 pbaillot
%\vlderivation{
507 106 pbaillot
%	\vliin{\cut}{}{?\Gamma, \Sigma }{ \vlhy{?\Gamma,!A^\bot} }{
508 106 pbaillot
%		\vlin{\cntr}{}{ ?A,\Sigma }{ \vlhy{ ?A,?A,\Sigma } }
509 106 pbaillot
%	}
510 106 pbaillot
%}
511 106 pbaillot
%\quad\to\quad
512 106 pbaillot
%\vlderivation{
513 106 pbaillot
%	\vliq{\cntr}{}{ ?\Gamma,\Sigma }{
514 106 pbaillot
%		\vliin{\cut}{}{ ?\Gamma,?\Gamma,\Sigma }{ \vlhy{?\Gamma,!A^\bot } }{
515 106 pbaillot
%			\vliin{\cut}{}{ ?A,?\Gamma,\Sigma }{ \vlhy{?\Gamma,!A^\bot} }{ \vlhy{ ?A,?A,?\Delta,\Sigma } }
516 106 pbaillot
%		}
517 106 pbaillot
%	}
518 106 pbaillot
%}
519 106 pbaillot
%\]
520 106 pbaillot
%%\item The structural step preceding a cut is a parallel contraction:
521 106 pbaillot
%%\[
522 106 pbaillot
%%\vlderivation{
523 106 pbaillot
%%\vliin{\cut}{}{?\Gamma,?\Delta, \Sigma }{ \vlhy{?\Gamma,!A^\bot} }{
524 106 pbaillot
%%\vlin{}{}{ ?A,?\Delta,\Sigma }{ \vlhy{ ?A,?A,?\Delta,?\Delta,\Sigma } }
525 106 pbaillot
%%}
526 106 pbaillot
%%}
527 106 pbaillot
%%\quad\to\quad
528 106 pbaillot
%%\vlderivation{
529 106 pbaillot
%%\vlin{}{}{ ?\Gamma,?\Delta,\Sigma }{
530 106 pbaillot
%%\vliin{\cut}{}{ ?\Gamma,?\Gamma,?\Delta,?\Delta,\Sigma }{ \vlhy{?\Gamma,!A^\bot } }{
531 106 pbaillot
%%\vliin{\cut}{}{ ?A,?\Gamma,?\Delta,?\Delta,\Sigma }{ \vlhy{?\Gamma,!A^\bot} }{ \vlhy{ ?A,?A,?\Delta,?\Delta,\Sigma } }
532 106 pbaillot
%%}
533 106 pbaillot
%%}
534 106 pbaillot
%%}
535 106 pbaillot
%%\]
536 106 pbaillot
%\end{enumerate}
537 106 pbaillot
%
538 106 pbaillot
%\subsection{Key cases: logical steps}
539 106 pbaillot
%Finally, once all cuts have been permuted maximally on both sides, we have the cases when the cut-formula is principal for a preceding logical step on both sides. We have three cases, one for every pair of connectives.
540 106 pbaillot
%\begin{enumerate}
541 106 pbaillot
%\item The cut-formula is multiplicative:
542 106 pbaillot
%\[
543 106 pbaillot
%\vlderivation{
544 106 pbaillot
%\vliin{\cut}{}{ \Gamma,\Delta,\Sigma }{
545 106 pbaillot
%\vliin{\vlte}{}{ \Gamma,\Delta,A\vlte B }{ \vlhy{\Gamma,A} }{ \vlhy{\Delta,B} }
546 106 pbaillot
%}{ \vlin{\vlpa}{}{ \Sigma, A^\bot \vlpa B^\bot }{ \vlhy{\Sigma , A^\bot , B^\bot} } }
547 106 pbaillot
%}
548 106 pbaillot
%\quad\to\quad
549 106 pbaillot
%\vlderivation{
550 106 pbaillot
%\vliin{\cut}{}{ \Gamma,\Delta,\Sigma }{ \vlhy{\Gamma,A} }{
551 106 pbaillot
%\vliin{\cut}{}{ \Delta,\Sigma,A^\bot }{ \vlhy{\Delta,B} }{ \vlhy{\Sigma , A^\bot,B^\bot } }
552 106 pbaillot
%}
553 106 pbaillot
%}
554 106 pbaillot
%\]
555 106 pbaillot
%\item The cut-formula is additive,
556 106 pbaillot
%\[
557 106 pbaillot
%\vlderivation{
558 106 pbaillot
%\vliin{\cut}{}{ \Gamma,\Delta }{
559 106 pbaillot
%\vliin{\vlan}{}{ \Gamma,A\vlan B }{ \vlhy{\Gamma,A} }{ \vlhy{\Gamma,B} }
560 106 pbaillot
% }{ \vlin{\vlor}{}{ \Delta,A^\bot\vlor B^\bot }{ \vlhy{\Delta, A^\bot } } }
561 106 pbaillot
%}
562 106 pbaillot
%\quad\to\quad
563 106 pbaillot
%\vliinf{\cut}{}{ \Gamma,\Delta }{ \Gamma,A }{ \Delta,A^\bot }
564 106 pbaillot
%\]
565 106 pbaillot
%where the case for the other $\vlor$-rule is symmetric.
566 106 pbaillot
%\item The cut-formula is exponential.
567 106 pbaillot
%\[
568 106 pbaillot
%\vlderivation{
569 106 pbaillot
%\vliin{\cut}{}{ ?\Gamma,\Delta }{
570 106 pbaillot
% \vlin{!}{}{ ?\Gamma,!A }{ \vlhy{?\Gamma , A} }
571 106 pbaillot
%}{
572 106 pbaillot
%\vlin{?}{}{ \Delta,?A^\bot }{ \vlhy{\Delta, A^\bot } }
573 106 pbaillot
%}
574 106 pbaillot
%}
575 106 pbaillot
%\quad\to\quad
576 106 pbaillot
%\vliinf{\cut}{}{ ?\Gamma,\Delta }{ ?\Gamma,A }{ \Delta,A^\bot }
577 106 pbaillot
%\]
578 106 pbaillot
%\item The cut-formula is quantified.
579 106 pbaillot
%\[
580 106 pbaillot
%\vlderivation{
581 106 pbaillot
%	\vliin{\cut}{}{\Gamma, \Delta}{
582 106 pbaillot
%		\vlin{\forall}{}{\Gamma, \forall x. A(x)}{\vltr{\pi(a)}{\Gamma, A(a)}{\vlhy{\quad}}{\vlhy{}}{\vlhy{\quad}}}
583 106 pbaillot
%		}{
584 106 pbaillot
%		\vlin{\exists}{}{\Delta, \exists x . \lnot{A}(x)}{\vlhy{\Delta, \lnot{A}(t)}}
585 106 pbaillot
%		}
586 106 pbaillot
%	}
587 106 pbaillot
%	\quad \to \quad
588 106 pbaillot
%	\vlderivation{
589 106 pbaillot
%		\vliin{\cut}{}{\Gamma, \Delta}{
590 106 pbaillot
%			\vltr{\pi(t)}{\Gamma, A(t)}{\vlhy{\quad}}{\vlhy{}}{\vlhy{\quad}}
591 106 pbaillot
%			}{\vlhy{\Delta, \lnot{A}(t)}}
592 106 pbaillot
%		}
593 106 pbaillot
%\]
594 106 pbaillot
%\end{enumerate}