Statistiques
| Révision :

root / CSL16 / preliminaries.tex @ 117

Historique | Voir | Annoter | Télécharger (17,83 ko)

1 33 adas
\section{Preliminaries}
2 108 adas
\label{sect:preliminaries}
3 93 adas
%
4 93 adas
%\todo{consider removing and just have a section on linear logic, including free-cut elimination.}
5 33 adas
6 105 adas
7 93 adas
%
8 93 adas
%
9 93 adas
%\paragraph*{Notation}
10 93 adas
%Fix conventions here for use throughout:
11 93 adas
%\begin{itemize}
12 93 adas
%\item Eigenvariables: $a, b , c$.
13 93 adas
%\item (Normal) variables: $u,v,w$. (only when distinction is important, e.g.\ $u^{!\nat}$).
14 93 adas
%\item (Safe) variables: $x,y,z$. (as above, e.g.\ $x^\nat$.)
15 93 adas
%\item Terms: $r,s,t$.
16 93 adas
%\item Formulae: $A,B,C$.
17 93 adas
%\item Atomic formulae: $p,q$.
18 93 adas
%\item Free variables in a term, formula, sequent: $FV(u)$, $FV(A)$, $FV(\Gamma)$
19 93 adas
%\item Sequents: $\Gamma, \Delta, \Sigma, \Pi$.
20 93 adas
%\item lists of formulas $A(\vec{x})$, $!A(\vec{x})$ (in particular for $A=N$).
21 93 adas
%\item Proofs: $\pi, \rho, \sigma$.
22 93 adas
%\item Theories: $\mathcal T$. Sequent systems: $\mathcal S$.
23 93 adas
%\end{itemize}
24 93 adas
%
25 93 adas
%\subsection{Linear logic}
26 33 adas
27 93 adas
%\anupam{use a system that is already in De Morgan form, for simplicity.}
28 93 adas
%\anupam{Have skipped units, can reconsider this when in arithmetic. Also in affine setting can be recovered by any contradiction/tautology.}
29 33 adas
30 93 adas
We formulate linear logic without units with usual notation for the multiplicatives, additives and exponentials from \cite{Girard87}. We restrict negation to the atoms, thus formulae are always in De Morgan normal form, and this is reflected in the sequent system below. We have included rules for arbitrary weakening for working in affine settings.
31 33 adas
32 93 adas
%\anupam{positive and negative.}
33 33 adas
34 33 adas
35 88 adas
36 93 adas
\begin{definition}
37 33 adas
%[Sequent calculus for linear logic]
38 110 adas
%[Sequent calculus for affine linear logic]
39 93 adas
\label{def:LLsequentcalculus}
40 110 adas
The sequent calculus for (affine) linear logic is as follows:
41 33 adas
\[
42 109 adas
\small
43 33 adas
\begin{array}{l}
44 33 adas
\begin{array}{cccc}
45 33 adas
\vlinf{\lefrul{\bot}}{}{p, \lnot{p} \seqar }{}
46 33 adas
& \vlinf{\id}{}{p \seqar p}{}
47 33 adas
& \vlinf{\rigrul{\bot}}{}{\seqar p, \lnot{p}}{}
48 33 adas
& \vliinf{\cut}{}{\Gamma, \Sigma \seqar \Delta , \Pi}{ \Gamma \seqar \Delta, A }{\Sigma, A \seqar \Pi}
49 33 adas
\\
50 33 adas
\noalign{\bigskip}
51 33 adas
%\text{Multiplicatives:} & & & \\
52 33 adas
%\noalign{\bigskip}
53 33 adas
\vliinf{\lefrul{\lor}}{}{\Gamma,\Sigma, A \lor B \seqar \Delta, \Pi}{\Gamma, A \seqar \Delta}{\Sigma , B \seqar \Pi}
54 33 adas
&
55 33 adas
\vlinf{\lefrul{\land}}{}{\Gamma, A\land B \seqar \Delta}{\Gamma, A , B \seqar \Delta}
56 33 adas
&
57 33 adas
\vlinf{\rigrul{\lor}}{}{\Gamma \seqar \Delta, A \lor B}{\Gamma \seqar \Delta, A, B}
58 33 adas
&
59 33 adas
\vliinf{\rigrul{\land}}{}{\Gamma, \Sigma \seqar \Delta , \Pi , A \land B}{\Gamma \seqar \Delta , A}{\Sigma \seqar \Pi , B}
60 33 adas
\\
61 33 adas
\noalign{\bigskip}
62 33 adas
%\text{Additives:} & & & \\
63 33 adas
%\noalign{\bigskip}
64 33 adas
\vliinf{\lefrul{\laor}}{}{\Gamma, A \laor B \seqar \Delta}{\Gamma , A \seqar \Delta}{\Gamma, B \seqar \Delta}
65 33 adas
&
66 33 adas
\vlinf{\lefrul{\laand}}{}{\Gamma, A_1\laand A_2 \seqar \Delta}{\Gamma, A_i \seqar \Delta}
67 33 adas
&
68 33 adas
%\vlinf{\lefrul{\laand}}{}{\Gamma, A\laand B \seqar \Delta}{\Gamma, B \seqar \Delta}
69 33 adas
%\quad
70 33 adas
\vlinf{\rigrul{\laor}}{}{\Gamma \seqar \Delta, A_1\laor A_2}{\Gamma \seqar \Delta, A_i}
71 33 adas
&
72 33 adas
%\vlinf{\rigrul{\laor}}{}{\Gamma \seqar \Delta, A\laor B}{\Gamma \seqar \Delta, B}
73 33 adas
%\quad
74 33 adas
\vliinf{\rigrul{\laand}}{}{\Gamma \seqar \Delta, A \laand B }{\Gamma \seqar \Delta, A}{\Gamma \seqar \Delta, B}
75 33 adas
\\
76 33 adas
\noalign{\bigskip}
77 33 adas
%\text{Exponentials:} & & & \\
78 33 adas
%\noalign{\bigskip}
79 33 adas
\vlinf{\lefrul{?}}{}{!\Gamma, ?A \seqar ?\Delta}{!\Gamma , A \seqar ?\Delta}
80 33 adas
&
81 33 adas
\vlinf{\lefrul{!}}{}{\Gamma, !A \seqar \Delta}{\Gamma, A \seqar \Delta}
82 33 adas
&
83 33 adas
\vlinf{\rigrul{?}}{}{\Gamma \seqar \Delta, ?A}{\Gamma \seqar \Delta, A}
84 33 adas
&
85 33 adas
\vlinf{\rigrul{!}}{}{!\Gamma \seqar ?\Delta, !A}{!\Gamma \seqar ?\Delta, A}
86 33 adas
\\
87 33 adas
\noalign{\bigskip}
88 33 adas
%\text{Structural:} & & & \\
89 33 adas
%\noalign{\bigskip}
90 33 adas
91 33 adas
%\vlinf{\lefrul{\wk}}{}{\Gamma, !A \seqar \Delta}{\Gamma \seqar \Delta}  %% linear logic weakening
92 33 adas
\vlinf{\lefrul{\wk}}{}{\Gamma, A \seqar \Delta}{\Gamma \seqar \Delta}
93 33 adas
&
94 33 adas
\vlinf{\lefrul{\cntr}}{}{\Gamma, !A \seqar \Delta}{\Gamma, !A, !A \seqar \Delta}
95 33 adas
&
96 33 adas
%\vlinf{\rigrul{\wk}}{}{\Gamma \seqar \Delta, ?A }{\Gamma \seqar \Delta}   %% linear logic weakening
97 33 adas
98 33 adas
\vlinf{\rigrul{\wk}}{}{\Gamma \seqar \Delta, A }{\Gamma \seqar \Delta}
99 33 adas
&
100 33 adas
\vlinf{\rigrul{\cntr}}{}{\Gamma \seqar \Delta, ?A}{\Gamma \seqar \Delta, ?A, ?A}
101 33 adas
\\
102 33 adas
\noalign{\bigskip}
103 33 adas
\vlinf{\lefrul{\exists}}{}{\Gamma, \exists x . A(x) \seqar \Delta}{\Gamma, A(a) \seqar \Delta}
104 33 adas
&
105 33 adas
\vlinf{\lefrul{\forall}}{}{\Gamma, \forall x. A(x) \seqar \Delta}{\Gamma, A(t) \seqar \Delta}
106 33 adas
&
107 33 adas
\vlinf{\rigrul{\exists}}{}{\Gamma \seqar \Delta, \exists x . A(x)}{ \Gamma \seqar \Delta, A(t)}
108 33 adas
&
109 33 adas
\vlinf{\rigrul{\forall}}{}{\Gamma \seqar \Delta, \forall x . A(x)}{ \Gamma \seqar \Delta, A(a) } \\
110 33 adas
%\noalign{\bigskip}
111 33 adas
% \vliinf{mix}{}{\Gamma, \Sigma \seqar \Delta , \Pi}{ \Gamma \seqar \Delta}{\Sigma \seqar \Pi} &&&
112 33 adas
\end{array}
113 33 adas
\end{array}
114 33 adas
\]
115 110 adas
where $p$ is atomic, $i \in \{ 1,2 \}$, $t$ is a term and the eigenvariable $a$ does not occur free in $\Gamma$ or $\Delta$.
116 33 adas
\end{definition}
117 93 adas
%\todo{$\limp$ abbreviation for ...}
118 93 adas
%\todo{bracketing}
119 93 adas
120 110 adas
We do not formally include a symbol for implication but we sometimes write $A \limp B$ as shorthand for $\lnot{A} \lor B$, where $\lnot A$ is the De Morgan dual of $A$. We often omit brackets under associativity, and when writing long implications we assume the right-most bracketing.
121 93 adas
122 97 adas
We will use standard terminology to track formulae in proofs, as presented in e.g.\ \cite{Buss98:intro-proof-theory}.
123 97 adas
In particular, each rule has a distinguished \textit{principal formula}, e.g.\
124 97 adas
  $A \lor B$ in rule $\lefrul{\lor}$ (and similarly for all rules for connectives) and $?A$ in rule $\rigrul{\cntr}$, and \emph{active formulae}, e.g.\ $A$ and $B$ in $\lefrul{\lor}$ and so on. These induce the notions of (direct) descendants and ancestors in proofs, as in \cite{Buss98:intro-proof-theory}.
125 97 adas
%The  \textit{direct ancestor} relation on occurrences of formulas in a proof is defined to keep track of identity of formulas from line to line, in the usual way.
126 74 pbaillot
127 97 adas
128 97 adas
  % Observe that we do not consider here any exchange rules, the sequence are made of multisets of formulas and exchanges are implicit. Note that this system is \textit{affine} in the sense that it includes general weakening rules $\rigrul{\wk}$ and  $\lefrul{\wk}$, while in linear logic   $\rigrul{\wk}$ (resp. $\lefrul{\wk}$) is restricted to formulas of the form $?A$ (resp. $!A$).   In the following though, by linear logic we will mean affine linear logic.
129 97 adas
  \subsection{Theories and systems}
130 105 adas
131 110 adas
%  \anupam{need to add a note on semantics}
132 110 adas
%  \anupam{mention equality rules}
133 97 adas
%  \anupam{mention equality axioms and first-order theories and models at some point.}
134 97 adas
135 108 adas
 A \emph{language} is a set of nonlogical symbols (i.e.\ constants, functions, predicates) and a \emph{theory} a set of closed formulae over some language. We assume that all theories contain the axioms of equality:
136 110 adas
% \[
137 108 adas
% \begin{array}{rl}
138 108 adas
%\refl & \forall x . x = x \\
139 108 adas
%\symm & \forall x, y. (x = y \limp y = x )\\
140 108 adas
%\trans & \forall x , y , z . ( x = y \limp y = z \limp x = z ) \\
141 108 adas
%\subst_f & \forall \vec x , \vec y . (\vec x = \vec y \limp f(\vec x) = f(\vec y) ) \\
142 108 adas
%\subst_P & \forall \vec x , \vec y. (\vec x = \vec y \limp P(\vec x) \limp P(\vec y)  )
143 108 adas
% \end{array}
144 108 adas
%\left\{
145 110 adas
\begin{equation}
146 110 adas
\label{eqn:equality-theory}
147 108 adas
\begin{array}{l}
148 108 adas
\forall x . x = x \quad, \quad \forall x, y. (x = y \limp y = x )\quad, \quad \forall x , y , z . ( x = y \limp y = z \limp x = z ) \\ \forall \vec x , \vec y . (\vec x = \vec y \limp f(\vec x) = f(\vec y) )  \quad , \quad \forall \vec x , \vec y. (\vec x = \vec y \limp P(\vec x) \limp P(\vec y)  )
149 108 adas
\end{array}
150 110 adas
\end{equation}
151 108 adas
%\right\}
152 110 adas
% \]
153 97 adas
  where $\vec x = \vec y$ is shorthand for $x_1 = y_1 \land \vldots \land x_n = y_n$.
154 97 adas
155 97 adas
\newcommand{\init}{\mathit{init}}
156 97 adas
We consider \emph{systems} of `nonlogical' rules extending Dfn.~\ref{def:LLsequentcalculus}, which we write as follows,
157 97 adas
 \[
158 33 adas
 \begin{array}{cc}
159 97 adas
  \vlinf{\init}{}{ \seqar A}{}  &  \vlinf{(R)}{}{ !\Gamma , \Sigma' \seqar \Delta' , ? \Pi  }{ \{!\Gamma , \Sigma_i \seqar \Delta_i , ? \Pi \}_{i \in I} }
160 33 adas
\end{array}
161 33 adas
\]
162 97 adas
 where, in each rule $(R)$, $I$ is a finite possibly empty set (indicating the number of premises) and we assume the following conditions and terminology:
163 33 adas
 \begin{enumerate}
164 97 adas
 \item In $(R)$ the formulas of $\Sigma', \Delta'$  are called \textit{principal}, those of $\Sigma_i, \Delta_i$ are called \textit{active}, and those of
165 110 adas
$ !\Gamma,  ? \Pi$ are called \textit{context formulas}. In $\init$ $A$ is called a principal formula.
166 110 adas
\item Each rule $(R)$ comes with a list $a_1$, \dots, $a_k$ of eigenvariables such that each $a_j$ appears in exactly one $\Sigma_i, \Delta_i$ (so in some active formulas of exactly one premise)  and does not appear in  $\Sigma', \Delta'$ or $ !\Gamma,  ? \Pi$.
167 97 adas
    \item A system $\system$ of rules must be closed under substitutions of free variables by terms (where these substitutions do not contain the eigenvariables $a_j$ in their domain or codomain).
168 114 pbaillot
   \item  In $(R)$  the sequence $ \Sigma'$ (resp. $\Delta'$) does not contain any formula of the shape $?B$ (resp. $!B$), and  in $\init$ the formula $A$ is not of the form  $!B$.
169 33 adas
 \end{enumerate}
170 97 adas
171 97 adas
%The distinction between modal and nonmodal formulae in $(R)$ induces condition 1
172 97 adas
 Conditions 2 and 3 are actually standard for nonlogical rules, independently of the logical setting, c.f.\ \cite{Beckmann11}. Condition 2 reflects the intuitive idea that often we need in our nonlogical rules a notion of \textit{bound} variables in the active formulas (typically for induction rules), and the eigenvariables play this role. Condition 3 is needed for our proof system to admit elimination of cuts on quantified formulas. Condition 4 and the conventions of 1 is peculiar to our linear logic setting in order to carry out certain proof-theoretic manipulations, mainly free-cut elimination in Sect.~\ref{sect:free-cut-elim}.
173 97 adas
%
174 97 adas
175 97 adas
176 97 adas
 Observe that $\init$ rules can actually be seen as particular cases of $(R)$ rules, with no premise, so in the following we will only consider $(R)$ rules.
177 97 adas
178 33 adas
179 63 pbaillot
%  \patrick{Anupam: note that I had to strengthen the conditions for the rules (R). Condition (1) is needed
180 63 pbaillot
%  to be able to commute a cut with (R), in the case where this cut is with a principal formula of a   ($\rigrul{!}$) rule.
181 33 adas
%
182 63 pbaillot
%  Condition (2) is a sufficient condition to avoid the following situation: cut between a principal formula in say $\Delta'$ in the conclusion of an (R) rule (left premise), and a context formula in $!\Gamma$ in the conclusion of another (R) rule (right premise). Indeed this is not an anchored cut in our sense, but we cannot eliminate it in general (because we cannot commute the cut with (R) up the right premise).
183 63 pbaillot
%  }
184 33 adas
185 97 adas
186 63 pbaillot
187 97 adas
188 110 adas
    To each theory $\theory$ we formally associate the system of $\init$ rules $\seqar A$ for each $A \in \theory$.\footnote{Notice that this naively satisfies condition 3 since theories consist of only closed formulae.}  A proof in such a system will be called a \textit{ $\mathcal T$-proof}, or just {proof} when there is no risk of confusion.
189 110 adas
190 110 adas
191 110 adas
192 110 adas
193 97 adas
%
194 97 adas
%
195 97 adas
%  In what follows we will be interested in an example of theory  $\mathcal T$ which is a form of arithmetic.
196 33 adas
197 110 adas
%   Let us give an example of a possible nonlogical rule that appears later in Sect.~\ref{sect:arithmetic}:
198 110 adas
%
199 110 adas
%   \[
200 110 adas
%	\vliinf{\ind}{}{ !\word(t), !\Gamma , A(\epsilon) \seqar A(t) , ?\Delta }{!\Gamma , !\word(a), A(a) \seqar A(s_0 a ), ?\Delta }{ !\Gamma , !\word(a), A(a) \seqar A(s_1 a ), ?\Delta }
201 110 adas
%\]
202 110 adas
%
203 110 adas
%So here we have $I=\{0,1\}$ (two premises), $\Sigma_i=!\word(a), A(a)$ and $\Delta_i= A(s_i a )$ for $i=0,1$, $\Sigma'= !\word(t), A(\epsilon)$, $\Delta'= A(t)$. So condition 2 is satisfied provided $a\notin FV(!\Gamma, ?\Delta)$ and $a \notin FV(t)$.
204 33 adas
205 110 adas
206 33 adas
%\[
207 33 adas
%	\vliinf{}{(x \notin \FV(\Gamma, \Delta))}{ !\Gamma , A(\epsilon) \seqar A(t) , ?\Delta }{ !\Gamma , A(x) \seqar A(s_0 x ), ?\Delta }{ !\Gamma, A(x) \seqar A( s_1 x ) , ?\Delta}
208 33 adas
%	\]
209 33 adas
210 33 adas
211 108 adas
%  A proof in such a system will be called a \textit{ $\mathcal T$-proof}, or just \textit{proof} when there is no risk of confusion.
212 62 pbaillot
%   The rules of Def. \ref{def:LLsequentcalculus} are called \textit{logical rules} while the rules (ax) and (R) of $\mathcal T$  are called \textit{non-logical}.
213 62 pbaillot
%
214 62 pbaillot
%  As usual rules come with a notion of \textit{principal formulas}, which are a subset of the rules in the conclusion, e.g.:
215 62 pbaillot
%  $A \lor B$ in rule $\lefrul{\lor}$ (and similarly for all rules for connectives); $?A$ in rule $\rigrul{\cntr}$; all conclusion formulas in axiom rules;
216 62 pbaillot
%   $\Sigma', \Delta'$ in rule (R).
217 33 adas
218 33 adas
219 97 adas
% \anupam{15/04: add definitions of theories and systems, unions, rules vs axioms etc. and abuses of notation:
220 97 adas
% 	sometimes use same symbol for theory and system if fixed in advance;
221 97 adas
% 	sometimes coincide axiom with initial rule;
222 97 adas
% 	}
223 110 adas
224 110 adas
225 110 adas
\begin{remark}
226 110 adas
	[Semantics]
227 110 adas
	The models we consider are usual Henkin models, with linear connectives interpreted by their classical counterparts. Consequently, we do not have any completeness theorem for our theories, but we do have soundness.
228 110 adas
\end{remark}
229 110 adas
230 60 adas
231 93 adas
\subsection{Some basic proof-theoretic results}
232 110 adas
We briefly survey some well-known results for theories of linear logic.
233 33 adas
234 97 adas
A rule is \emph{invertible} if each of its upper sequents is derivable from its lower sequent.
235 97 adas
\begin{proposition}
236 97 adas
[Invertible rules, folklore]
237 97 adas
\label{prop:invertible-rules}
238 97 adas
The rules $\lefrul{\land}, \rigrul{\lor}, \lefrul{\lor}, \rigrul{\land}, \lefrul{\exists}, \rigrul{\forall}$ are invertible.
239 97 adas
\end{proposition}
240 97 adas
We will typically write $\inv{c}$ to denote the inverse derivation for a logical symbol $c$.
241 88 adas
242 97 adas
%[cite Avron:`semantics and proof theory of linear logic']
243 97 adas
%
244 97 adas
%We will make much use of the deduction theorem, allowing us to argue informally within a theory for hypotheses that have been promoted.
245 97 adas
%
246 97 adas
%%$$
247 97 adas
%%	\vliiinf{}{}{ \seqar A}{ \seqar C}
248 97 adas
%%	$$
249 97 adas
%
250 97 adas
%%\[
251 97 adas
%%	\vliiinf{R}{}{ !\Gamma , \Sigma' \seqar \Delta' , ? \Pi  }{ \{!\Gamma , \Sigma_i \seqar \Delta_i , ? \Pi \}_{i \in I} }
252 97 adas
%%	\]
253 33 adas
254 97 adas
We also rely on the following result, which is also folklore but appeared before in \cite{Avron88}.
255 33 adas
256 33 adas
\begin{theorem}
257 97 adas
	[Deduction, folklore]
258 60 adas
	\label{thm:deduction}
259 110 adas
	For any theory $\theory$ and closed formula $A $, $\mathcal T \cup\{A\}$ proves $B$ if and only if $\mathcal{T}$ proves $!A \limp B$.
260 33 adas
\end{theorem}
261 33 adas
262 110 adas
%The occurrence of $!$ in the deduction theorem above is crucial; this restriction is one of the reasons it can be difficult to reason informally in theories over linear logic.
263 33 adas
264 98 adas
265 110 adas
For example, we can work in the following quantifier-free system for the theory of equality:
266 110 adas
\begin{proposition}
267 110 adas
	[Equality rules]
268 110 adas
	\eqref{eqn:equality-theory} is equivalent to the following system of rules,
269 110 adas
	\[
270 110 adas
	\vlinf{}{}{\seqar t = t}{}
271 110 adas
	\qquad
272 110 adas
	\vlinf{}{}{s = t \seqar t = s}{}
273 110 adas
	\qquad
274 110 adas
	\vlinf{}{}{r = s, s= t \seqar r = t}{}
275 110 adas
	\qquad
276 110 adas
	\vlinf{}{}{\vec s = \vec t \seqar f(\vec s) = f(\vec t)}{}
277 110 adas
	\qquad
278 110 adas
	\vlinf{}{}{\vec s = \vec t, P(\vec s) \seqar P(\vec t)}{}
279 110 adas
	\]
280 110 adas
	where $r,s,t $ range over terms.
281 110 adas
\end{proposition}
282 98 adas
283 110 adas
284 110 adas
285 110 adas
286 110 adas
287 54 adas
%\subsection{Converting axioms to rules in $\MELLW$}
288 54 adas
%
289 54 adas
%\begin{proposition}
290 54 adas
%	An axiom $\Ax$ of the form,
291 54 adas
%	\[
292 54 adas
%	A_1 \limp \vldots \limp A_m \limp !B_1 \limp \vldots \limp !B_n \limp C
293 54 adas
%	\]
294 54 adas
%	is equivalent (over propositional $\LL$) to the rule $\Rl$:
295 54 adas
%	\[
296 54 adas
%	\vliiinf{\Rl}{}{ !\Gamma , A_1 , \dots , A_m \seqar C , ? \Delta  }{ !\Gamma \seqar B_1 , ?\Delta }{\vldots }{ !\Gamma \seqar B_n , ?\Delta}
297 54 adas
%	\]
298 54 adas
%\end{proposition}
299 54 adas
%\begin{proof}
300 54 adas
%	Let us first assume $\Ax$ and derive $\Rl$. From the axiom and Currying, we have a proof of:
301 54 adas
%	\begin{equation}\label{eqn:curried-axiom}
302 54 adas
%	A_1 , \dots , A_m , !B_1 , \dots , !B_n \seqar C
303 54 adas
%	\end{equation}
304 54 adas
%
305 54 adas
%	This can simply be cut against each of the premisses of $\Rl$, applying appropriate contractions and necessitations, to derive it:
306 54 adas
%	\[
307 54 adas
%	\vlderivation{
308 54 adas
%		\vliq{c}{}{!\Gamma , A_1 , \dots , A_m \seqar C , ?\Delta }{
309 54 adas
%			\vliin{\cut}{}{!\Gamma, \dots , !\Gamma , A_1 , \dots , A_m \seqar C , ?\Delta, \dots , ?\Delta }{
310 54 adas
%				\vlin{!}{}{!\Gamma \seqar !B_n, ?\Delta }{\vlhy{!\Gamma \seqar B_n , ?\Delta }}
311 54 adas
%			}{
312 54 adas
%			\vliin{\cut}{}{\qquad \qquad \qquad \qquad  \vlvdots \qquad \qquad \qquad \qquad }{
313 54 adas
%				\vlin{!}{}{!\Gamma \seqar !B_1 , ?\Delta}{\vlhy{!\Gamma \seqar B_1, ?\Delta }}
314 54 adas
%			}{\vlhy{ A_1 , \dots , A_m , !B_1 , \dots , !B_n \seqar C } }
315 54 adas
%		}
316 54 adas
%	}
317 54 adas
%}
318 54 adas
%\]
319 54 adas
%
320 54 adas
%Now let us prove $\Ax$ (again in the form of \eqref{eqn:curried-axiom}) by using $\Rl$ as follows:
321 54 adas
%\[
322 54 adas
%\vliiinf{\Rl}{}{ A_1 , \dots , A_m , !B_1 , \dots , !B_n \seqar C }{  \vlderivation{
323 54 adas
%		\vlin{w}{}{ !B_1 , \dots , !B_n \seqar B_1 }{
324 54 adas
%			\vlin{!}{}{!B_1 \seqar B_1 }{
325 54 adas
%				\vlin{\id}{}{B_1 \seqar B_1 }{\vlhy{}}
326 54 adas
%			}
327 54 adas
%		}
328 54 adas
%	}  }{\vldots}{
329 54 adas
%	\vlderivation{
330 54 adas
%		\vlin{w}{}{ !B_1 , \dots , !B_n \seqar B_n }{
331 54 adas
%			\vlin{!}{}{!B_n \seqar B_n }{
332 54 adas
%				\vlin{\id}{}{B_n \seqar B_n }{\vlhy{}}
333 54 adas
%			}
334 54 adas
%		}
335 54 adas
%	}
336 54 adas
%}
337 54 adas
%\]
338 54 adas
%\end{proof}
339 54 adas
%
340 54 adas
%
341 54 adas
%\textbf{NB:} The proof does not strictly require side formulae $? \Delta$ on the right of the sequent arrow $\seqar$, it would work without them, e.g.\ for the intuitionistic case. In a one-sided setting there is no difference.
342 54 adas
%
343 54 adas
%
344 54 adas
%
345 54 adas
%\begin{corollary}
346 54 adas
%	The induction axiom of $A^1_2$ is equivalent to the rule:
347 54 adas
%	\[
348 54 adas
%	\vliinf{}{(x \notin \FV(\Gamma, \Delta))}{ !\Gamma , !N(t), A(\epsilon) \seqar A(t) , ?\Delta }{ !\Gamma , !N(x), A(x) \seqar A(s_0 x ), ?\Delta }{ !\Gamma, !N(x),  A(x) \seqar A( s_1 x ) , ?\Delta}
349 54 adas
%	\]
350 54 adas
%\end{corollary}
351 54 adas
%\begin{proof}
352 54 adas
%	By proposition above, generalisation and Currying.
353 54 adas
%\end{proof}
354 54 adas
%
355 54 adas
%\begin{proposition}
356 54 adas
% The following induction rule is derivable from the one of the previous corollary:
357 54 adas
%\[
358 54 adas
%	\vliinf{}{(a, \vec{v}, \vec{x} \notin \FV(\Gamma, \Delta))}{ !\Gamma , !N(\vec{w}), N(\vec{y}), !N(t)  \seqar A(t,\vec{w},\vec{y}) , ?\Delta }{ !\Gamma ,  !N(\vec{v}), N(\vec{x}) \seqar A(\epsilon,\vec{v},\vec{x}), ?\Delta }{ !\Gamma ,  !N(\vec{v}), N(\vec{x}),    A(a,\vec{v},\vec{x}) \seqar  A(s_ia,\vec{v},\vec{x}) , ?\Delta}
359 54 adas
%	\]
360 54 adas
%where the second premise corresponds actually to two premises, one for $i=0$ and one for $i=1$.
361 54 adas
%\end{proposition}
362 53 adas
%\subsection{Prenexing}
363 53 adas
%%In the presence of weakening we have a prenex normal form due to the following:
364 53 adas
%%
365 53 adas
%%\[
366 53 adas
%%\vlderivation{
367 53 adas
%%	\vlin{}{}{\exists x . A \lor B \seqar \exists x . (A(x) \lor B) }{
368 53 adas
%%
369 53 adas
%%		}
370 53 adas
%%	}
371 53 adas
%%\]
372 33 adas
%
373 53 adas
%Cannot derive prenexing operations, e.g.\ a problem with $\exists x . A \lor B \seqar \exists x . (A(x) \lor B)$. Can safely add prenexing rules? Or not a problem due to Witness predicate?