root / CSL16 / appendix-wfm.tex @ 110
Historique | Voir | Annoter | Télécharger (6,16 ko)
1 |
\section{Appendix for Sect.~\ref{sect:wfm}} |
---|---|
2 |
\label{sect:app-wfm} |
3 |
|
4 |
The other initial steps of $\arith$ are translated as follows: |
5 |
\[ |
6 |
\begin{array}{ccc} |
7 |
% \vlinf{\word_\epsilon}{}{\seqar \word (\epsilon)}{} |
8 |
% & : & |
9 |
% \epsilon |
10 |
% \\ |
11 |
\vlinf{\genzer}{}{\word(t) \seqar \word(\succ_0 t)}{} |
12 |
& \quad :\quad & |
13 |
\succ_0 ( ;x) |
14 |
\\ |
15 |
\vlinf{\genone}{}{\word(t) \seqar \word(\succ_1 t)}{} |
16 |
& \quad : \quad & |
17 |
\succ_1 (; x) |
18 |
\\ |
19 |
% \vlinf{\epsilon^0}{}{ \word (t) , \epsilon = \succ_0 t \seqar }{} |
20 |
% & : & |
21 |
% \epsilon |
22 |
% \\ |
23 |
% \vlinf{\epsilon^1}{}{ \word (t) , \epsilon = \succ_1 t \seqar }{} |
24 |
% & : & |
25 |
% \epsilon |
26 |
% \\ |
27 |
% \vlinf{\succ_0}{}{\word (s) , \word (t) , \succ_0 s = \succ_0 t\seqar s = t }{} |
28 |
% & : & |
29 |
% \epsilon |
30 |
% \\ |
31 |
% \vlinf{\succ_1}{}{\word (s) , \word (t) , \succ_1 s = \succ_1 t\seqar s = t }{} |
32 |
% & : & |
33 |
% \epsilon |
34 |
% \\ |
35 |
% \vlinf{\inj}{}{\word(t), \succ_0 t = \succ_1 t \seqar}{} |
36 |
% & : & |
37 |
% \epsilon |
38 |
% \\ |
39 |
\vlinf{\surj}{}{\word (t) \seqar t = \epsilon \laor \exists y^\word . t = \succ_0 y \laor \exists y^\word. t = \succ_1 y }{} |
40 |
&\quad : \quad & |
41 |
( \epsilon , \pred ( ;x) , \pred (;x ) ) |
42 |
\\ |
43 |
\vlinf{\wordcntr}{}{\word(t) \seqar \word(t) \land \word(t) }{} |
44 |
& \quad : \quad & |
45 |
( \id (;x) , \id (;x) ) |
46 |
\end{array} |
47 |
\] |
48 |
|
49 |
|
50 |
Suppose $\pi$ ends with a $\rigrul{\land}$ step: |
51 |
\[ |
52 |
\vlderivation{ |
53 |
\vliin{\land}{}{ \Gamma, \Sigma \seqar \Delta, \Pi, A\land B }{ |
54 |
\vltr{\pi_1}{ \Gamma \seqar \Delta, A }{\vlhy{\quad }}{\vlhy{ }}{\vlhy{\quad }} |
55 |
}{ |
56 |
\vltr{\pi_2}{ \Sigma \seqar \Pi, B }{\vlhy{\quad }}{\vlhy{ }}{\vlhy{\quad }} |
57 |
} |
58 |
} |
59 |
\] |
60 |
By the inductive hypothesis let us suppose we have functions $\vec g (\vec u; \vec x)$ and $\vec h (\vec v ; \vec y)$ from $\pi_1$ and $\pi_2$ respectively, where $\type\left( \bigotimes\Gamma \right) = (\vec u; \vec x)$ and $\type \left( \bigotimes \Sigma \right) = (\vec v ; \vec y)$. Let us write $\vec g = (\vec g^\Delta , \vec g^A)$ and $\vec h = (\vec h^\Pi , \vec h^B)$, to denote the $\Delta$ and $A$ parts of $\vec g$ and the $\Pi$ and $B$ parts of $\vec h$. |
61 |
% So we have $\vec f^{1} (\vec x ; \vec a)$ and $\vec f^2 (\vec y ; \vec b)$ for $\pi_1 $ and $\pi_2$ respectively, by the inductive hypothesis. |
62 |
|
63 |
|
64 |
|
65 |
|
66 |
|
67 |
|
68 |
We construct $\vec f^\pi$ by simply rearranging these tuples of functions: |
69 |
\[ |
70 |
\vec f^\pi (\vec u , \vec v ; \vec x , \vec y) |
71 |
\quad := \quad |
72 |
\left( |
73 |
\vec g^\Delta (\vec u ; \vec x) , \vec h^\Pi (\vec v ; \vec y) , \vec g^A (\vec u ; \vec x) , \vec h^B (\vec v ; \vec y) |
74 |
\right) |
75 |
\] |
76 |
|
77 |
|
78 |
If $\pi$ ends with a $\lefrul{\exists}$ step, |
79 |
\[ |
80 |
\vlderivation{ |
81 |
\vlin{\lefrul{\exists}}{}{ \Gamma, \exists x^\word . A(x) \seqar \Delta }{ |
82 |
\vltr{\pi'}{ \Gamma , A(a), \word(a) \seqar \Delta }{\vlhy{\quad }}{\vlhy{ }}{\vlhy{\quad }} |
83 |
} |
84 |
} |
85 |
\] |
86 |
then $\vec f^{\pi}$ is exactly the same as $\vec f^{\pi'}$. |
87 |
|
88 |
|
89 |
Suppose $\pi$ ends with a $\cut$ step: |
90 |
\[ |
91 |
\vlderivation{ |
92 |
\vliin{\cut}{}{\Gamma , \Sigma \seqar \Delta , \Pi}{ |
93 |
\vltr{\pi_1}{ \Gamma \seqar \Delta, A }{\vlhy{\quad }}{\vlhy{ }}{\vlhy{\quad }} |
94 |
}{ |
95 |
\vltr{\pi_2}{\Sigma , A \seqar \Pi}{\vlhy{\quad }}{\vlhy{ }}{\vlhy{\quad }} |
96 |
} |
97 |
} |
98 |
\] |
99 |
|
100 |
We have two cases. First, if $A$ is free of modalities, then $\type (A)$ consists of only safe inputs. Therefore we have functions $\vec g (\vec u; \vec x)$ and $\vec h (\vec v ; \vec y, \vec z)$ from $\pi_1$ and $\pi_2 $ respectively, such that $\type(\Gamma) = (\vec u ; \vec x)$, $\type(\Sigma) = (\vec v ; \vec y )$ and $\type (A) = (;\vec z)$. Let us write $\vec g = (\vec g^\Delta , \vec g^A)$ as before, and we define $\vec f^\pi$ as follows: |
101 |
|
102 |
\[ |
103 |
\vec f^\pi ( \vec u , \vec v ; \vec x, \vec y) |
104 |
\quad := \quad |
105 |
\left( |
106 |
\vec g^\Delta (\vec u ; \vec x) |
107 |
, |
108 |
\vec h ( \vec v ; \vec y , \vec g^A ( \vec u ; \vec x ) ) |
109 |
\right) |
110 |
\] |
111 |
Notice that all safe inputs on the left occur hereditarily safe on the right, and so these expressions are definable in BC by Prop.~\ref{prop:bc-properties}. |
112 |
|
113 |
|
114 |
|
115 |
|
116 |
Suppose $\pi$ ends with a $\lefrul{\cntr}$ step, |
117 |
\[ |
118 |
\vlderivation{ |
119 |
\vlin{\lefrul{\cntr}}{}{ !A , \Gamma \seqar \Delta }{ |
120 |
\vltr{\pi'}{ !A, !A , \Gamma \seqar \Delta}{\vlhy{\quad }}{\vlhy{ }}{\vlhy{\quad }} |
121 |
} |
122 |
} |
123 |
\] |
124 |
so we have functions $\vec f' ( \vec u^1, \vec u^2 , \vec v ; \vec x)$, with $\vec u^1$ and $\vec u^2$ corresponding to the two copies of $!A$ in the conclusion of $\pi'$ and $\type (\Gamma) = (\vec v; \vec x)$. |
125 |
% (Recall that the typing corresponding to $!$ means that all inputs for each $!A$ are normal). |
126 |
We define $\vec f^\pi$ by duplicating the arguments for $!A$: |
127 |
\[ |
128 |
\vec f^\pi (\vec u , \vec v ; \vec x) |
129 |
\quad := \quad |
130 |
\vec f' (\vec u, \vec u , \vec v ; \vec x) |
131 |
\] |
132 |
|
133 |
|
134 |
Proof of main result: |
135 |
\begin{proof} |
136 |
[Proof of Thm.~\ref{thm:main-result}] |
137 |
% [Proof sketch] |
138 |
By Thm.~\ref{thm:free-cut-elim} and Lemma~\ref{lemma:spec-norm-form} we have a free-cut free proof $\pi$ in $\closure{\eqspec} \cup \arith$ of $!\word (\vec x ) \seqar \word (f (\vec x))$. By Lemma~\ref{lemma:witness-invariant} above this means that $\vec a = \vec x \cimp f^\pi (\vec a) = f(\vec x)$ is true in any model of $\qfindth$ satisfying $\eqspec$ and $\eqspec^\pi$. |
139 |
% Since some model must exist by coherence (cf.\ Prop.~\ref{prop:eq-spec-model}), we have that |
140 |
Using the fact that $\eqspec \cup \eqspec^\pi$ is coherent we can construct such a model, similarly to Prop.~\ref{prop:eq-spec-model}, which will contain $\Word$ as an initial segment, in which we must have $f^\pi (\vec x) = f (\vec x)$ for every $\vec x \in \Word$, as required.\todo{polish} |
141 |
\end{proof} |