root / CharacterizingPH / qpvbc.tex
Historique | Voir | Annoter | Télécharger (10,62 ko)
1 | 146 | adas | \documentclass{amsart} |
---|---|---|---|
2 | 146 | adas | \usepackage{amsthm} |
3 | 146 | adas | \usepackage{hyperref} |
4 | 146 | adas | \usepackage[dvipsnames]{xcolor} |
5 | 146 | adas | |
6 | 147 | adas | |
7 | 146 | adas | \input{macros} |
8 | 146 | adas | |
9 | 146 | adas | \begin{document} |
10 | 148 | adas | |
11 | 148 | adas | |
12 | 148 | adas | |
13 | 146 | adas | \section{Extending the basic BC framework} |
14 | 146 | adas | \begin{itemize} |
15 | 146 | adas | \item Any polynomial-time predicate can be conservatively added to BC with only safe inputs. |
16 | 146 | adas | \item Thus all logical connectives $\neg, \vee, \wedge$ and equality testing $=$ can be implemented as programs with only safe arguments. |
17 | 146 | adas | \item Can add G\"odel's $\beta$ functions with a safe input: |
18 | 146 | adas | \end{itemize} |
19 | 146 | adas | |
20 | 146 | adas | |
21 | 146 | adas | \section{QPVBC} |
22 | 146 | adas | |
23 | 146 | adas | \subsection{Bellantoni's system $\pvbci{}$} |
24 | 146 | adas | |
25 | 148 | adas | \begin{definition} |
26 | 148 | adas | [Hierarchies] |
27 | 148 | adas | We define the following: |
28 | 148 | adas | \begin{itemize} |
29 | 149 | adas | \item $\fphi i$: $i$th level of functional polynomial hierarchy. I.e.\ $\Box_i$ = $\fptime(\Sigma^p_{i-1})$. |
30 | 149 | adas | \item $\mubci{i}$: $\mu$BC programs with $i$ nested $\mu$s, i.e., corresponds to $\fphi {i-1}$. |
31 | 148 | adas | \item $\pvbci i$: defined as $\pvbci{} + \Sigma^\sigma_i$-induction. |
32 | 148 | adas | \end{itemize} |
33 | 148 | adas | \end{definition} |
34 | 146 | adas | |
35 | 146 | adas | \begin{definition} |
36 | 146 | adas | [Provably total function] |
37 | 146 | adas | \end{definition} |
38 | 146 | adas | |
39 | 146 | adas | |
40 | 146 | adas | \subsection{Extensions by induction principles} |
41 | 146 | adas | |
42 | 148 | adas | |
43 | 148 | adas | |
44 | 146 | adas | \section{Soundness} |
45 | 146 | adas | We show that provably total functions of $\pvbci i$ are in $\fphi i$. |
46 | 146 | adas | |
47 | 146 | adas | The following is our main result: |
48 | 146 | adas | \begin{theorem} |
49 | 146 | adas | If $\pvbci i \proves \forall \vec u^\normal , \vec x^\sigma . \exists \vec y^\sigma. A(\vec u , \vec x , \vec y)$, then there are $\mubci i $ programs $\vec f (\vec u ; \vec x)$ such that $\pvbci i \proves\forall \vec u^\normal , \vec x^\sigma . A(\vec u , \vec x , \vec f (\vec u ; \vec x) ) $. |
50 | 146 | adas | \end{theorem} |
51 | 146 | adas | |
52 | 146 | adas | \begin{definition} |
53 | 146 | adas | [Witness predicate] |
54 | 146 | adas | The \emph{witness predicate} is a $\mubci{}$ program $\wit{\vec a}{A}$, parametrised by variables $\vec a$ and a formula $A$ whose free variables are amongst $\vec a$, defined as follows. |
55 | 146 | adas | If $A$ is a $\Pi_{i}$ formula then: |
56 | 146 | adas | \[ |
57 | 146 | adas | \begin{array}{rcl} |
58 | 146 | adas | \wit{\vec u; \vec x}{s=t} (\vec u ; \vec x, w) & \dfn & =(;s,t) \\ |
59 | 146 | adas | \smallskip |
60 | 146 | adas | \wit{\vec u; \vec x}{s\neq t} (\vec u ; \vec x, w) & \dfn & \neg (;=(;s,t)) \\ |
61 | 146 | adas | \smallskip |
62 | 146 | adas | \wit{\vec u ; \vec x}{A\cor B} (\vec u ; \vec x , w) & \dfn & \cor (; \wit{\vec u , \vec x}{A} (\vec u ; \vec x , w), \wit{\vec u , \vec x}{B} (\vec u ;\vec x, w) ) \\ |
63 | 146 | adas | \smallskip |
64 | 146 | adas | \wit{\vec u ; \vec x}{A\cand B} (\vec u ; \vec x , w) & \dfn & \cand(; \wit{\vec u , \vec x}{A} (\vec u ; \vec x , w), \wit{\vec u , \vec x}{B} (\vec u ;\vec x, w) ) \\ |
65 | 146 | adas | \smallskip |
66 | 146 | adas | \wit{\vec u ; \vec x}{\exists x^\safe . A(x)} (\vec u ;\vec x, w) & \dfn & \begin{cases} |
67 | 146 | adas | 1 & \exists x^\safe . \wit{\vec u; \vec x, x }{A(x)} (\vec u ;\vec x , x, w) = 1 \\ |
68 | 146 | adas | 0 & \text{otherwise} |
69 | 146 | adas | \end{cases} \\ |
70 | 146 | adas | \smallskip |
71 | 146 | adas | \wit{\vec u; \vec x}{\forall x^\safe . A(x)} (\vec u ;\vec x , w) & \dfn & |
72 | 146 | adas | \begin{cases} |
73 | 146 | adas | 0 & \exists x^\sigma. \wit{\vec u ; \vec x , x}{ A(x)} (\vec u; \vec x , x) = 0 \\ |
74 | 146 | adas | 1 & \text{otherwise} |
75 | 146 | adas | \end{cases} |
76 | 146 | adas | \end{array} |
77 | 146 | adas | \] |
78 | 146 | adas | We now define $\Wit{\vec a}{A}$ for a $\Sigma_{i+1}$-formula $A$ with free variables amongst $\vec a$. |
79 | 146 | adas | \[ |
80 | 146 | adas | \begin{array}{rcl} |
81 | 146 | adas | \Wit{\vec u ; \vec x}{A} (\vec u ; \vec x , w) & \dfn & \wit{\vec u ; \vec x}{A} (\vec u ; \vec x) \text{ if $A$ is $\Pi_i$} \\ |
82 | 146 | adas | \smallskip |
83 | 146 | adas | \Wit{\vec u ; \vec x}{A \cor B} (\vec u ; \vec x , \vec w^A , \vec w^B) & \dfn & \cor ( ; \Wit{\vec u ; \vec x}{A} (\vec u ; \vec x , \vec w^A) ,\Wit{\vec u ; \vec x}{B} (\vec u ; \vec x , \vec w^B) ) \\ |
84 | 146 | adas | \smallskip |
85 | 146 | adas | \Wit{\vec u ; \vec x}{A \cand B} (\vec u ; \vec x , \vec w^A , \vec w^B) & \dfn & \cand ( ; \Wit{\vec u ; \vec x}{A} (\vec u ; \vec x , \vec w^A) ,\Wit{\vec u ; \vec x}{B} (\vec u ; \vec x , \vec w^B) ) \\ |
86 | 146 | adas | \smallskip |
87 | 146 | adas | \Wit{\vec u ; \vec x}{\exists x^\safe . A(x)} (\vec u ; \vec x , \vec w , w) & \dfn & \Wit{\vec u ; \vec x , x}{A(x)} ( \vec u ; \vec x , w , \vec w ) |
88 | 146 | adas | \end{array} |
89 | 146 | adas | \] |
90 | 146 | adas | |
91 | 146 | adas | |
92 | 146 | adas | \end{definition} |
93 | 146 | adas | |
94 | 146 | adas | \nb{use (de)pairing to make sure only $i$ $\mu$s are used to express a $\Pi_i$ predicate.} |
95 | 146 | adas | |
96 | 146 | adas | \begin{proposition} |
97 | 146 | adas | For $\Sigma_{i+1}$ formulae $A$, $\Wit{\vec u ; \vec x}{A}$ is a $\mubci{i} $ program. |
98 | 146 | adas | \end{proposition} |
99 | 146 | adas | |
100 | 149 | adas | \nb{In fact, need that $\wit{}{}$ is $\mubci{i}$ and $\Wit{}{}$ and the witness functions $\vec f$ are $\bc (\wit{}{})$} |
101 | 149 | adas | |
102 | 146 | adas | Before proving the main theorem, we will need the following `witnessing lemma': |
103 | 146 | adas | |
104 | 146 | adas | \begin{lemma} |
105 | 147 | adas | If $\pvbci{i+1} $ proves a $\Sigma^\safe_{i+1}$-sequent $\Gamma \seqar \Delta$ with free variables $\vec u^\normal , \vec x^\safe$ then there are $\mubci {i}$ functions $\vec f$ such that |
106 | 147 | adas | \[ |
107 | 147 | adas | \pvbci {i+1} \proves \Wit{\vec u , \vec x}{\bigwedge \Gamma} (\vec u ; \vec x , \vec w) \cimp \Wit{\vec u , \vec x}{\bigvee \Delta } (\vec u ; \vec x, \vec f (\vec u ; \vec x , \vec w) ) |
108 | 147 | adas | \] |
109 | 147 | adas | (we simply write $\Wit{\vec u ; \vec x}{A}(\vec u ; \vec x , \vec w)$, instead of $\Wit{\vec u ; \vec x}{A}(\vec u ; \vec x , \vec w) =1 $. |
110 | 146 | adas | \end{lemma} |
111 | 146 | adas | \begin{proof} |
112 | 146 | adas | By induction on the size of a $\pvbci{i+1} $ proof. |
113 | 146 | adas | Interesting steps below: |
114 | 146 | adas | \begin{itemize} |
115 | 147 | adas | \item $\neg$-right. (Can assume only applies to atomic formulae, and so no effect.) |
116 | 147 | adas | \item $\exists$-right. |
117 | 147 | adas | \[ |
118 | 147 | adas | \dfrac{\Gamma \seqar \Delta , A(t^\safe )}{ \Gamma \seqar \Delta, \exists x^\safe . A(x) } |
119 | 147 | adas | \] |
120 | 147 | adas | By the inductive hypothesis, have functions $\vec f(\vec u ; \vec x), \vec g (\vec u ; \vec x)$ such that, |
121 | 147 | adas | \[ |
122 | 147 | adas | \pvbci{i+1} \proves |
123 | 147 | adas | \Wit{\vec u ; \vec x}{\bigwedge \Gamma } (\vec u ; \vec x , \vec w) |
124 | 147 | adas | \cimp |
125 | 147 | adas | \left( |
126 | 147 | adas | \Wit{\vec u ; \vec x}{\bigvee \Delta} (\vec u ; \vec x , \vec f (\vec u ; \vec x , \vec w) ) |
127 | 147 | adas | \cor |
128 | 147 | adas | \Wit{\vec u ; \vec x}{A(t)} (\vec u ; \vec x , \vec g (\vec u ; \vec x , \vec w)) |
129 | 147 | adas | \right) |
130 | 147 | adas | \] |
131 | 147 | adas | (just use $t$ as one of the witness functions) |
132 | 147 | adas | \item $\forall$-right. (Must be a $\Pi_i$ formula, so forget witness and compute $\wit{}{}$) |
133 | 146 | adas | \item Contraction-right: |
134 | 147 | adas | \[ |
135 | 147 | adas | \dfrac{\Gamma \seqar \Delta , A ,A}{\Gamma \seqar \Delta, A} |
136 | 147 | adas | \] |
137 | 147 | adas | By infuctive hypothesis have functions $\vec f, \vec g^1 , \vec g^2$ such that: |
138 | 147 | adas | \[ |
139 | 147 | adas | todo |
140 | 147 | adas | \] |
141 | 147 | adas | (just use conditional with a call to $\Wit{}{}$) |
142 | 146 | adas | \item induction |
143 | 150 | adas | \[ |
144 | 150 | adas | \dfrac{\{\Gamma , A(a) \seqar A(s_i a) , \Delta\}_{i=0,1} }{\Gamma, A(0) \seqar A(t) , \Delta} |
145 | 150 | adas | \] |
146 | 146 | adas | \end{itemize} |
147 | 146 | adas | \end{proof} |
148 | 146 | adas | |
149 | 146 | adas | \section{Completeness} |
150 | 149 | adas | Here we show that every $\mubci{i}$ function is definable in $\pvbci {i+1}$. |
151 | 146 | adas | |
152 | 150 | adas | |
153 | 150 | adas | \nb{WoP known as `minimization' principles in bounded arithmetic} |
154 | 149 | adas | \begin{theorem} |
155 | 149 | adas | [Well ordering property] |
156 | 149 | adas | \[ |
157 | 149 | adas | \pvbci{i+1} \proves \exists x^\safe . A(x) \cimp \exists x^\safe . (A(x) \cand \forall y^\safe . (A(y) \cimp x \leq y ) ) |
158 | 149 | adas | \] |
159 | 149 | adas | \end{theorem} |
160 | 149 | adas | \begin{proof} |
161 | 150 | adas | We work in $\pvbci{i+1}$ and show the contrapositive. |
162 | 150 | adas | Suppose: |
163 | 150 | adas | \begin{equation} |
164 | 150 | adas | \label{eqn:no-least} |
165 | 150 | adas | \forall x^\safe. (A(x) \cimp \exists y^\safe . A(y) \cand y<x ) |
166 | 150 | adas | \end{equation} |
167 | 149 | adas | We show that, |
168 | 150 | adas | \begin{equation} |
169 | 150 | adas | \label{eqn:ih-wop} |
170 | 149 | adas | \forall x. \forall y \leq a - x. (\cnot A(y) \cimp \cnot A(y + x)) |
171 | 150 | adas | \end{equation} |
172 | 149 | adas | by polynomial induction on $x$. |
173 | 149 | adas | |
174 | 150 | adas | Let $B(x)$ be such that \eqref{eqn:ih-wop} is $\forall x . B(x)$. |
175 | 150 | adas | \nb{If $A \in \Sigma^\safe_i \cup \Pi^\safe_i$ then $B \in \Pi^\safe_{i+1}$.} |
176 | 150 | adas | |
177 | 150 | adas | When $x=0$, notice that \eqref{eqn:ih-wop} is just a generalised identity. |
178 | 150 | adas | |
179 | 150 | adas | Suppose that $B(x)$ and let us show that $B(2x)$. |
180 | 150 | adas | Let $y \leq a - 2x$ such that $\cnot A(y)$. |
181 | 150 | adas | Then $y\leq a-x$ so by $B(x)$ we have that $\cnot A(y+x)$. |
182 | 150 | adas | We also have that $y+x \leq a-x$ so by $B(x)$ we have that $\cnot A(y+2x)$, as required. |
183 | 150 | adas | |
184 | 150 | adas | Now suppose that $B(x)$ and let us show that $B(2x+1)$. |
185 | 150 | adas | Let $y \leq a - 2x - 1$ such that $\cnot A(y)$. |
186 | 150 | adas | By similar reasoning to the $2x$ case, we have that $\cnot A(y + 2x )$. |
187 | 149 | adas | \end{proof} |
188 | 146 | adas | |
189 | 149 | adas | |
190 | 150 | adas | \subsection{What we want for WoP} |
191 | 150 | adas | From bounded arithmetic: |
192 | 150 | adas | |
193 | 150 | adas | $\Sigma_{i+1}$-LMIN $ \iff$ $\Sigma_{i+1}$-PIND $\implies$ $\Sigma_i$-IND $\iff$ $\Sigma_i$-MIN $ \iff$ $\Pi_{i+1}$-MIN. |
194 | 150 | adas | |
195 | 150 | adas | \subsection{Completeness proof idea} |
196 | 150 | adas | For each $\mubci i$ function $f(\vec u ; \vec x)$ we $\Sigma_i$-define a formula $A_f (\vec u ; \vec x , y )$ in $\pvbci{i+1}$ such that: |
197 | 150 | adas | \[ |
198 | 150 | adas | \proves A_f (\vec u ; \vec x , y) |
199 | 150 | adas | \quad |
200 | 150 | adas | \iff |
201 | 150 | adas | \quad |
202 | 150 | adas | f(\vec u ; \vec x) = y |
203 | 150 | adas | \] |
204 | 150 | adas | and $A_f$ is provably total in $\pvbci{i+1}$. |
205 | 150 | adas | |
206 | 150 | adas | For the $\mu$ case, say we have the function: |
207 | 150 | adas | \[ |
208 | 150 | adas | \mu x^{+1} . f(\vec u ; \vec x , x) =_2 0 |
209 | 150 | adas | \] |
210 | 150 | adas | Let $A_f (\vec u ; \vec x , y)$ be given by the inductive hypothesis. |
211 | 150 | adas | We define $A(\vec u ; \vec x , z)$ as: |
212 | 150 | adas | \[ |
213 | 150 | adas | \begin{array}{rl} |
214 | 150 | adas | &\left( |
215 | 150 | adas | z=0 \ \cand \ \forall x^\safe , y^\safe . (A_f (\vec u ; \vec x , x, y) \cimp y=_2 1) |
216 | 150 | adas | \right) \\ |
217 | 150 | adas | \cor & \left( |
218 | 150 | adas | \begin{array}{ll} |
219 | 150 | adas | z\neq 0 |
220 | 150 | adas | & \cand\ \forall y^\safe . (A_f (\vec u ; \vec x , z , y) \cimp y=_2 0 ) \\ |
221 | 150 | adas | & \cand\ \forall x^\safe < p(;z) . (\forall y^\safe . A_f (\vec u ; \vec x , x , y) \cimp y=_2 1) |
222 | 150 | adas | \end{array} |
223 | 150 | adas | \right) |
224 | 150 | adas | \end{array} |
225 | 150 | adas | \] |
226 | 150 | adas | Notice that $A$ is $\Pi_k$, since $A_f$ is $\Sigma_k$. |
227 | 150 | adas | |
228 | 150 | adas | |
229 | 150 | adas | |
230 | 150 | adas | What about, say recursion on a formula? Need a form of `ranked comprehension'? |
231 | 150 | adas | E.g., when $A$ is $\Sigma_k$ then we can introduce a rank $k$ symbol (a sort?) such that: |
232 | 150 | adas | \[ |
233 | 150 | adas | \forall \vec u^\normal, \vec x^\safe . \exists ! y^\safe . A(\vec u ; \vec x , y) |
234 | 150 | adas | \implies |
235 | 150 | adas | \exists f^\safe_r . \forall \vec u^\normal,\vec x^\safe, y^\safe . (A(\vec u ; \vec x, y) \ciff f^\safe_r (\vec u ; \vec x) = y ) |
236 | 150 | adas | \] |
237 | 150 | adas | |
238 | 150 | adas | Otherwise, can we use definability of computations? E.g., if: |
239 | 150 | adas | \[ |
240 | 150 | adas | \begin{array}{rcl} |
241 | 150 | adas | f(0, \vec u ; \vec x ) & \dfn & g(\vec u ; \vec x) \\ |
242 | 150 | adas | f(s_i u , \vec u ; \vec x) & \dfn & h_i (u , \vec u ; \vec x , f(u,\vec u ; \vec x)) |
243 | 150 | adas | \end{array} |
244 | 150 | adas | \] |
245 | 150 | adas | Suppose we have $A_g (\vec u ; \vec x,y)$ and $A_i (u , \vec u ; \vec x , y , z)$ defining $g$ and $h_i$ respectively. |
246 | 150 | adas | We define $A_f (u ,\vec u ; \vec x , y)$ as: |
247 | 150 | adas | \[ |
248 | 150 | adas | \exists z^\safe . \left( |
249 | 150 | adas | \begin{array}{ll} |
250 | 150 | adas | & Seq(z) \cand \exists y_0 . ( A_g (\vec u ; \vec x , y_0) \cand \beta_0 (z , y_0) ) \cand \beta_{|u|} ( z,y ) \\ |
251 | 150 | adas | \cand & \forall k < |u| . \exists y_k , y_{k+1} . ( \beta_k (z, y_i) \cand \beta_{k+1} (z, y_{k+1}) \cand A_i (u , \vec u ; \vec x , y_k , y_{k+1}) ) |
252 | 150 | adas | \end{array} |
253 | 150 | adas | \right) |
254 | 150 | adas | \] |
255 | 150 | adas | |
256 | 150 | adas | (Can we really assume $z$ is safe here?) |
257 | 150 | adas | |
258 | 150 | adas | |
259 | 150 | adas | POINT: for whatever formulation, we need to prove: |
260 | 150 | adas | \[ |
261 | 150 | adas | \exists y^\safe . A_f (a , \vec u ; \vec x , y) |
262 | 150 | adas | \quad \seqar \quad |
263 | 150 | adas | \exists y^\safe . A_f (s_i a, \vec u ; \vec x , y) |
264 | 150 | adas | \] |
265 | 150 | adas | |
266 | 151 | adas | SHOULD HAVE: $\beta (i;x)$ for $i$th element of sequence $x$. |
267 | 150 | adas | Therefore need 'sharply bounded' quantification for normal variables? |
268 | 150 | adas | |
269 | 151 | adas | In fact, why not $\beta(;i,x) $? Should be fine. So only safe quantification is needed for PH, but lose level-by-level delineation. |
270 | 150 | adas | |
271 | 150 | adas | GOALS: |
272 | 150 | adas | \begin{enumerate} |
273 | 150 | adas | \item PVBC + FCA + $\safe$-IND characterises PH. (Recursion included in PVBC) |
274 | 150 | adas | \item Refinement of above with `ranks' to delineate levels (definitions of $\pvbci{i}$). |
275 | 150 | adas | \item Arithmetic including both safe and sharply bounded normal quantification. (for sequences) |
276 | 150 | adas | \item (if time) allow both bounded and safe quantifiers? |
277 | 150 | adas | \end{enumerate} |
278 | 155 | adas | |
279 | 155 | adas | |
280 | 155 | adas | |
281 | 155 | adas | FCA: |
282 | 155 | adas | \[ |
283 | 155 | adas | \exists f^\safe . \forall \vec u ; \vec x . |
284 | 155 | adas | \left( |
285 | 155 | adas | \exists y^\safe . A(\vec u ; \vec x , y) \ciff A(\vec u ; \vec x , f^\safe(\vec u ; \vec x)) |
286 | 155 | adas | \right) |
287 | 155 | adas | \] |
288 | 155 | adas | (with typing information) |
289 | 155 | adas | This could be enough with open induction if we introduce ranks later? Yup, seems like a good idea. Can then make into a real `open' theory. |
290 | 147 | adas | \end{document} |