Statistiques
| Révision :

root / CharacterizingPH / qpvbc.tex

Historique | Voir | Annoter | Télécharger (10,62 ko)

1 146 adas
\documentclass{amsart}
2 146 adas
\usepackage{amsthm}
3 146 adas
	\usepackage{hyperref}
4 146 adas
	\usepackage[dvipsnames]{xcolor}
5 146 adas
6 147 adas
7 146 adas
\input{macros}
8 146 adas
9 146 adas
\begin{document}
10 148 adas
11 148 adas
12 148 adas
13 146 adas
	\section{Extending the basic BC framework}
14 146 adas
\begin{itemize}
15 146 adas
	\item 	Any polynomial-time predicate can be conservatively added to BC with only safe inputs.
16 146 adas
	\item Thus all logical connectives $\neg, \vee, \wedge$ and equality testing $=$ can be implemented as programs with only safe arguments.
17 146 adas
	\item Can add G\"odel's $\beta$ functions with a safe input:
18 146 adas
\end{itemize}
19 146 adas
20 146 adas
21 146 adas
\section{QPVBC}
22 146 adas
23 146 adas
\subsection{Bellantoni's system $\pvbci{}$}
24 146 adas
25 148 adas
\begin{definition}
26 148 adas
	[Hierarchies]
27 148 adas
	We define the following:
28 148 adas
	\begin{itemize}
29 149 adas
		\item $\fphi i$: $i$th level of functional polynomial hierarchy. I.e.\ $\Box_i$ = $\fptime(\Sigma^p_{i-1})$.
30 149 adas
		\item $\mubci{i}$: $\mu$BC programs with $i$ nested $\mu$s, i.e., corresponds to $\fphi {i-1}$.
31 148 adas
		\item $\pvbci i$: defined as $\pvbci{} + \Sigma^\sigma_i$-induction.
32 148 adas
	\end{itemize}
33 148 adas
\end{definition}
34 146 adas
35 146 adas
\begin{definition}
36 146 adas
	[Provably total function]
37 146 adas
\end{definition}
38 146 adas
39 146 adas
40 146 adas
\subsection{Extensions by induction principles}
41 146 adas
42 148 adas
43 148 adas
44 146 adas
\section{Soundness}
45 146 adas
We show that provably total functions of $\pvbci i$ are in $\fphi i$.
46 146 adas
47 146 adas
The following is our main result:
48 146 adas
\begin{theorem}
49 146 adas
	If $\pvbci i \proves \forall \vec u^\normal , \vec x^\sigma . \exists \vec y^\sigma. A(\vec u , \vec x , \vec y)$, then there are $\mubci i $ programs $\vec f (\vec u ; \vec x)$ such that $\pvbci i \proves\forall \vec u^\normal , \vec x^\sigma . A(\vec u , \vec x , \vec f (\vec u ; \vec x) )  $.
50 146 adas
\end{theorem}
51 146 adas
52 146 adas
\begin{definition}
53 146 adas
	[Witness predicate]
54 146 adas
	The \emph{witness predicate} is a $\mubci{}$ program $\wit{\vec a}{A}$, parametrised by variables $\vec a$ and a formula $A$ whose free variables are amongst $\vec a$, defined as follows.
55 146 adas
	If $A$ is a $\Pi_{i}$ formula then:
56 146 adas
	\[
57 146 adas
		\begin{array}{rcl}
58 146 adas
		\wit{\vec u; \vec x}{s=t} (\vec u ; \vec x, w) & \dfn & =(;s,t) \\
59 146 adas
		\smallskip
60 146 adas
				\wit{\vec u; \vec x}{s\neq t} (\vec u ; \vec x, w) & \dfn & \neg (;=(;s,t)) \\
61 146 adas
				\smallskip
62 146 adas
		\wit{\vec u ; \vec x}{A\cor B} (\vec u ; \vec x , w) & \dfn & \cor (; \wit{\vec u , \vec x}{A} (\vec u ; \vec x , w), \wit{\vec u , \vec x}{B} (\vec u ;\vec x, w) ) \\
63 146 adas
		\smallskip
64 146 adas
			\wit{\vec u ; \vec x}{A\cand B} (\vec u ; \vec x , w) & \dfn & \cand(; \wit{\vec u , \vec x}{A} (\vec u ; \vec x , w), \wit{\vec u , \vec x}{B} (\vec u ;\vec x, w) ) \\
65 146 adas
			\smallskip
66 146 adas
		\wit{\vec u ; \vec x}{\exists x^\safe . A(x)} (\vec u ;\vec x,  w) & \dfn & \begin{cases}
67 146 adas
		1 & \exists x^\safe . \wit{\vec u; \vec x, x }{A(x)} (\vec u ;\vec x , x, w) = 1 \\
68 146 adas
		0 & \text{otherwise}
69 146 adas
		\end{cases} \\
70 146 adas
		\smallskip
71 146 adas
		\wit{\vec u; \vec x}{\forall x^\safe . A(x)} (\vec u ;\vec x , w) & \dfn &
72 146 adas
		\begin{cases}
73 146 adas
		0 & \exists x^\sigma. \wit{\vec u ; \vec x , x}{ A(x)} (\vec u; \vec x , x) = 0 \\
74 146 adas
		1 & \text{otherwise}
75 146 adas
		\end{cases}
76 146 adas
		\end{array}
77 146 adas
	\]
78 146 adas
	We now define $\Wit{\vec a}{A}$ for a $\Sigma_{i+1}$-formula $A$ with free variables amongst $\vec a$.
79 146 adas
	\[
80 146 adas
	\begin{array}{rcl}
81 146 adas
	\Wit{\vec u ; \vec x}{A} (\vec u ; \vec x , w) & \dfn & \wit{\vec u ; \vec x}{A} (\vec u ; \vec x)  \text{ if $A$ is $\Pi_i$} \\
82 146 adas
	\smallskip
83 146 adas
	\Wit{\vec u ; \vec x}{A \cor B} (\vec u ; \vec x , \vec w^A , \vec w^B) & \dfn & \cor ( ; \Wit{\vec u ; \vec x}{A} (\vec u ; \vec x , \vec w^A) ,\Wit{\vec u ; \vec x}{B} (\vec u ; \vec x , \vec w^B)  )  \\
84 146 adas
	\smallskip
85 146 adas
		\Wit{\vec u ; \vec x}{A \cand B} (\vec u ; \vec x , \vec w^A , \vec w^B) & \dfn & \cand ( ; \Wit{\vec u ; \vec x}{A} (\vec u ; \vec x , \vec w^A) ,\Wit{\vec u ; \vec x}{B} (\vec u ; \vec x , \vec w^B)  )  \\
86 146 adas
	\smallskip
87 146 adas
	\Wit{\vec u ; \vec x}{\exists x^\safe . A(x)} (\vec u ; \vec x , \vec w , w) & \dfn & \Wit{\vec u ; \vec x , x}{A(x)} ( \vec u ; \vec x , w , \vec w )
88 146 adas
	\end{array}
89 146 adas
	\]
90 146 adas
91 146 adas
92 146 adas
\end{definition}
93 146 adas
94 146 adas
\nb{use (de)pairing to make sure only $i$ $\mu$s are used to express a $\Pi_i$ predicate.}
95 146 adas
96 146 adas
\begin{proposition}
97 146 adas
	For $\Sigma_{i+1}$ formulae $A$, $\Wit{\vec u ; \vec x}{A}$ is a $\mubci{i} $ program.
98 146 adas
\end{proposition}
99 146 adas
100 149 adas
\nb{In fact, need that $\wit{}{}$ is $\mubci{i}$ and $\Wit{}{}$ and the witness functions $\vec f$ are $\bc (\wit{}{})$}
101 149 adas
102 146 adas
Before proving the main theorem, we will need the following `witnessing lemma':
103 146 adas
104 146 adas
\begin{lemma}
105 147 adas
	If $\pvbci{i+1} $ proves a $\Sigma^\safe_{i+1}$-sequent $\Gamma \seqar \Delta$ with free variables $\vec u^\normal , \vec x^\safe$ then there are $\mubci {i}$ functions $\vec f$ such that
106 147 adas
	\[
107 147 adas
	\pvbci {i+1} \proves \Wit{\vec u , \vec x}{\bigwedge \Gamma} (\vec u ; \vec x , \vec w) \cimp \Wit{\vec u  , \vec x}{\bigvee \Delta } (\vec u ; \vec x, \vec f (\vec u ; \vec x , \vec w) )
108 147 adas
	\]
109 147 adas
	(we simply write $\Wit{\vec u ; \vec x}{A}(\vec u ; \vec x , \vec w)$, instead of $\Wit{\vec u ; \vec x}{A}(\vec u ; \vec x , \vec w) =1 $.
110 146 adas
\end{lemma}
111 146 adas
\begin{proof}
112 146 adas
	By induction on the size of a $\pvbci{i+1} $ proof.
113 146 adas
	Interesting steps below:
114 146 adas
	\begin{itemize}
115 147 adas
		\item $\neg$-right. (Can assume only applies to atomic formulae, and so no effect.)
116 147 adas
		\item $\exists$-right.
117 147 adas
		\[
118 147 adas
		\dfrac{\Gamma \seqar \Delta , A(t^\safe )}{ \Gamma \seqar \Delta, \exists x^\safe . A(x) }
119 147 adas
		\]
120 147 adas
		By the inductive hypothesis, have functions $\vec f(\vec u ; \vec x), \vec g (\vec u ; \vec x)$ such that,
121 147 adas
		\[
122 147 adas
		\pvbci{i+1} \proves
123 147 adas
		\Wit{\vec u ; \vec x}{\bigwedge \Gamma } (\vec u ; \vec x , \vec w)
124 147 adas
		\cimp
125 147 adas
		\left(
126 147 adas
		\Wit{\vec u ; \vec x}{\bigvee \Delta} (\vec u ; \vec x , \vec f (\vec u ; \vec x , \vec w) )
127 147 adas
		\cor
128 147 adas
		\Wit{\vec u ; \vec x}{A(t)} (\vec u ; \vec x , \vec g (\vec u ; \vec x , \vec w))
129 147 adas
		\right)
130 147 adas
		\]
131 147 adas
		(just use $t$ as one of the witness functions)
132 147 adas
		\item $\forall$-right. (Must be a $\Pi_i$ formula, so forget witness and compute $\wit{}{}$)
133 146 adas
		\item Contraction-right:
134 147 adas
		\[
135 147 adas
		\dfrac{\Gamma  \seqar \Delta , A ,A}{\Gamma \seqar \Delta, A}
136 147 adas
		\]
137 147 adas
		By infuctive hypothesis have functions $\vec f, \vec g^1 , \vec g^2$ such that:
138 147 adas
		\[
139 147 adas
		todo
140 147 adas
		\]
141 147 adas
		(just use conditional with a call to $\Wit{}{}$)
142 146 adas
		\item induction
143 150 adas
		\[
144 150 adas
		\dfrac{\{\Gamma , A(a) \seqar A(s_i a) , \Delta\}_{i=0,1} }{\Gamma, A(0) \seqar A(t) , \Delta}
145 150 adas
		\]
146 146 adas
	\end{itemize}
147 146 adas
\end{proof}
148 146 adas
149 146 adas
\section{Completeness}
150 149 adas
Here we show that every $\mubci{i}$ function is definable in $\pvbci {i+1}$.
151 146 adas
152 150 adas
153 150 adas
\nb{WoP known as `minimization' principles in bounded arithmetic}
154 149 adas
\begin{theorem}
155 149 adas
	[Well ordering property]
156 149 adas
	\[
157 149 adas
	\pvbci{i+1} \proves \exists x^\safe . A(x) \cimp \exists  x^\safe . (A(x) \cand \forall y^\safe . (A(y) \cimp x \leq y ) )
158 149 adas
	\]
159 149 adas
\end{theorem}
160 149 adas
\begin{proof}
161 150 adas
	We work in $\pvbci{i+1}$ and show the contrapositive.
162 150 adas
	Suppose:
163 150 adas
	\begin{equation}
164 150 adas
	\label{eqn:no-least}
165 150 adas
	\forall x^\safe. (A(x) \cimp \exists y^\safe . A(y) \cand y<x )
166 150 adas
	\end{equation}
167 149 adas
	We show that,
168 150 adas
	\begin{equation}
169 150 adas
	\label{eqn:ih-wop}
170 149 adas
	\forall x. \forall y \leq a - x. (\cnot A(y) \cimp \cnot A(y + x))
171 150 adas
	\end{equation}
172 149 adas
	by polynomial induction on $x$.
173 149 adas
174 150 adas
	Let $B(x)$ be such that \eqref{eqn:ih-wop} is $\forall x . B(x)$.
175 150 adas
	\nb{If $A \in \Sigma^\safe_i \cup \Pi^\safe_i$ then $B \in \Pi^\safe_{i+1}$.}
176 150 adas
177 150 adas
	When $x=0$, notice that \eqref{eqn:ih-wop} is just a generalised identity.
178 150 adas
179 150 adas
	Suppose that $B(x)$ and let us show that $B(2x)$.
180 150 adas
	Let $y \leq a - 2x$ such that $\cnot A(y)$.
181 150 adas
	Then $y\leq a-x$ so by $B(x)$ we have that $\cnot A(y+x)$.
182 150 adas
	We also have that $y+x \leq a-x$ so by $B(x)$ we have that $\cnot A(y+2x)$, as required.
183 150 adas
184 150 adas
	Now suppose that $B(x)$ and let us show that $B(2x+1)$.
185 150 adas
	Let $y \leq a - 2x - 1$ such that $\cnot A(y)$.
186 150 adas
	By similar reasoning to the $2x$ case, we have that $\cnot A(y + 2x )$.
187 149 adas
\end{proof}
188 146 adas
189 149 adas
190 150 adas
\subsection{What we want for WoP}
191 150 adas
From bounded arithmetic:
192 150 adas
193 150 adas
$\Sigma_{i+1}$-LMIN $ \iff$ $\Sigma_{i+1}$-PIND $\implies$ $\Sigma_i$-IND $\iff$ $\Sigma_i$-MIN $ \iff$ $\Pi_{i+1}$-MIN.
194 150 adas
195 150 adas
\subsection{Completeness proof idea}
196 150 adas
For each $\mubci i$ function $f(\vec u ; \vec x)$ we $\Sigma_i$-define a formula $A_f (\vec u ; \vec x  , y )$ in $\pvbci{i+1}$ such that:
197 150 adas
\[
198 150 adas
\proves A_f (\vec u ; \vec x , y)
199 150 adas
\quad
200 150 adas
\iff
201 150 adas
\quad
202 150 adas
f(\vec u ; \vec x) = y
203 150 adas
\]
204 150 adas
and $A_f$ is provably total in $\pvbci{i+1}$.
205 150 adas
206 150 adas
For the $\mu$ case, say we have the function:
207 150 adas
\[
208 150 adas
\mu x^{+1} . f(\vec u ; \vec x , x) =_2 0
209 150 adas
\]
210 150 adas
Let $A_f (\vec u ; \vec x , y)$ be given by the inductive hypothesis.
211 150 adas
We define $A(\vec u ; \vec x , z)$ as:
212 150 adas
\[
213 150 adas
\begin{array}{rl}
214 150 adas
&\left(
215 150 adas
z=0 \  \cand \ \forall x^\safe , y^\safe . (A_f (\vec u ; \vec x , x, y) \cimp y=_2 1)
216 150 adas
\right) \\
217 150 adas
\cor & \left(
218 150 adas
\begin{array}{ll}
219 150 adas
z\neq 0
220 150 adas
& \cand\   \forall y^\safe . (A_f (\vec u ; \vec x , z , y) \cimp y=_2 0 ) \\
221 150 adas
& \cand\ \forall x^\safe < p(;z) . (\forall y^\safe . A_f (\vec u ; \vec x , x , y) \cimp y=_2 1)
222 150 adas
\end{array}
223 150 adas
\right)
224 150 adas
\end{array}
225 150 adas
\]
226 150 adas
Notice that $A$ is $\Pi_k$, since $A_f$ is $\Sigma_k$.
227 150 adas
228 150 adas
229 150 adas
230 150 adas
What about, say recursion on a formula? Need a form of `ranked comprehension'?
231 150 adas
E.g., when $A$ is $\Sigma_k$ then we can introduce a rank $k$ symbol (a sort?) such that:
232 150 adas
\[
233 150 adas
\forall \vec u^\normal, \vec x^\safe . \exists ! y^\safe . A(\vec u ; \vec x , y)
234 150 adas
\implies
235 150 adas
\exists f^\safe_r . \forall \vec u^\normal,\vec x^\safe, y^\safe . (A(\vec u ; \vec x, y) \ciff f^\safe_r (\vec u ; \vec x) = y )
236 150 adas
\]
237 150 adas
238 150 adas
Otherwise, can we use definability of computations? E.g., if:
239 150 adas
\[
240 150 adas
\begin{array}{rcl}
241 150 adas
f(0, \vec u ; \vec x ) & \dfn & g(\vec u ; \vec x) \\
242 150 adas
f(s_i u , \vec u ; \vec x) & \dfn & h_i (u , \vec u ; \vec x , f(u,\vec u ; \vec x))
243 150 adas
\end{array}
244 150 adas
\]
245 150 adas
Suppose we have $A_g (\vec u ; \vec x,y)$ and $A_i (u , \vec u ; \vec x , y , z)$ defining $g$ and $h_i$ respectively.
246 150 adas
We define $A_f (u ,\vec u ; \vec x , y)$ as:
247 150 adas
\[
248 150 adas
\exists z^\safe . \left(
249 150 adas
\begin{array}{ll}
250 150 adas
& Seq(z) \cand \exists y_0 . ( A_g (\vec u ; \vec x , y_0) \cand \beta_0 (z , y_0) ) \cand \beta_{|u|} ( z,y ) \\
251 150 adas
\cand & \forall k < |u| . \exists y_k , y_{k+1} . ( \beta_k (z, y_i) \cand \beta_{k+1} (z, y_{k+1})  \cand A_i (u , \vec u ; \vec x , y_k , y_{k+1}) )
252 150 adas
\end{array}
253 150 adas
\right)
254 150 adas
\]
255 150 adas
256 150 adas
(Can we really assume $z$ is safe here?)
257 150 adas
258 150 adas
259 150 adas
POINT: for whatever formulation, we need to prove:
260 150 adas
\[
261 150 adas
\exists y^\safe . A_f (a , \vec u ; \vec x , y)
262 150 adas
\quad \seqar \quad
263 150 adas
\exists y^\safe . A_f (s_i a, \vec u ; \vec x , y)
264 150 adas
\]
265 150 adas
266 151 adas
SHOULD HAVE: $\beta (i;x)$ for $i$th element of sequence $x$.
267 150 adas
Therefore need 'sharply bounded' quantification for normal variables?
268 150 adas
269 151 adas
In fact, why not $\beta(;i,x) $? Should be fine. So only safe quantification is needed for PH, but lose level-by-level delineation.
270 150 adas
271 150 adas
GOALS:
272 150 adas
\begin{enumerate}
273 150 adas
	\item PVBC + FCA + $\safe$-IND characterises PH. (Recursion included in PVBC)
274 150 adas
	\item Refinement of above with `ranks' to delineate levels (definitions of $\pvbci{i}$).
275 150 adas
	\item Arithmetic including both safe and sharply bounded normal quantification. (for sequences)
276 150 adas
	\item (if time) allow both bounded and safe quantifiers?
277 150 adas
\end{enumerate}
278 155 adas
279 155 adas
280 155 adas
281 155 adas
FCA:
282 155 adas
\[
283 155 adas
\exists f^\safe . \forall \vec u ; \vec x .
284 155 adas
\left(
285 155 adas
\exists y^\safe . A(\vec u ; \vec x , y) \ciff A(\vec u ; \vec x , f^\safe(\vec u ; \vec x))
286 155 adas
\right)
287 155 adas
\]
288 155 adas
(with typing information)
289 155 adas
This could be enough with open induction if we introduce ranks later? Yup, seems like a good idea. Can then make into a real `open' theory.
290 147 adas
\end{document}