Statistiques
| Révision :

root / src / pfact / HPL_pdpanrlN.c @ 7

Historique | Voir | Annoter | Télécharger (9,98 ko)

1
/* 
2
 * -- High Performance Computing Linpack Benchmark (HPL)                
3
 *    HPL - 2.0 - September 10, 2008                          
4
 *    Antoine P. Petitet                                                
5
 *    University of Tennessee, Knoxville                                
6
 *    Innovative Computing Laboratory                                 
7
 *    (C) Copyright 2000-2008 All Rights Reserved                       
8
 *                                                                      
9
 * -- Copyright notice and Licensing terms:                             
10
 *                                                                      
11
 * Redistribution  and  use in  source and binary forms, with or without
12
 * modification, are  permitted provided  that the following  conditions
13
 * are met:                                                             
14
 *                                                                      
15
 * 1. Redistributions  of  source  code  must retain the above copyright
16
 * notice, this list of conditions and the following disclaimer.        
17
 *                                                                      
18
 * 2. Redistributions in binary form must reproduce  the above copyright
19
 * notice, this list of conditions,  and the following disclaimer in the
20
 * documentation and/or other materials provided with the distribution. 
21
 *                                                                      
22
 * 3. All  advertising  materials  mentioning  features  or  use of this
23
 * software must display the following acknowledgement:                 
24
 * This  product  includes  software  developed  at  the  University  of
25
 * Tennessee, Knoxville, Innovative Computing Laboratory.             
26
 *                                                                      
27
 * 4. The name of the  University,  the name of the  Laboratory,  or the
28
 * names  of  its  contributors  may  not  be used to endorse or promote
29
 * products  derived   from   this  software  without  specific  written
30
 * permission.                                                          
31
 *                                                                      
32
 * -- Disclaimer:                                                       
33
 *                                                                      
34
 * THIS  SOFTWARE  IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
35
 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES,  INCLUDING,  BUT NOT
36
 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
37
 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE UNIVERSITY
38
 * OR  CONTRIBUTORS  BE  LIABLE FOR ANY  DIRECT,  INDIRECT,  INCIDENTAL,
39
 * SPECIAL,  EXEMPLARY,  OR  CONSEQUENTIAL DAMAGES  (INCLUDING,  BUT NOT
40
 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
41
 * DATA OR PROFITS; OR BUSINESS INTERRUPTION)  HOWEVER CAUSED AND ON ANY
42
 * THEORY OF LIABILITY, WHETHER IN CONTRACT,  STRICT LIABILITY,  OR TORT
43
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
44
 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 
45
 * ---------------------------------------------------------------------
46
 */ 
47
/*
48
 * Include files
49
 */
50
#include "hpl.h"
51

    
52
#ifdef STDC_HEADERS
53
void HPL_pdpanrlN
54
(
55
   HPL_T_panel *                    PANEL,
56
   const int                        M,
57
   const int                        N,
58
   const int                        ICOFF,
59
   double *                         WORK
60
)
61
#else
62
void HPL_pdpanrlN
63
( PANEL, M, N, ICOFF, WORK )
64
   HPL_T_panel *                    PANEL;
65
   const int                        M;
66
   const int                        N;
67
   const int                        ICOFF;
68
   double *                         WORK;
69
#endif
70
{
71
/* 
72
 * Purpose
73
 * =======
74
 *
75
 * HPL_pdpanrlN factorizes  a panel of columns  that is a sub-array of a
76
 * larger one-dimensional panel A using the Right-looking variant of the
77
 * usual one-dimensional algorithm.  The lower triangular N0-by-N0 upper
78
 * block of the panel is stored in no-transpose form (i.e. just like the
79
 * input matrix itself).
80
 *  
81
 * Bi-directional  exchange  is  used  to  perform  the  swap::broadcast
82
 * operations  at once  for one column in the panel.  This  results in a
83
 * lower number of slightly larger  messages than usual.  On P processes
84
 * and assuming bi-directional links,  the running time of this function
85
 * can be approximated by (when N is equal to N0):
86
 *  
87
 *    N0 * log_2( P ) * ( lat + ( 2*N0 + 4 ) / bdwth ) +
88
 *    N0^2 * ( M - N0/3 ) * gam2-3
89
 *  
90
 * where M is the local number of rows of  the panel, lat and bdwth  are
91
 * the latency and bandwidth of the network for  double  precision  real
92
 * words, and  gam2-3  is  an estimate of the  Level 2 and Level 3  BLAS
93
 * rate of execution. The  recursive  algorithm  allows indeed to almost
94
 * achieve  Level 3 BLAS  performance  in the panel factorization.  On a
95
 * large  number of modern machines,  this  operation is however latency
96
 * bound,  meaning  that its cost can  be estimated  by only the latency
97
 * portion N0 * log_2(P) * lat.  Mono-directional links will double this
98
 * communication cost.
99
 *  
100
 * Note that  one  iteration of the the main loop is unrolled. The local
101
 * computation of the absolute value max of the next column is performed
102
 * just after its update by the current column. This allows to bring the
103
 * current column only  once through  cache at each  step.  The  current
104
 * implementation  does not perform  any blocking  for  this sequence of
105
 * BLAS operations, however the design allows for plugging in an optimal
106
 * (machine-specific) specialized  BLAS-like kernel.  This idea has been
107
 * suggested to us by Fred Gustavson, IBM T.J. Watson Research Center.
108
 *
109
 * Arguments
110
 * =========
111
 *
112
 * PANEL   (local input/output)          HPL_T_panel *
113
 *         On entry,  PANEL  points to the data structure containing the
114
 *         panel information.
115
 *
116
 * M       (local input)                 const int
117
 *         On entry,  M specifies the local number of rows of sub(A).
118
 *
119
 * N       (local input)                 const int
120
 *         On entry,  N specifies the local number of columns of sub(A).
121
 *
122
 * ICOFF   (global input)                const int
123
 *         On entry, ICOFF specifies the row and column offset of sub(A)
124
 *         in A.
125
 *
126
 * WORK    (local workspace)             double *
127
 *         On entry, WORK  is a workarray of size at least 2*(4+2*N0).
128
 *
129
 * ---------------------------------------------------------------------
130
 */ 
131
/*
132
 * .. Local Variables ..
133
 */
134
   double                     * A, * Acur, * Anxt;
135
#ifdef HPL_CALL_VSIPL
136
   vsip_mview_d               * Av0, * Av1, * Xv1, * Yv0, * Yv1;
137
#endif
138
   int                        Mm1, Nm1, curr, ii, iip1, jj, lda, m=M;
139
/* ..
140
 * .. Executable Statements ..
141
 */
142
#ifdef HPL_DETAILED_TIMING
143
   HPL_ptimer( HPL_TIMING_PFACT );
144
#endif
145
   A    = PANEL->A;   lda = PANEL->lda;
146
   curr = (int)( PANEL->grid->myrow == PANEL->prow );
147

    
148
   Nm1  = N - 1; jj = ICOFF;
149
   if( curr != 0 ) { ii = ICOFF; iip1 = ii+1; Mm1 = m-1; }
150
   else            { ii = 0;     iip1 = ii;   Mm1 = m;   }
151
#ifdef HPL_CALL_VSIPL
152
/*
153
 * Admit the blocks
154
 */
155
   (void) vsip_blockadmit_d(  PANEL->Ablock,  VSIP_TRUE );
156
   (void) vsip_blockadmit_d(  PANEL->L1block, VSIP_TRUE );
157
/*
158
 * Create the matrix views
159
 */
160
   Av0 = vsip_mbind_d( PANEL->Ablock,  0, 1, lda,       lda, PANEL->pmat->nq );
161
   Yv0 = vsip_mbind_d( PANEL->L1block, 0, 1, PANEL->jb, PANEL->jb, PANEL->jb );
162
#endif
163
/*
164
 * Find local absolute value max in first column - initialize WORK[0:3]
165
 */
166
   HPL_dlocmax( PANEL, m, ii, jj, WORK );
167

    
168
   while( Nm1 >= 1 )
169
   {
170
      Acur = Mptr( A, iip1, jj, lda ); Anxt = Mptr( Acur, 0, 1, lda );
171
/*
172
 * Swap and broadcast the current row
173
 */
174
      HPL_pdmxswp(  PANEL, m, ii, jj, WORK );
175
      HPL_dlocswpN( PANEL,    ii, jj, WORK );
176
/*
177
 * Scale current column by its absolute value max entry  -  Update trai-
178
 * ling sub-matrix and find local absolute value max in next column (On-
179
 * ly one pass through cache for each current column).  This sequence of
180
 * operations could benefit from a specialized blocked implementation.
181
 */
182
      if( WORK[0] != HPL_rzero )
183
         HPL_dscal( Mm1, HPL_rone / WORK[0], Acur, 1 );
184
      HPL_daxpy( Mm1, -WORK[4+jj+1], Acur, 1, Anxt, 1 );
185
      HPL_dlocmax( PANEL, Mm1, iip1, jj+1, WORK );
186
#ifdef HPL_CALL_VSIPL
187
      if( Nm1 > 1 )
188
      {
189
/*
190
 * Create the matrix subviews
191
 */
192
         Av1 = vsip_msubview_d( Av0, PANEL->ii+iip1, PANEL->jj+jj+2,
193
                                Mm1, Nm1-1 );
194
         Xv1 = vsip_msubview_d( Av0, PANEL->ii+iip1, PANEL->jj+jj,
195
                                Mm1, 1   );
196
         Yv1 = vsip_msubview_d( Yv0, jj, jj+2, 1, Nm1-1 );
197

    
198
         vsip_gemp_d( -HPL_rone, Xv1, VSIP_MAT_NTRANS, Yv1, VSIP_MAT_NTRANS,
199
                      HPL_rone, Av1 );
200
/*
201
 * Destroy the matrix subviews
202
 */
203
         (void) vsip_mdestroy_d( Yv1 );
204
         (void) vsip_mdestroy_d( Xv1 );
205
         (void) vsip_mdestroy_d( Av1 );
206
      }
207
#else
208
      if( Nm1 > 1 )
209
         HPL_dger( HplColumnMajor, Mm1, Nm1-1, -HPL_rone, Acur, 1,
210
                   WORK+4+jj+2, 1, Mptr( Anxt, 0, 1, lda ), lda );
211
#endif
212
/*
213
 * Same thing as above but with worse data access on y (A += x * y^T)
214
 *
215
 *    if( Nm1 > 1 ) )
216
 *       HPL_dger( HplColumnMajor, Mm1, Nm1-1, -HPL_rone, Acur, 1,
217
 *                 Mptr( L1, jj, jj+2, n0 ), n0, Mptr( Anxt, 0, 1, lda ),
218
 *                 lda );
219
 */  
220
      if( curr != 0 ) { ii = iip1; iip1++; m = Mm1; Mm1--; }
221

    
222
      Nm1--; jj++;
223
   }
224
/*
225
 * Swap and broadcast last row - Scale last column by its absolute value
226
 * max entry
227
 */ 
228
   HPL_pdmxswp(  PANEL, m, ii, jj, WORK );
229
   HPL_dlocswpN( PANEL,    ii, jj, WORK );
230
   if( WORK[0] != HPL_rzero )
231
      HPL_dscal( Mm1, HPL_rone / WORK[0], Mptr( A, iip1, jj, lda ), 1 );
232
#ifdef HPL_CALL_VSIPL
233
/*
234
 * Release the blocks
235
 */
236
   (void) vsip_blockrelease_d( vsip_mgetblock_d( Yv0 ), VSIP_TRUE );
237
   (void) vsip_blockrelease_d( vsip_mgetblock_d( Av0 ), VSIP_TRUE );
238
/*
239
 * Destroy the matrix views
240
 */
241
   (void) vsip_mdestroy_d( Yv0 );
242
   (void) vsip_mdestroy_d( Av0 );
243
#endif
244
#ifdef HPL_DETAILED_TIMING
245
   HPL_ptimer( HPL_TIMING_PFACT );
246
#endif
247
/*
248
 * End of HPL_pdpanrlN
249
 */
250
}