root / src / auxil / HPL_dlange.c @ 1
Historique | Voir | Annoter | Télécharger (6,84 ko)
1 |
/*
|
---|---|
2 |
* -- High Performance Computing Linpack Benchmark (HPL)
|
3 |
* HPL - 2.0 - September 10, 2008
|
4 |
* Antoine P. Petitet
|
5 |
* University of Tennessee, Knoxville
|
6 |
* Innovative Computing Laboratory
|
7 |
* (C) Copyright 2000-2008 All Rights Reserved
|
8 |
*
|
9 |
* -- Copyright notice and Licensing terms:
|
10 |
*
|
11 |
* Redistribution and use in source and binary forms, with or without
|
12 |
* modification, are permitted provided that the following conditions
|
13 |
* are met:
|
14 |
*
|
15 |
* 1. Redistributions of source code must retain the above copyright
|
16 |
* notice, this list of conditions and the following disclaimer.
|
17 |
*
|
18 |
* 2. Redistributions in binary form must reproduce the above copyright
|
19 |
* notice, this list of conditions, and the following disclaimer in the
|
20 |
* documentation and/or other materials provided with the distribution.
|
21 |
*
|
22 |
* 3. All advertising materials mentioning features or use of this
|
23 |
* software must display the following acknowledgement:
|
24 |
* This product includes software developed at the University of
|
25 |
* Tennessee, Knoxville, Innovative Computing Laboratory.
|
26 |
*
|
27 |
* 4. The name of the University, the name of the Laboratory, or the
|
28 |
* names of its contributors may not be used to endorse or promote
|
29 |
* products derived from this software without specific written
|
30 |
* permission.
|
31 |
*
|
32 |
* -- Disclaimer:
|
33 |
*
|
34 |
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
35 |
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
36 |
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
37 |
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE UNIVERSITY
|
38 |
* OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
39 |
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
40 |
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
41 |
* DATA OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
42 |
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
43 |
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
44 |
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
45 |
* ---------------------------------------------------------------------
|
46 |
*/
|
47 |
/*
|
48 |
* Include files
|
49 |
*/
|
50 |
#include "hpl.h" |
51 |
|
52 |
#ifdef STDC_HEADERS
|
53 |
double HPL_dlange
|
54 |
( |
55 |
const HPL_T_NORM NORM,
|
56 |
const int M, |
57 |
const int N, |
58 |
const double * A, |
59 |
const int LDA |
60 |
) |
61 |
#else
|
62 |
double HPL_dlange
|
63 |
( NORM, M, N, A, LDA ) |
64 |
const HPL_T_NORM NORM;
|
65 |
const int M; |
66 |
const int N; |
67 |
const double * A; |
68 |
const int LDA; |
69 |
#endif
|
70 |
{ |
71 |
/*
|
72 |
* Purpose
|
73 |
* =======
|
74 |
*
|
75 |
* HPL_dlange returns the value of the one norm, or the infinity norm,
|
76 |
* or the element of largest absolute value of a matrix A:
|
77 |
*
|
78 |
* max(abs(A(i,j))) when NORM = HPL_NORM_A,
|
79 |
* norm1(A), when NORM = HPL_NORM_1,
|
80 |
* normI(A), when NORM = HPL_NORM_I,
|
81 |
*
|
82 |
* where norm1 denotes the one norm of a matrix (maximum column sum) and
|
83 |
* normI denotes the infinity norm of a matrix (maximum row sum). Note
|
84 |
* that max(abs(A(i,j))) is not a matrix norm.
|
85 |
*
|
86 |
* Arguments
|
87 |
* =========
|
88 |
*
|
89 |
* NORM (local input) const HPL_T_NORM
|
90 |
* On entry, NORM specifies the value to be returned by this
|
91 |
* function as described above.
|
92 |
*
|
93 |
* M (local input) const int
|
94 |
* On entry, M specifies the number of rows of the matrix A.
|
95 |
* M must be at least zero.
|
96 |
*
|
97 |
* N (local input) const int
|
98 |
* On entry, N specifies the number of columns of the matrix A.
|
99 |
* N must be at least zero.
|
100 |
*
|
101 |
* A (local input) const double *
|
102 |
* On entry, A points to an array of dimension (LDA,N), that
|
103 |
* contains the matrix A.
|
104 |
*
|
105 |
* LDA (local input) const int
|
106 |
* On entry, LDA specifies the leading dimension of the array A.
|
107 |
* LDA must be at least max(1,M).
|
108 |
*
|
109 |
* ---------------------------------------------------------------------
|
110 |
*/
|
111 |
/*
|
112 |
* .. Local Variables ..
|
113 |
*/
|
114 |
double s, v0=HPL_rzero, * work = NULL; |
115 |
int i, j;
|
116 |
/* ..
|
117 |
* .. Executable Statements ..
|
118 |
*/
|
119 |
if( ( M <= 0 ) || ( N <= 0 ) ) return( HPL_rzero ); |
120 |
|
121 |
if( NORM == HPL_NORM_A )
|
122 |
{ |
123 |
/*
|
124 |
* max( abs( A ) )
|
125 |
*/
|
126 |
for( j = 0; j < N; j++ ) |
127 |
{ |
128 |
for( i = 0; i < M; i++ ) { v0 = Mmax( v0, Mabs( *A ) ); A++; } |
129 |
A += LDA - M; |
130 |
} |
131 |
} |
132 |
else if( NORM == HPL_NORM_1 ) |
133 |
{ |
134 |
/*
|
135 |
* Find norm_1( A ).
|
136 |
*/
|
137 |
work = (double*)malloc( (size_t)(N) * sizeof( double ) ); |
138 |
if( work == NULL ) |
139 |
{ HPL_abort( __LINE__, "HPL_dlange", "Memory allocation failed" ); } |
140 |
else
|
141 |
{ |
142 |
for( j = 0; j < N; j++ ) |
143 |
{ |
144 |
s = HPL_rzero; |
145 |
for( i = 0; i < M; i++ ) { s += Mabs( *A ); A++; } |
146 |
work[j] = s; A += LDA - M; |
147 |
} |
148 |
/*
|
149 |
* Find maximum sum of columns for 1-norm
|
150 |
*/
|
151 |
v0 = work[HPL_idamax( N, work, 1 )]; v0 = Mabs( v0 );
|
152 |
if( work ) free( work );
|
153 |
} |
154 |
} |
155 |
else if( NORM == HPL_NORM_I ) |
156 |
{ |
157 |
/*
|
158 |
* Find norm_inf( A )
|
159 |
*/
|
160 |
work = (double*)malloc( (size_t)(M) * sizeof( double ) ); |
161 |
if( work == NULL ) |
162 |
{ HPL_abort( __LINE__, "HPL_dlange", "Memory allocation failed" ); } |
163 |
else
|
164 |
{ |
165 |
for( i = 0; i < M; i++ ) { work[i] = HPL_rzero; } |
166 |
|
167 |
for( j = 0; j < N; j++ ) |
168 |
{ |
169 |
for( i = 0; i < M; i++ ) { work[i] += Mabs( *A ); A++; } |
170 |
A += LDA - M; |
171 |
} |
172 |
/*
|
173 |
* Find maximum sum of rows for inf-norm
|
174 |
*/
|
175 |
v0 = work[HPL_idamax( M, work, 1 )]; v0 = Mabs( v0 );
|
176 |
if( work ) free( work );
|
177 |
} |
178 |
} |
179 |
|
180 |
return( v0 );
|
181 |
/*
|
182 |
* End of HPL_dlange
|
183 |
*/
|
184 |
} |