|
1 |
/***************************
|
|
2 |
* ----------------------------------------------------------------------
|
|
3 |
* Dandelion pappus morphing is actuated by radially patterned material swelling
|
|
4 |
* ----------------------------------------------------------------------
|
|
5 |
*
|
|
6 |
* FreeFem++ simulation scripte used in the following publication :
|
|
7 |
*
|
|
8 |
* Madeleine Seale, Annamaria Kiss, Simone Bovio, Ignazio Maria Viola, Enrico
|
|
9 |
* Mastropaolo, Arezki Boudaoud, Naomi Nakayama,
|
|
10 |
* "Dandelion pappus morphing is actuated by radially patterned material swelling",
|
|
11 |
* doi: https://doi.org/10.1101/2021.08.23.457337
|
|
12 |
*
|
|
13 |
* Author :
|
|
14 |
* Annamaria Kiss
|
|
15 |
* (annamaria.kiss@ens-lyon.fr, Laboratoire RDP, ENS Lyon)
|
|
16 |
*
|
|
17 |
* ***************************/
|
|
18 |
|
|
19 |
include "getARGV.idp"
|
|
20 |
|
|
21 |
// reading script arguments
|
|
22 |
for (int i=0;i<ARGV.n;++i)
|
|
23 |
{ cout << ARGV[i] << " ";}
|
|
24 |
cout<<endl;
|
|
25 |
|
|
26 |
/***************************
|
|
27 |
* GLOSSARY
|
|
28 |
* nectary = floral podium
|
|
29 |
* mesophyl = cortex
|
|
30 |
/****************************/
|
|
31 |
|
|
32 |
/*************************************************************
|
|
33 |
* PARAMETERS
|
|
34 |
* **********************************************************/
|
|
35 |
|
|
36 |
string output = getARGV("-out", ".");
|
|
37 |
|
|
38 |
// ---------------- geometrical parameters ----------------
|
|
39 |
|
|
40 |
// (lengths are measured in micrometers)
|
|
41 |
real units=200;
|
|
42 |
|
|
43 |
// actuator dimensions
|
|
44 |
real lx=getARGV("-D", 491.0)/units; //sd =34.4
|
|
45 |
real ly=getARGV("-H", 240.0)/units; //sd=36.0
|
|
46 |
|
|
47 |
// floral podium
|
|
48 |
real hnect = getARGV("-Hpod", 38.8)/units; //sd=9.6
|
|
49 |
real Rmeasured=getARGV("-R", 363.0)/units; //sd=49.4
|
|
50 |
real R=Rmeasured-hnect;
|
|
51 |
|
|
52 |
// side
|
|
53 |
real hside=getARGV("-Hside", 91.4)/units; //12.6
|
|
54 |
real lside=getARGV("-Wside", 47.6)/units; //6.6
|
|
55 |
|
|
56 |
// vasculature
|
|
57 |
real vthickness=getARGV("-Wvasculature", 34.3)/units;//5.5
|
|
58 |
real cwidth=getARGV("-Dcavity", 74.8)/units; //15.2
|
|
59 |
|
|
60 |
// vasculature displacement (from vascular bundle distance)
|
|
61 |
real vd=getARGV("-dvasc", 15.3)/units; //15.3*0.22
|
|
62 |
real vposition=lx/2-vthickness-hnect/ly*(lx/2-cwidth/2-vthickness);
|
|
63 |
|
|
64 |
// mesh parameters
|
|
65 |
int nvertex=40;
|
|
66 |
cout << "nvertex="<<nvertex<<endl;
|
|
67 |
|
|
68 |
// ---------------- Material properties ----------------
|
|
69 |
|
|
70 |
// Poisson's ratio
|
|
71 |
real nu = 0.29;
|
|
72 |
|
|
73 |
// Young modulus
|
|
74 |
real Ev; // vasculature Young modulus
|
|
75 |
real fEm; // cortex Em/Ev
|
|
76 |
real fEn; // floral podium En/Ev
|
|
77 |
real fEs; // side Es/Ev
|
|
78 |
|
|
79 |
// measured values for the density (Mean, SD)
|
|
80 |
real dm=0.668060839; //sd=0.04091249
|
|
81 |
real dn=1.01896008; //sd=0.015464575
|
|
82 |
real ds=0.918032482; //sd=0.075097509
|
|
83 |
real dv=0.882171532; //sd=0.066651037
|
|
84 |
|
|
85 |
// Young modulus is linked to measured densities
|
|
86 |
Ev=1; // vasculature Young modulus
|
|
87 |
fEm=dm/dv; // cortex Em/Ev
|
|
88 |
fEn=dn/dv; // floral podium En/Ev
|
|
89 |
fEs=ds/dv; // side Es/Ev
|
|
90 |
|
|
91 |
// ----- swelling ability of each region is a parameter
|
|
92 |
real ani = getARGV("-ani", 1.);// anisotropy of swelling property
|
|
93 |
real sm = -getARGV("-scort", 0.464888);// cortex swelling property
|
|
94 |
real sn = -getARGV("-spod", 0.443697);// floral podium swelling property
|
|
95 |
real ss = -getARGV("-sside", 0.573482);// side swelling property
|
|
96 |
real sv = -getARGV("-svasc", 0.236087);// vasculature swelling property
|
|
97 |
|
|
98 |
|
|
99 |
/*************************************************************
|
|
100 |
* GEOMETRY and MESH
|
|
101 |
* **********************************************************/
|
|
102 |
|
|
103 |
func real lineD(real xA, real xB, real yA, real yB)
|
|
104 |
{ return (yB-yA)/(xB-xA);
|
|
105 |
}
|
|
106 |
|
|
107 |
func real lineC(real xA, real xB, real yA, real yB)
|
|
108 |
{ return (yA*xB-yB*xA)/(xB-xA);
|
|
109 |
}
|
|
110 |
|
|
111 |
func real angleToVertical(real Mx, real My, real Nx, real Ny)
|
|
112 |
{ /* Computes the sinus of angle between the MN vector and Oy */
|
|
113 |
return asin((Nx-Mx)/sqrt((Mx-Nx)^2+(My-Ny)^2))*180/pi;
|
|
114 |
}
|
|
115 |
|
|
116 |
// ----------------- External boundary/ -----------------
|
|
117 |
|
|
118 |
real rnect=lx/2-vthickness;
|
|
119 |
real tB=2*pi-acos(rnect/R);
|
|
120 |
real tA=pi+acos(rnect/R);
|
|
121 |
real xC=0;
|
|
122 |
real yC=sqrt(R*R-rnect*rnect);
|
|
123 |
|
|
124 |
// top
|
|
125 |
border a1(t=0,1){x=lx/2+t*(lx/2-vthickness-lx/2);y=0;label=11;};
|
|
126 |
border a2(t=tB,tA){x=xC+R*cos(t);y=yC+R*sin(t);label=12;};
|
|
127 |
border a3(t=0,1){x=-lx/2+vthickness+t*(-lx/2-(-lx/2+vthickness));y=0;label=13;};
|
|
128 |
// left
|
|
129 |
border b1(t=0,1){x=-lx/2;y=t*(-ly);label=2;};
|
|
130 |
// bottom
|
|
131 |
border c1(t=0,1){x=-lx/2+t*(-cwidth/2-vthickness+lx/2);y=-ly;label=31;};
|
|
132 |
border c2(t=0,1){x=-cwidth/2-vthickness+t*vthickness;y=-ly;label=32;};
|
|
133 |
border c3(t=0,1){x=cwidth/2+t*vthickness;y=-ly;label=33;};
|
|
134 |
border c4(t=0,1){x=cwidth/2+vthickness+t*(lx/2-cwidth/2-vthickness);y=-ly;label=34;};
|
|
135 |
// right
|
|
136 |
border d1(t=0,1){x=lx/2;y=-ly+t*(ly);label=4;};
|
|
137 |
|
|
138 |
// -------------------- Internal boundary/ -----------------
|
|
139 |
|
|
140 |
real xA=-rnect; real yA=0;
|
|
141 |
real xB=-cwidth/2; real yB=-ly;
|
|
142 |
real D=lineD(xA, xB, yA, yB);
|
|
143 |
real C=lineC(xA, xB, yA, yB);
|
|
144 |
real delta=D^2*(C-yC)^2-(1+D^2)*((C-yC)^2-(R+hnect)^2);
|
|
145 |
real xM=(-D*(C-yC)+sqrt(delta))/(D^2+1);
|
|
146 |
real yM=D*xM+C;
|
|
147 |
real tN=2*pi+asin(-sqrt((R+hnect)^2-xM^2)/(R+hnect));
|
|
148 |
real tM=3*pi-tN;
|
|
149 |
|
|
150 |
// hole
|
|
151 |
border vide1(t=0,1){x=-cwidth/2+t*(xM+cwidth/2);y=-ly+t*(yM+ly);label=51;};
|
|
152 |
border vide2(t=tM,tN){x=xC+(R+hnect)*cos(t);y=yC+(R+hnect)*sin(t);label=52;};
|
|
153 |
border vide3(t=0,1){x=-xM+t*(cwidth/2+xM);y=yM+t*(-ly-yM);label=53;};
|
|
154 |
|
|
155 |
// ------------------- Define the mesh -------------------
|
|
156 |
|
|
157 |
mesh Th = buildmesh (a1(nvertex*vthickness)+a2(nvertex*2*rnect)+a3(nvertex*vthickness) // top
|
|
158 |
+ b1(nvertex*ly) + d1(nvertex*ly) // sides
|
|
159 |
+ c1(nvertex*lx/2) + c2(nvertex*vthickness) // left bottom
|
|
160 |
+ vide1(nvertex*ly) + vide2(nvertex*(lx-2*vthickness)) + vide3(nvertex*ly) //hole
|
|
161 |
+ c3(nvertex*vthickness) + c4(nvertex*lx/2) // right bottom
|
|
162 |
);
|
|
163 |
|
|
164 |
/*************************************************************
|
|
165 |
* DEFINITION OF the REGIONS
|
|
166 |
* **********************************************************/
|
|
167 |
|
|
168 |
real xA1=-(vposition+vthickness), yA1=-hnect;
|
|
169 |
real xB1=-cwidth/2-vthickness, yB1=-ly;
|
|
170 |
real xA2=(vposition+vthickness), yA2=-hnect;
|
|
171 |
real xB2=cwidth/2+vthickness, yB2=-ly;
|
|
172 |
real D1=lineD(xA1, xB1, yA1, yB1);
|
|
173 |
real C1=lineC(xA1, xB1, yA1, yB1);
|
|
174 |
real D2=lineD(xA2, xB2, yA2, yB2);
|
|
175 |
real C2=lineC(xA2, xB2, yA2, yB2);
|
|
176 |
|
|
177 |
func bool vasculatureBool(real xx, real yy)
|
|
178 |
{ return (((yy>D1*xx+C1) && (yy<D1*(xx-vthickness)+C1)) || ((yy>D2*xx+C2)&& (yy<D2*(xx+vthickness)+C2)) );
|
|
179 |
}
|
|
180 |
|
|
181 |
func bool nectaryBool(real xx, real yy)
|
|
182 |
{ return (yy>D1*(xx-vthickness)+C1)&&(yy>D2*(xx+vthickness)+C2);
|
|
183 |
}
|
|
184 |
|
|
185 |
func bool sideBool(real xx, real yy)
|
|
186 |
{ return (yy>-hside) && (((xx<-lx/2+lside)&&(yy<D1*xx+C1)) || ( (xx>lx/2-lside)&& (yy<D2*xx+C2)) );
|
|
187 |
}
|
|
188 |
|
|
189 |
func bool mesophylBool(real xx, real yy)
|
|
190 |
{ return (!vasculatureBool(xx,yy)) && (!nectaryBool(xx,yy)) && (!sideBool(xx,yy));
|
|
191 |
}
|
|
192 |
|
|
193 |
|
|
194 |
/*************************************************************
|
|
195 |
* DEFINE THE FINITE ELEMENT SPACE
|
|
196 |
* **********************************************************/
|
|
197 |
|
|
198 |
fespace Vh(Th,[P2,P2]); // vector on the mesh (displacement vector)
|
|
199 |
Vh [u1,u2], [v1,v2];
|
|
200 |
|
|
201 |
fespace Sh(Th, P2); // scalar on the mesh, P2 elements
|
|
202 |
fespace Sh0(Th,P0); // scalar on the mesh, P0 elements
|
|
203 |
fespace Sh1(Th,P1); // scalar on the mesh, P1 elements
|
|
204 |
|
|
205 |
Sh0 strain, stress;
|
|
206 |
|
|
207 |
// bounding box for the plot (use the same for all images so that they can be superposed)
|
|
208 |
func bb=[[-lx/2*1.5,-ly*1],[lx/2*1.5,ly*.1]];
|
|
209 |
//real coef=1.;
|
|
210 |
//cout << "Coefficent of amplification:"<<coef<<endl;
|
|
211 |
plot(Th, ps=output+"/mesh-original.eps", bb=bb, wait=1);
|
|
212 |
|
|
213 |
// macro to redefine variables on the displaced mesh
|
|
214 |
macro redefineVariable(vvv)
|
|
215 |
{ real[int] temp(vvv[].n);
|
|
216 |
temp=vvv[]; vvv=0; vvv[]=temp;
|
|
217 |
vvv=vvv;
|
|
218 |
}//
|
|
219 |
|
|
220 |
|
|
221 |
real sqrt2=sqrt(2.);
|
|
222 |
macro epsilon(u1,u2) [dx(u1),dy(u2),(dy(u1)+dx(u2))/sqrt2] // EOM
|
|
223 |
//the sqrt2 is because we want: epsilon(u1,u2)'* epsilon(v1,v2) $== \epsilon(\bm{u}): \epsilon(\bm{v})$
|
|
224 |
macro div(u1,u2) ( dx(u1)+dy(u2) ) // EOM
|
|
225 |
|
|
226 |
/*************************************************************
|
|
227 |
* SPATIAL DEPENDENCE OF MATERIAL PROPERTIES
|
|
228 |
* **********************************************************/
|
|
229 |
|
|
230 |
// define region geometry as a finite element field
|
|
231 |
|
|
232 |
//string mutname="mnsv";
|
|
233 |
func vasculature=int(vasculatureBool(x,y));
|
|
234 |
func nectary=int(nectaryBool(x,y));
|
|
235 |
func side=int(sideBool(x,y));
|
|
236 |
func mesophyl=int(mesophylBool(x,y));
|
|
237 |
|
|
238 |
func geometry = 1*vasculature + 3*nectary + 2*side + 4*mesophyl;
|
|
239 |
|
|
240 |
// definition of FE variables for the structural domains
|
|
241 |
Sh0 vasculatureh=vasculature;
|
|
242 |
Sh0 nectaryh=nectary;
|
|
243 |
Sh0 sideh=side;
|
|
244 |
Sh0 mesophylh=mesophyl;
|
|
245 |
|
|
246 |
Sh0 geometryh=geometry;
|
|
247 |
string fname=output+"/geometry-original.eps";
|
|
248 |
plot(geometryh,fill=1, ps=fname, bb=bb, wait=1 );
|
|
249 |
|
|
250 |
|
|
251 |
// spatial dependence of Young modulus
|
|
252 |
func E=Ev*(vasculature + fEn*nectary + fEs*side + fEm*mesophyl);
|
|
253 |
Sh0 Eh=E;
|
|
254 |
|
|
255 |
// spatial dependence of the swelling property
|
|
256 |
func s=sv*vasculature + sn*nectary + ss*side + sm*mesophyl;
|
|
257 |
Sh0 sh=s;
|
|
258 |
|
|
259 |
// spatial dependence of the anisotropy of the swelling property
|
|
260 |
Sh0 anih=ani;
|
|
261 |
|
|
262 |
func mu=E/(2*(1+nu));
|
|
263 |
func lambda=E*nu/((1+nu)*(1-2*nu));
|
|
264 |
|
|
265 |
/*************************************************************
|
|
266 |
* SOLVING THE FEM
|
|
267 |
* **********************************************************/
|
|
268 |
|
|
269 |
solve Lame([u1,u2],[v1,v2])=
|
|
270 |
int2d(Th)(
|
|
271 |
lambda*div(u1,u2)*div(v1,v2)
|
|
272 |
+ 2.*mu*( epsilon(u1,u2)'*epsilon(v1,v2) )
|
|
273 |
)
|
|
274 |
- int2d(Th) ( sh/(1.+anih)*((2.*mu+lambda)*dx(v1)+lambda*dy(v2)) )
|
|
275 |
- int2d(Th) ( ani*sh/(1.+anih)*(lambda*dx(v1)+(2.*mu+lambda)*dy(v2)) )
|
|
276 |
+ on(32,u1=vd,u2=0) + on(33,u1=-vd,u2=0)
|
|
277 |
;
|
|
278 |
|
|
279 |
|
|
280 |
/*************************************************************
|
|
281 |
* RESULTS
|
|
282 |
* **********************************************************/
|
|
283 |
|
|
284 |
// compute original region volumes
|
|
285 |
real voltotal0=int2d(Th)(1);
|
|
286 |
real volvasculature0=int2d(Th)(vasculatureh);
|
|
287 |
real volnectary0=int2d(Th)(nectaryh);
|
|
288 |
real volmesophyl0=int2d(Th)(mesophylh);
|
|
289 |
real volside0=int2d(Th)(sideh);
|
|
290 |
|
|
291 |
|
|
292 |
// move the mesh and plot the deformed mesh
|
|
293 |
mesh Th0=Th;
|
|
294 |
Th=movemesh(Th,[x+u1,y+u2]);
|
|
295 |
|
|
296 |
plot(Th, Th0, ps=output+"/mesh-original+deformed-superposed.eps",bb=bb, wait=1);
|
|
297 |
plot(Th, ps=output+"/mesh-deformed.eps",bb=bb, wait=1);
|
|
298 |
|
|
299 |
redefineVariable(geometryh);
|
|
300 |
plot(geometryh, fill=1, ps=output+"/geometry-deformed.eps",bb=bb, wait=1);
|
|
301 |
|
|
302 |
// compute deformed region volumes
|
|
303 |
redefineVariable(vasculatureh);
|
|
304 |
redefineVariable(nectaryh);
|
|
305 |
redefineVariable(sideh);
|
|
306 |
redefineVariable(mesophylh);
|
|
307 |
|
|
308 |
real voltotal=int2d(Th)(1);
|
|
309 |
real volvasculature=int2d(Th)(vasculatureh);
|
|
310 |
real volnectary=int2d(Th)(nectaryh);
|
|
311 |
real volside=int2d(Th)(sideh);
|
|
312 |
real volmesophyl=int2d(Th)(mesophylh);
|
|
313 |
|
|
314 |
// compute areachanges
|
|
315 |
real am=volmesophyl0/volmesophyl;
|
|
316 |
real an=volnectary0/volnectary;
|
|
317 |
real as=volside0/volside;
|
|
318 |
real av=volvasculature0/volvasculature;
|
|
319 |
|
|
320 |
// compute the generated side angle
|
|
321 |
real height=hside;
|
|
322 |
real Nx=lx/2+u1(lx/2.,0), Ny=u2(lx/2.,0);
|
|
323 |
real Mx=lx/2+u1(lx/2.,-height), My=-height+u2(lx/2.,-height);
|
|
324 |
real sideangle=angleToVertical(Mx, My, Nx, Ny);
|
|
325 |
|
|
326 |
/*************************************************************
|
|
327 |
* PRINT RESULTS
|
|
328 |
* **********************************************************/
|
|
329 |
cout<<"----------------------"<<endl;
|
|
330 |
cout<<"Areachanges (Awet/Adry) :"<<endl;
|
|
331 |
cout<<"----------------------"<<endl;
|
|
332 |
cout<<"cortex -> "<<am<<endl;
|
|
333 |
cout<<"floral podium -> "<<an<<endl;
|
|
334 |
cout<<"side -> "<<as<<endl;
|
|
335 |
cout<<"vasculature -> "<<av<<endl;
|
|
336 |
cout<<"----------------------"<<endl;
|
|
337 |
cout<<"Generated side angle = "<<sideangle<<" degrees"<<endl;
|
|
338 |
cout<<"----------------------"<<endl;
|