root / Test-Formulation / test-formulation.cpp @ 19
Historique | Voir | Annoter | Télécharger (3,94 ko)
1 |
include "getARGV.idp"
|
---|---|
2 |
|
3 |
//usage :
|
4 |
//Freefem++ test-formulation.cpp [-fE fEvalue] [-Nit Nit] [-geometry g]
|
5 |
//arguments:
|
6 |
//-fE fEvalue:
|
7 |
//-Nit Nit: number of iterations
|
8 |
//-geometry g: differnet geometries
|
9 |
//1:
|
10 |
//2:
|
11 |
//3:
|
12 |
|
13 |
|
14 |
/*************************************************************
|
15 |
* PARAMETERS
|
16 |
* **********************************************************/
|
17 |
|
18 |
// reading script arguments
|
19 |
for (int i=0;i<ARGV.n;++i) |
20 |
{ cout << ARGV[i] << " ";}
|
21 |
cout<<endl; |
22 |
|
23 |
verbosity = getARGV("-vv", 0); |
24 |
int vdebug = getARGV("-d", 1); |
25 |
real E = getARGV("-E", 0.2); |
26 |
real s = -getARGV("-s", 0.4); |
27 |
string outputdir = getARGV("-out", "."); |
28 |
|
29 |
|
30 |
cout<<"----------------------------------------------"<< endl;
|
31 |
cout<<"E="<<E <<" s="<<s<< endl; |
32 |
|
33 |
// ---------------- geometrical parameters
|
34 |
|
35 |
// (lengths are measured in micrometers)
|
36 |
real units=1;
|
37 |
|
38 |
// pulvinus dimensions
|
39 |
real lx=1/units; //sd =34.4 |
40 |
real ly= 1/units; //sd=36.0 |
41 |
|
42 |
|
43 |
// mesh parameters
|
44 |
int nvertex=10; |
45 |
cout << "nvertex="<<nvertex<<endl;
|
46 |
|
47 |
int[int] labs=[10,20,30,40]; // bottom, right, top, left |
48 |
mesh Th=square(lx*nvertex,ly*nvertex, label=labs, region=0, [x*lx,y*ly]);
|
49 |
|
50 |
// bounding box for the plot (use the same for all images so that they can be superposed)
|
51 |
func bb=[[-1,-1],[lx+1,ly+1]]; |
52 |
real coef=1;
|
53 |
|
54 |
string root=outputdir+"/test-formulation"; |
55 |
|
56 |
|
57 |
// -------------------- define the finite element space
|
58 |
|
59 |
fespace Vh(Th,[P2,P2]); // vector on the mesh (displacement vector)
|
60 |
Vh [u1,u2], [v1,v2]; |
61 |
|
62 |
fespace Sh(Th, P2); // scalar on the mesh, P2 elements
|
63 |
fespace Sh0(Th,P0); // scalar on the mesh, P0 elements
|
64 |
fespace Sh1(Th,P1); // scalar on the mesh, P1 elements
|
65 |
|
66 |
Sh0 Eh=E;// Young modulus
|
67 |
Sh0 sh=s;// hydrophobicity as swelling ability
|
68 |
real nu = 0.29; // Poisson's ratio |
69 |
|
70 |
|
71 |
func mu=E/(2*(1+nu)); |
72 |
func lambda=E*nu/((1+nu)*(1-2*nu)); |
73 |
//func K=lambda+2*mu/3;
|
74 |
func K=lambda+mu; |
75 |
|
76 |
// macro to redefine variables on the displaced mesh
|
77 |
macro redefineVariable(vvv) |
78 |
{ real[int] temp(vvv[].n);
|
79 |
temp=vvv[]; vvv=0; vvv[]=temp;
|
80 |
vvv=vvv; |
81 |
}//
|
82 |
|
83 |
|
84 |
real sqrt2=sqrt(2.);
|
85 |
macro epsilon(u1,u2) [dx(u1),dy(u2),(dy(u1)+dx(u2))/sqrt2] // EOM
|
86 |
//the sqrt2 is because we want: epsilon(u1,u2)'* epsilon(v1,v2) $== \epsilon(\bm{u}): \epsilon(\bm{v})$
|
87 |
macro div(u1,u2) ( dx(u1)+dy(u2) ) // EOM
|
88 |
|
89 |
|
90 |
/*************************************************************
|
91 |
* SOLVING THE FEM
|
92 |
* **********************************************************/
|
93 |
|
94 |
solve Lame([u1,u2],[v1,v2])= |
95 |
int2d(Th)( |
96 |
lambda*div(u1,u2)*div(v1,v2) |
97 |
+ 2.*mu*( epsilon(u1,u2)'*epsilon(v1,v2) ) |
98 |
) |
99 |
- int2d(Th) ( K*sh*div(v1,v2)) |
100 |
+ on(10,u2=0, u1=0) |
101 |
//+ on(40,u1=0)
|
102 |
; |
103 |
|
104 |
|
105 |
/*************************************************************
|
106 |
* **********************************************************/
|
107 |
|
108 |
|
109 |
Sh0 e11=dx(u1)+1.;
|
110 |
Sh0 e12=1/2.*(dx(u2) + dy(u1)); |
111 |
Sh0 e22=dy(u2)+1.;
|
112 |
|
113 |
Sh0 strain=e11+e22 ; |
114 |
Sh0 Det=e11*e22-e12*e12; |
115 |
|
116 |
Sh0 l1=abs(strain+sqrt(strain*strain-4*Det))/2.; |
117 |
Sh0 l2=abs(strain-sqrt(strain*strain-4*Det))/2.; |
118 |
|
119 |
Sh0 lmax=(l1-l2+abs(l1-l2))/2.+l2;
|
120 |
Sh0 lmin=(l1-l2-abs(l1-l2))/2.+l2;
|
121 |
|
122 |
Sh0 strainanisotropy=lmin/lmax; |
123 |
plot(strainanisotropy, fill=1, value=true, ps="satrainanisotropy-s"+string(s)+".png", bb=bb, wait=1); |
124 |
|
125 |
mesh Thm1=movemesh(Th, [x+u1, y+u2]); |
126 |
plot(Th, Thm1, ps=root+"_geometry-moved.png", wait=1, bb=bb); |
127 |
|
128 |
|
129 |
// compute original and deformed volume
|
130 |
|
131 |
real vol0=int2d(Th)(1);
|
132 |
real vol=int2d(Thm1)(1);
|
133 |
|
134 |
// compute mean strain
|
135 |
real meanstrain=int2d(Th)(strain/2)/vol0;
|
136 |
|
137 |
// compute mean strain anisotropy
|
138 |
real straina0=int2d(Th)(strainanisotropy)/vol0; |
139 |
|
140 |
real straina1=int2d(Thm1)(strainanisotropy)/vol; |
141 |
|
142 |
real strainamixed=int2d(Thm1)(strainanisotropy)/vol0; |
143 |
|
144 |
|
145 |
|
146 |
cout<<"Initial volume:"<<string(vol0)<<endl; |
147 |
cout<<"Final volume:"<<string(vol)<<endl; |
148 |
cout<<"A1/A0="<<vol/vol0<<endl;
|
149 |
cout<<"Mean strain:"<<string(meanstrain)<<endl; |
150 |
cout<<"Strain anisotropy 0:"<<string(straina0)<<endl; |
151 |
cout<<"Strain anisotropy 1:"<<string(straina1)<<endl; |
152 |
cout<<"Strain anisotropy mixed:"<<string(strainamixed)<<endl; |
153 |
|
154 |
|
155 |
plot(Th, Thm1, ps="deformation-s"+string(s)+".png", bb=bb, wait=1); |
156 |
|
157 |
|