Statistiques
| Révision :

root / Final-Parameters_sm_fsn_fss_fsv / pulvinus-optimize.py @ 16

Historique | Voir | Annoter | Télécharger (3,69 ko)

1
import os
2
import numpy as np
3
from scipy.optimize import minimize
4
outputfile='temporary.csv'
5

    
6

    
7
# initial parameters
8
sm=0.95
9
fsn=0.5
10
fss=0.5
11
fsv=0.5
12

    
13
x0=[sm, fsn, fss, fsv]
14

    
15
# parameters obey the following bounds
16
#bnds = ((0, 1), (0, 1), (0, 1))
17

    
18
#bnds = ((0.5, 1.0), (0.1, 0.9), (0.1, 1.5), (0.1, 0.5))
19
bnds = ((0.25, 1.0), (0.1, 1.5), (0.1, 1.5), (0.1, 0.75))
20

    
21
# possible target quantities
22
# --------------------------
23
theta0=1 #38
24
# region deformation
25
am0=1.672631   # Mesophyl
26
an0=1.608788   # Nectary
27
as0=1.790434   # Side
28
av0=1.294615   # Vasculature
29
# strain anisotropy
30
anim=0.6247   # Mesophyl
31
anin=0.6172   # Nectary
32
anis=0.5489   # Side
33
aniv=0.6958   # Vasculature
34

    
35
# experimental standard deviation
36
stdtheta=0.21 #38
37
stdam=0.23   # Mesophyl
38
stdan=0.11   # Nectary
39
stdas=0.21   # Side
40
stdav=0.06   # Vasculature
41
#
42
stdanim=0.0532   # Mesophyl
43
stdanin=0.0378   # Nectary
44
stdanis=0.0741  # Side
45
stdaniv=0.0333   # Vasculature
46

    
47
a0=[theta0, am0, an0, as0, av0, anim, anin, anis, aniv]
48
stda=[stdtheta, stdam, stdan, stdas, stdav, stdanim, stdanin, stdanis, stdaniv]
49

    
50
# target quantities included in the objective function
51
var=np.array([1, 2, 3, 4]) # here theta is not included
52
#var=np.array([0, 1, 2, 3, 4]) # here theta (side angle) is included
53
#var=np.array([0, 1, 2, 3, 4, 5, 6, 7, 8]) # side angle, deformation and anisotropy are included
54
#var=np.array([5, 6, 7, 8]) # side angle, deformation and anisotropy are included
55

    
56
'''
57
# objectiv function 1
58
def f(x):
59
        res=0
60
        for i in range(len(x)):
61
                res+=(x[i]-a0[var[i]])**2/(x[i]+a0[var[i]])**2
62
        return res
63
'''
64

    
65
# objectiv function taking into account the experimental standard deviation for the weight
66
def f(x):
67
        res=0
68
        for i in range(len(x)):
69
                res+=(x[i]-a0[var[i]])**2/(stda[var[i]])**2
70
        return res
71

    
72

    
73

    
74
def objective(x):
75
        [sm, fsn, fss, fsv] = x
76
        os.system("FreeFem++ pulvinus4optimize.cpp -fsn "+str(fsn)+" -fss "+str(fss)+" -fsv "+str(fsv)+" -sm "+str(sm)+" -outfile "+outputfile)
77
        data=np.loadtxt(outputfile, delimiter=';', dtype=float)
78
        xvar=data[var+4]
79
        print(xvar)
80
        return f(xvar)
81

    
82
#
83
# GLOBAL OPTIMIZATION
84
#
85

    
86
from scipy.optimize import differential_evolution #New in version 0.15.0.
87

    
88
res = differential_evolution(objective, bounds=bnds)
89
res
90

    
91

    
92
'''
93

94
###############################################################
95
###############################################################
96
# fitting the observed expansions        K=lambda+2*mu/3 (d=3 formula)
97
###############################################################
98
###############################################################
99

100
Ok: Normal End
101
[1.67263 1.60879 1.79043 1.29461]
102
Out[2]: 
103
     fun: 7.656738339961133e-09
104
 message: 'Optimization terminated successfully.'
105
    nfev: 4745
106
     nit: 78
107
 success: True
108
       x: array([0.54006051, 0.95448193, 1.21647743, 0.50956303])
109

110

111
Results in the results file:
112

113
/*
114
sm;fsn;fss;fsv;sideangle;am;an;as;av;sam;san;sas;sav;
115
*/
116
-0.540061;0.954482;1.21648;0.509563;0.477428;1.67263;1.60879;1.79043;1.29461;0.963544;0.973407;0.942094;0.935191
117

118

119
###############################################################
120
###############################################################
121
# fitting the observed expansions        K=lambda+mu (d=2 formula)
122
###############################################################
123
###############################################################
124
Ok: Normal End
125
[1.67263 1.60879 1.79043 1.29461]
126
Out[3]: 
127
     fun: 7.656738339961133e-09
128
 message: 'Optimization terminated successfully.'
129
    nfev: 5825
130
     nit: 96
131
 success: True
132
       x: array([0.46445277, 0.95448186, 1.21647529, 0.5095638 ])
133

134

135
Results in the results file:
136

137
/*
138
sm;fsn;fss;fsv;sideangle;am;an;as;av;sam;san;sas;sav;
139
*/
140
-0.464453;0.954482;1.21648;0.509564;0.477427;1.67263;1.60879;1.79043;1.29461;0.963544;0.973407;0.942095;0.935191
141

142

143

144
'''