root / Final-Parameters_sm_fsn_fss_fsv / pulvinus-images.cpp @ 15
Historique | Voir | Annoter | Télécharger (10,02 ko)
1 |
include "getARGV.idp"
|
---|---|
2 |
//include "bib_meca2d.cpp"
|
3 |
|
4 |
//usage :
|
5 |
//Freefem++ pulvinus.edp [-fE fEvalue] [-Nit Nit] [-geometry g]
|
6 |
//arguments:
|
7 |
//-fE fEvalue:
|
8 |
//-Nit Nit: number of iterations
|
9 |
//-geometry g: differnet geometries
|
10 |
//1:
|
11 |
//2:
|
12 |
//3:
|
13 |
|
14 |
|
15 |
|
16 |
func real lineD(real xA, real xB, real yA, real yB) |
17 |
{ return (yB-yA)/(xB-xA);
|
18 |
} |
19 |
|
20 |
func real lineC(real xA, real xB, real yA, real yB) |
21 |
{ return (yA*xB-yB*xA)/(xB-xA);
|
22 |
} |
23 |
|
24 |
//real PI=3.14159265;
|
25 |
|
26 |
func real angleToVertical(real Mx, real My, real Nx, real Ny) |
27 |
{ /* Computes the sinus of angle between the MN vector and Oy */
|
28 |
return asin((Nx-Mx)/sqrt((Mx-Nx)^2+(My-Ny)^2))*180/pi; |
29 |
} |
30 |
|
31 |
|
32 |
/*************************************************************
|
33 |
* PARAMETERS
|
34 |
* **********************************************************/
|
35 |
|
36 |
// reading script arguments
|
37 |
for (int i=0;i<ARGV.n;++i) |
38 |
{ cout << ARGV[i] << " ";}
|
39 |
cout<<endl; |
40 |
|
41 |
verbosity = getARGV("-vv", 0); |
42 |
int vdebug = getARGV("-d", 1); |
43 |
// swelling ability of each region is a parameter
|
44 |
real sm = -getARGV("-sm", 0.568354);// mesophyl swelling property |
45 |
real fsn = getARGV("-fsn", 0.899975);// nectary sn/sm |
46 |
real fss = getARGV("-fss", 1.19112);// side ss/sm |
47 |
real fsv = getARGV("-fsv", 0.491088);// vasculature sv/sm |
48 |
int Nit = getARGV("-Nit", 1); |
49 |
string geom = getARGV("-geometry", "1"); |
50 |
string output = getARGV("-out", "."); |
51 |
|
52 |
|
53 |
cout<<"----------------------------------------------"<< endl;
|
54 |
cout<<" sm="<<sm<< endl;
|
55 |
|
56 |
// ---------------- geometrical parameters
|
57 |
|
58 |
// (lengths are measured in micrometers)
|
59 |
real units=200;
|
60 |
|
61 |
// pulvinus dimensions
|
62 |
real lx=491.0/units; //sd =34.4 |
63 |
real ly= 240.0/units; //sd=36.0 |
64 |
|
65 |
// nectary height
|
66 |
real hnect = 38.8/units; //sd=9.6 |
67 |
real R=363.0/units; //sd=49.4 |
68 |
|
69 |
// side dimensions
|
70 |
real hside=91.4/units; //12.6 |
71 |
real lside=47.6/units/2; //6.6 |
72 |
|
73 |
// vasculature dimensions
|
74 |
real vthickness=34.3/units;//5.5 |
75 |
real cwidth=74.8/units; //15.2 |
76 |
real cwidthdry=44.2/units; //8.4 |
77 |
|
78 |
// vasculature displacement (from vascular bundle distance)
|
79 |
real vd=(cwidth-cwidthdry)/2;
|
80 |
real vposition=lx/2-vthickness-hnect/ly*(lx/2-cwidth/2-vthickness); //cout<<"vposition="<<vposition<<endl; |
81 |
|
82 |
// mesh parameters
|
83 |
int nvertex=50; cout << "nvertex="<<nvertex<<endl; |
84 |
real pinned=lx/nvertex/2;
|
85 |
|
86 |
|
87 |
// ---------------- Material properties
|
88 |
|
89 |
real nu = 0.29; // Poisson's ratio |
90 |
|
91 |
// Young modulus
|
92 |
real Ev; // vasculature Young modulus
|
93 |
real fEm; // mesophyl Em/Ev
|
94 |
real fEn; // nectary En/Ev
|
95 |
real fEs; // side Es/Ev
|
96 |
|
97 |
// measured values for the density
|
98 |
//Region,Mean_tissue_density,SD_tissue_density
|
99 |
real dm=0.668060839; //sd=0.04091249 |
100 |
real dn=1.01896008; //sd=0.015464575 |
101 |
real ds=0.918032482; //sd=0.075097509 |
102 |
real dv=0.882171532; //sd=0.066651037 |
103 |
|
104 |
real nEd=1.0; |
105 |
|
106 |
// Young modulus
|
107 |
Ev=1; // vasculature Young modulus |
108 |
fEm=(dm/dv)^nEd; // mesophyl Em/Ev
|
109 |
fEn=(dn/dv)^nEd; // nectary En/Ev
|
110 |
fEs=(ds/dv)^nEd; // side Es/Ev
|
111 |
|
112 |
// hydrophobicity as swelling ability
|
113 |
|
114 |
|
115 |
/*************************************************************
|
116 |
* GEOMETRY and MESH
|
117 |
* **********************************************************/
|
118 |
|
119 |
string geomfilename="geometry"+geom+".cpp"; |
120 |
cout<<"including "<<geomfilename<<endl;
|
121 |
include "geometry1.cpp";
|
122 |
|
123 |
// -------------------- define the finite element space
|
124 |
|
125 |
fespace Vh(Th,[P2,P2]); // vector on the mesh (displacement vector)
|
126 |
Vh [u1,u2], [v1,v2]; |
127 |
|
128 |
fespace Sh(Th, P2); // scalar on the mesh, P2 elements
|
129 |
fespace Sh0(Th,P0); // scalar on the mesh, P0 elements
|
130 |
fespace Sh1(Th,P1); // scalar on the mesh, P1 elements
|
131 |
|
132 |
Sh0 strain, stress; |
133 |
|
134 |
// bounding box for the plot (use the same for all images so that they can be superposed)
|
135 |
func bb=[[-lx/2*1.5,-ly*1],[lx/2*1.5,ly*.1]]; |
136 |
real coef=1;
|
137 |
cout << "Coefficent of amplification:"<<coef<<endl;
|
138 |
//plot(Th, fill=1, ps=output+"/original_geometry.png", bb=bb); -------------------------------
|
139 |
|
140 |
// macro to redefine variables on the displaced mesh
|
141 |
macro redefineVariable(vvv) |
142 |
{ real[int] temp(vvv[].n);
|
143 |
temp=vvv[]; vvv=0; vvv[]=temp;
|
144 |
vvv=vvv; |
145 |
}//
|
146 |
|
147 |
|
148 |
real sqrt2=sqrt(2.);
|
149 |
macro epsilon(u1,u2) [dx(u1),dy(u2),(dy(u1)+dx(u2))/sqrt2] // EOM
|
150 |
//the sqrt2 is because we want: epsilon(u1,u2)'* epsilon(v1,v2) $== \epsilon(\bm{u}): \epsilon(\bm{v})$
|
151 |
macro div(u1,u2) ( dx(u1)+dy(u2) ) // EOM
|
152 |
|
153 |
/*************************************************************
|
154 |
* MECHANICS
|
155 |
* **********************************************************/
|
156 |
|
157 |
// definition of integer functions for the structural domains
|
158 |
func vasculature=int(vasculatureBool(x,y));
|
159 |
func nectary=int(nectaryBool(x,y));
|
160 |
func side=int(sideBool(x,y));
|
161 |
func mesophyl=int(mesophylBool(x,y));
|
162 |
func geometry = 1*vasculature + 3*nectary + 2*side + 4*mesophyl; |
163 |
|
164 |
// definition of FE variables for the structural domains
|
165 |
Sh0 vasculatureh=vasculature; |
166 |
//plot(vasculatureh,wait=1,value=true,fill=1, ps=output+"/vasculature-original.png", bb=bb);
|
167 |
|
168 |
Sh0 nectaryh=nectary; |
169 |
//plot(nectaryh,wait=1,value=true,fill=1, ps=output+"/nectary-original.png", bb=bb);
|
170 |
|
171 |
Sh0 sideh=side; |
172 |
//plot(sideh,wait=1,value=true,fill=1, ps=output+"/side-original.png", bb=bb);
|
173 |
|
174 |
Sh0 mesophylh=mesophyl; |
175 |
//plot(mesophylh,wait=1,value=true,fill=1, ps=output+"/mesophyl-original.png", bb=bb);
|
176 |
|
177 |
Sh0 geometryh=geometry; |
178 |
string fname=output+"/geometry-original.png"; |
179 |
plot(geometryh,fill=1, ps=fname, bb=bb);
|
180 |
|
181 |
// spatial dependence of Young modulus
|
182 |
func E=Ev*(vasculature + fEn*nectary + fEs*side + fEm*mesophyl); |
183 |
Sh0 Eh=E; |
184 |
|
185 |
// spatial dependence of the swelling property
|
186 |
func s=sm*(fsv*vasculature + fsn*nectary + fss*side + mesophyl); |
187 |
Sh0 sh=s; |
188 |
|
189 |
func mu=E/(2*(1+nu)); |
190 |
func lambda=E*nu/((1+nu)*(1-2*nu)); |
191 |
func K=lambda+2*mu/3; |
192 |
|
193 |
|
194 |
|
195 |
/*************************************************************
|
196 |
* SOLVING THE FEM
|
197 |
* **********************************************************/
|
198 |
|
199 |
solve Lame([u1,u2],[v1,v2])= |
200 |
int2d(Th)( |
201 |
lambda*div(u1,u2)*div(v1,v2) |
202 |
+ 2.*mu*( epsilon(u1,u2)'*epsilon(v1,v2) ) |
203 |
) |
204 |
- int2d(Th) ( K*sh*div(v1,v2)) |
205 |
+ on(32,u1=vd,u2=0) |
206 |
+ on(33,u1=-vd,u2=0) |
207 |
; |
208 |
|
209 |
|
210 |
stress=2*K*(strain-s);
|
211 |
|
212 |
Sh0 e11=dx(u1)+1.;
|
213 |
Sh0 e12=1/2.*(dx(u2) + dy(u1)); |
214 |
Sh0 e22=dy(u2)+1.;
|
215 |
|
216 |
strain=e11+e22 ; |
217 |
Sh0 Det=e11*e22-e12*e12; |
218 |
|
219 |
Sh0 l1=abs(strain+sqrt(strain*strain-4*Det))/2.; |
220 |
Sh0 l2=abs(strain-sqrt(strain*strain-4*Det))/2.; |
221 |
|
222 |
Sh0 lmax=(l1-l2+abs(l1-l2))/2.+l2;
|
223 |
Sh0 lmin=(l1-l2-abs(l1-l2))/2.+l2;
|
224 |
|
225 |
Sh0 strainanisotropy=lmin/lmax; |
226 |
|
227 |
|
228 |
/*************************************************************
|
229 |
* VISUALISATION
|
230 |
* **********************************************************/
|
231 |
real voltotal0=int2d(Th)(1);
|
232 |
real volvasculature0=int2d(Th)(vasculatureh); |
233 |
real volnectary0=int2d(Th)(nectaryh); |
234 |
real volmesophyl0=int2d(Th)(mesophylh); |
235 |
real volside0=int2d(Th)(sideh); |
236 |
|
237 |
cout<<"Original volume="<<voltotal0<<endl;
|
238 |
cout<<"Original vasculature volume="<<volvasculature0<<endl;
|
239 |
|
240 |
|
241 |
|
242 |
// compute mean strain per region
|
243 |
real straintotal=int2d(Th)(strain)/voltotal0; |
244 |
real strainvasculature=int2d(Th)(strain*vasculatureh)/volvasculature0; |
245 |
real strainnectary=int2d(Th)(strain*nectaryh)/volnectary0; |
246 |
real strainside=int2d(Th)(strain*sideh)/volside0; |
247 |
real strainmesophyl=int2d(Th)(strain*mesophylh)/volmesophyl0; |
248 |
|
249 |
|
250 |
// compute mean strain anisotropy per region
|
251 |
real satotal=int2d(Th)(strainanisotropy)/voltotal0; |
252 |
real savasculature=int2d(Th)(strainanisotropy*vasculatureh)/volvasculature0; |
253 |
real sanectary=int2d(Th)(strainanisotropy*nectaryh)/volnectary0; |
254 |
real saside=int2d(Th)(strainanisotropy*sideh)/volside0; |
255 |
real samesophyl=int2d(Th)(strainanisotropy*mesophylh)/volmesophyl0; |
256 |
|
257 |
|
258 |
// =====================================================================
|
259 |
|
260 |
mesh Th0=Th; |
261 |
Th=movemesh(Th,[x+u1*coef,y+u2*coef]); |
262 |
|
263 |
|
264 |
cout<<"Mean strain and strain anisotropy per region :"<<endl;
|
265 |
cout<<"Mesophyll:"<<strainmesophyl<<" "<<samesophyl<<endl; |
266 |
cout<<"Nectary:"<<strainnectary<<" "<<sanectary<<endl; |
267 |
cout<<"Side:"<<strainside<<" "<<saside<<endl; |
268 |
cout<<"Vasculature:"<<strainvasculature<<" "<<savasculature<<endl; |
269 |
cout<<"Total:"<<straintotal<<" "<<satotal<<endl; |
270 |
|
271 |
|
272 |
plot(Th, Th0, wait=1, ps=output+"/geometry-deformed-superposed_sm"+string(sm)+"_fsn"+string(fsn)+"_fss"+string(fss)+"_fsv"+string(fsv)+".png",bb=bb); |
273 |
|
274 |
|
275 |
redefineVariable(strain); |
276 |
redefineVariable(stress); |
277 |
plot(strain, fill=1,wait=1,value=true, ps="strain.png",bb=bb); |
278 |
plot(stress, fill=1,wait=1,value=true, ps="stress.png",bb=bb); |
279 |
|
280 |
|
281 |
redefineVariable(geometryh); |
282 |
plot(geometryh, fill=1, ps=output+"/geometry-deformed_sm"+string(sm)+".png",bb=bb); |
283 |
|
284 |
redefineVariable(vasculatureh); |
285 |
redefineVariable(nectaryh); |
286 |
redefineVariable(sideh); |
287 |
redefineVariable(mesophylh); |
288 |
|
289 |
// compute structure volumes
|
290 |
real voltotal=int2d(Th)(1);
|
291 |
real volvasculature=int2d(Th)(vasculatureh); |
292 |
real volnectary=int2d(Th)(nectaryh); |
293 |
real volside=int2d(Th)(sideh); |
294 |
real volmesophyl=int2d(Th)(mesophylh); |
295 |
|
296 |
cout<<"Deformed total volume="<<voltotal<<endl;
|
297 |
cout<<"Deformed vasculature volume="<<volvasculature<<endl;
|
298 |
|
299 |
|
300 |
/*************************************************************
|
301 |
* LOOKING FOR ANGLE AND NECKHEIGHT
|
302 |
* **********************************************************/
|
303 |
|
304 |
// displaced upper corner
|
305 |
real Nx=lx/2+u1(lx/2.,0), Ny=u2(lx/2.,0); |
306 |
|
307 |
|
308 |
// compute tangentangle
|
309 |
real height=ly/nvertex/100;
|
310 |
real Mx=lx/2+u1(lx/2.,-height), My=-height+u2(lx/2.,-height); |
311 |
real tangentangle=angleToVertical(Mx, My, Nx, Ny); |
312 |
cout<<"Tangent angle="<<tangentangle<<endl;
|
313 |
|
314 |
// compute sideangle
|
315 |
height=hside; |
316 |
Mx=lx/2+u1(lx/2.,-height); My=-height+u2(lx/2.,-height); |
317 |
real sideangle=angleToVertical(Mx, My, Nx, Ny); |
318 |
|
319 |
|
320 |
cout<<"Side angle="<<sideangle<<endl;
|
321 |
|
322 |
|
323 |
real am=volmesophyl0/volmesophyl; |
324 |
real an=volnectary0/volnectary; |
325 |
real as=volside0/volside; |
326 |
real av=volvasculature0/volvasculature; |
327 |
|
328 |
|
329 |
|
330 |
/*************************************************************
|
331 |
* Writing results
|
332 |
* **********************************************************/
|
333 |
|
334 |
|
335 |
cout<<"sm;fsn;fss;fsv;tangentangle;sideangle;am;an;as;av;sam;san;sas;sav"<<endl;
|
336 |
|
337 |
|
338 |
ofstream textfile(output+"/results.csv", append);
|
339 |
|
340 |
|
341 |
textfile<<sm<<";"<<fsn<<";"<<fss<<";"<<fsv |
342 |
<<";"<<tangentangle/38<<";"<<sideangle/38 |
343 |
<<";"<<am<<";"<<an<<";"<<as<<";"<<av |
344 |
<<";"<<samesophyl<<";"<<sanectary<<";"<<saside<<";"<<savasculature |
345 |
<<endl; |
346 |
|
347 |
cout<<sm<<";"<<fsn<<";"<<fss<<";"<<fsv |
348 |
<<";"<<tangentangle/38<<";"<<sideangle/38 |
349 |
<<";"<<am<<";"<<an<<";"<<as<<";"<<av |
350 |
<<";"<<samesophyl<<";"<<sanectary<<";"<<saside<<";"<<savasculature |
351 |
<<endl; |
352 |
|
353 |
|
354 |
|
355 |
|