cvp / src / functions_for_cvp.sage @ 9645ea29
Historique | Voir | Annoter | Télécharger (8,82 ko)
1 |
"""@package functions_for_cvp |
---|---|
2 |
Auxiliary functions used for CVP. |
3 |
""" |
4 |
print "Functions for CVP loading..." |
5 |
# |
6 |
def cvp_babai(redBasis, redBasisGso, vect): |
7 |
""" |
8 |
Closest plane vector implementation as per Babaï. |
9 |
@param redBasis : a lattice basis, preferably a reduced one; |
10 |
@param redBasisGSO: the GSO of the previous basis; |
11 |
@param vector : a vector, in coordinated in the ambient |
12 |
space of the lattice |
13 |
@return the closest vector to the input, in coordinates in the |
14 |
ambient space of the lattice. |
15 |
""" |
16 |
## A deep copy is not necessary here. |
17 |
curVect = copy(vect) |
18 |
print "Vector:", vect |
19 |
## From index of last row down to 0. |
20 |
for vIndex in xrange(len(redBasis.rows())-1, -1, -1): |
21 |
curRBGSO = redBasisGso.row(vIndex) |
22 |
curVect = curVect - (round((curVect * curRBGSO) / (curRBGSO * curRBGSO)) * redBasis.row(vIndex)) |
23 |
return vect - curVect |
24 |
# |
25 |
|
26 |
def cvp_bkz_reduce(intBasis, blockSize): |
27 |
""" |
28 |
Thin and simplistic wrapper the HKZ function of the FP_LLL module. |
29 |
""" |
30 |
fplllIntBasis = FP_LLL(intBasis) |
31 |
fplllIntBasis.BKZ(blockSize) |
32 |
return fplllIntBasis._sage_() |
33 |
# End cvp_hkz_reduce. |
34 |
# |
35 |
|
36 |
def cvp_common_scaling_factor(floatBasis, |
37 |
funcVect, |
38 |
precision , |
39 |
precisionFraction = None): |
40 |
""" |
41 |
Compute the common scaling factor (a power of 2). |
42 |
The exponent is made of: |
43 |
- a fraction of the precision; |
44 |
- an integer depending on the smallest norm of the vectors of the basis. |
45 |
""" |
46 |
## Set a default value for the precisionFraction to 1/2. |
47 |
if precisionFraction is None: |
48 |
precisionFraction = 1/2 |
49 |
## Compute the norms of the vectors and get the smallest one. |
50 |
# Start with "oo" (+Infinty) |
51 |
minBasisVectsNorm = oo |
52 |
currentNorm = 0 |
53 |
for vect in floatBasis.rows(): |
54 |
currentNorm = vect.norm() |
55 |
print "Current norm:", currentNorm |
56 |
if currentNorm < minBasisVectsNorm: |
57 |
minBasisVectsNorm = currentNorm |
58 |
currentNorm = funcVect.norm() |
59 |
print "Current norm:", currentNorm |
60 |
if currentNorm < minBasisVectsNorm: |
61 |
minBasisVectsNorm = currentNorm |
62 |
## Check if a push is need because the smallest norm is below 0. |
63 |
powerForMinNorm = floor(log(minBasisVectsNorm)/log2) |
64 |
print "Power for min norm :", powerForMinNorm |
65 |
print "Power for precision:", ceil(precision*precisionFraction) |
66 |
if powerForMinNorm < 0: |
67 |
return 2^(ceil(precision*precisionFraction) - powerFromMinNorm) |
68 |
else: |
69 |
return 2^(ceil(precision*precisionFraction)) |
70 |
# End cvp_common_scaling_factor. |
71 |
# |
72 |
def cvp_extra_scaling_factor(floatBasis, |
73 |
funcVect, |
74 |
coeffsPrecList, |
75 |
minExponentsList): |
76 |
""" |
77 |
Compute the extra scaling factor for each element of the basis. |
78 |
""" |
79 |
if floatBasis.nrows() == 0 or \ |
80 |
floatBasis.ncols() == 0 or \ |
81 |
len(funcVect) == 0: |
82 |
return 0 |
83 |
## Compute the norm of the function vector. |
84 |
funcVectNorm = funcVect.norm() |
85 |
## Compute the extra scaling factor for each vector of the basis. |
86 |
### Pass #1 for norms ratios an minExponentsList |
87 |
scalingPowers = [] |
88 |
normsRatio = 0 |
89 |
for (row, maxExp) in zip(floatBasis.rows(),minExponentsList): |
90 |
normsRatio = funcVectNorm / row.norm() |
91 |
normsRatioLog2 = normsRatio.log2().floor() |
92 |
print "Current norms ratio:", normsRatio, normsRatioLog2 |
93 |
scalingPower = normsRatioLog2 + maxExp |
94 |
print "Current scaling power:", scalingPower |
95 |
scalingPowers.append(scalingPower) |
96 |
### Pass #2 for coefficients precision. |
97 |
minScalingPower = oo |
98 |
for index in xrange(0,len(scalingPowers)): |
99 |
scalingPowers[index] -= coeffsPrecList[index] |
100 |
if scalingPowers[index] < minScalingPower: |
101 |
minScalingPower = scalingPowers[index] |
102 |
print "Current scaling power:", scalingPowers[index] |
103 |
if minScalingPower < 0: |
104 |
scalingFactor = 2^(-minScalingPower) |
105 |
else: |
106 |
scalingFactor = 1 |
107 |
return (scalingFactor, scalingPowers) |
108 |
# End cvp_extra_scaling_factor. |
109 |
# |
110 |
def cvp_float_basis(monomialsList, pointsList, realField): |
111 |
""" |
112 |
For a given monomials list and points list, compute the floating-point |
113 |
basis matrix. |
114 |
""" |
115 |
numRows = len(monomialsList) |
116 |
numCols = len(pointsList) |
117 |
if numRows == 0 or numCols == 0: |
118 |
return matrix(realField, 0, 0) |
119 |
# |
120 |
floatBasis = matrix(realField, numRows, numCols) |
121 |
for rIndex in xrange(0, numRows): |
122 |
for cIndex in xrange(0, numCols): |
123 |
floatBasis[rIndex,cIndex] = \ |
124 |
monomialsList[rIndex](realField(pointsList[cIndex])) |
125 |
return floatBasis |
126 |
# End cvp_float_basis |
127 |
# |
128 |
def cvp_float_vector_for_approx(func, |
129 |
basisPointsList, |
130 |
realField): |
131 |
""" |
132 |
Compute a floating-point vector for the function and the points list. |
133 |
""" |
134 |
# |
135 |
## Some local variables. |
136 |
basisPointsNum = len(basisPointsList) |
137 |
# |
138 |
## |
139 |
vVect = vector(realField, basisPointsNum) |
140 |
for vIndex in xrange(0,basisPointsNum): |
141 |
vVect[vIndex] = \ |
142 |
func(basisPointsList[vIndex]) |
143 |
return vVect |
144 |
# End cvp_float_vector_for_approx. |
145 |
# |
146 |
def cvp_hkz_reduce(intBasis): |
147 |
""" |
148 |
Thin and simplistic wrapper the HKZ function of the FP_LLL module. |
149 |
""" |
150 |
fplllIntBasis = FP_LLL(intBasis) |
151 |
fplllIntBasis.HKZ() |
152 |
return fplllIntBasis._sage_() |
153 |
# End cvp_hkz_reduce. |
154 |
# |
155 |
def cvp_int_basis(floatBasis, commonScalingFactor): |
156 |
""" |
157 |
From the float basis and the common scaling factor, compute the |
158 |
integral basis. |
159 |
""" |
160 |
intBasis = matrix(ZZ, floatBasis.nrows(), floatBasis.ncols()) |
161 |
for rIndex in xrange(0, floatBasis.nrows()): |
162 |
for cIndex in xrange(0, floatBasis.ncols()): |
163 |
intBasis[rIndex, cIndex] = \ |
164 |
floatBasis[rIndex, cIndex] * commonScalingFactor |
165 |
return intBasis |
166 |
# End cvp_int_basis. |
167 |
# |
168 |
def cvp_int_vector_for_approx(floatVect, commonScalingFactor, extraScalingFactor): |
169 |
totalScalingFactor = commonScalingFactor * extraScalingFactor |
170 |
intVect = vector(ZZ, len(floatVect)) |
171 |
for index in xrange(0, len(floatVect)): |
172 |
intVect[index] = (floatVect[index] * totalScalingFactor).round() |
173 |
return intVect |
174 |
# End cvp_int_vector_for_approx. |
175 |
# |
176 |
def cvp_lll_reduce(intBasis): |
177 |
""" |
178 |
Thin and simplistic wrapper around the LLL function |
179 |
""" |
180 |
return intBasis.LLL() |
181 |
# End cvp_lll_reduce. |
182 |
# |
183 |
def cvp_monomials_list(exponentsList, varName = None): |
184 |
""" |
185 |
Create a list of monomials corresponding to the given exponentsList. |
186 |
Monomials are defined as functions. |
187 |
""" |
188 |
monomialsList = [] |
189 |
for exponent in exponentsList: |
190 |
if varName is None: |
191 |
monomialsList.append((x^exponent).function(x)) |
192 |
else: |
193 |
monomialsList.append((varName^exponent).function(varName)) |
194 |
return monomialsList |
195 |
# End cvp_monomials_list. |
196 |
# |
197 |
def cvp_vector_in_basis(vect, basis): |
198 |
""" |
199 |
Compute the coordinates of "vect" in "basis" by |
200 |
solving a linear system. |
201 |
@param vect : the vector we want to compute the coordinates of |
202 |
in coordinates of the ambient space; |
203 |
@param basis: the basis we want to compute the coordinates in |
204 |
as a matrix relative to the ambient space. |
205 |
""" |
206 |
## Create the variables for the linear equations. |
207 |
varDeclString = "" |
208 |
basisIterationsRange = xrange(0, basis.nrows()) |
209 |
### Building variables declaration string. |
210 |
for index in basisIterationsRange: |
211 |
varName = "a" + str(index) |
212 |
if varDeclString == "": |
213 |
varDeclString += varName |
214 |
else: |
215 |
varDeclString += "," + varName |
216 |
### Variables declaration |
217 |
varsList = var(varDeclString) |
218 |
sage_eval("var('" + varDeclString + "')") |
219 |
## Create the equations |
220 |
equationString = "" |
221 |
equationsList = [] |
222 |
for vIndex in xrange(0, len(vect)): |
223 |
equationString = "" |
224 |
for bIndex in basisIterationsRange: |
225 |
if equationString != "": |
226 |
equationString += "+" |
227 |
equationString += str(varsList[bIndex]) + "*" + str(basis[bIndex,vIndex]) |
228 |
equationString += " == " + str(vect[vIndex]) |
229 |
equationsList.append(sage_eval(equationString)) |
230 |
## Solve the equations system. The solution dictionnary is needed |
231 |
# to recover the values of the solutions. |
232 |
solutions = solve(equationsList,varsList, solution_dict=True) |
233 |
#print "Solutions:", s |
234 |
## Recover solutions in rational components vector. |
235 |
vectInBasis = vector(QQ, basis.nrows()) |
236 |
### There can be several solution, in the general case. |
237 |
# Here, there is only one. For each solution, each |
238 |
# variable has to be searched for. |
239 |
for sol in solutions: |
240 |
for bIndex in basisIterationsRange: |
241 |
vectInBasis[bIndex] = sol[varsList[bIndex]] |
242 |
return vectInBasis |
243 |
# End cpv_vector_in_basis. |
244 |
# |
245 |
print "... functions for CVP loaded." |