root / Ising / GPU / Ising2D-GPU.py @ 94
Historique | Voir | Annoter | Télécharger (23,63 ko)
1 | 18 | equemene | #!/usr/bin/env python
|
---|---|---|---|
2 | 18 | equemene | #
|
3 | 18 | equemene | # Ising2D model in serial mode
|
4 | 18 | equemene | #
|
5 | 18 | equemene | # CC BY-NC-SA 2011 : <emmanuel.quemener@ens-lyon.fr>
|
6 | 18 | equemene | |
7 | 18 | equemene | import sys |
8 | 18 | equemene | import numpy |
9 | 18 | equemene | import math |
10 | 18 | equemene | from PIL import Image |
11 | 18 | equemene | from math import exp |
12 | 18 | equemene | from random import random |
13 | 18 | equemene | import time |
14 | 18 | equemene | import getopt |
15 | 18 | equemene | import matplotlib.pyplot as plt |
16 | 18 | equemene | from numpy.random import randint as nprnd |
17 | 18 | equemene | |
18 | 18 | equemene | KERNEL_CODE_OPENCL="""
|
19 | 18 | equemene |
|
20 | 18 | equemene | // Marsaglia RNG very simple implementation
|
21 | 18 | equemene | #define znew ((z=36969*(z&65535)+(z>>16))<<16)
|
22 | 18 | equemene | #define wnew ((w=18000*(w&65535)+(w>>16))&65535)
|
23 | 18 | equemene | #define MWC (znew+wnew)
|
24 | 18 | equemene | #define SHR3 (jsr=(jsr=(jsr=jsr^(jsr<<17))^(jsr>>13))^(jsr<<5))
|
25 | 18 | equemene | #define CONG (jcong=69069*jcong+1234567)
|
26 | 18 | equemene | #define KISS ((MWC^CONG)+SHR3)
|
27 | 18 | equemene |
|
28 | 18 | equemene | #define MWCfp MWC * 2.328306435454494e-10f
|
29 | 18 | equemene | #define KISSfp KISS * 2.328306435454494e-10f
|
30 | 18 | equemene |
|
31 | 18 | equemene | __kernel void MainLoopOne(__global char *s,float T,float J,float B,
|
32 | 18 | equemene | uint sizex,uint sizey,
|
33 | 18 | equemene | uint iterations,uint seed_w,uint seed_z)
|
34 | 18 | equemene |
|
35 | 18 | equemene | {
|
36 | 18 | equemene | uint z=seed_z;
|
37 | 18 | equemene | uint w=seed_w;
|
38 | 18 | equemene |
|
39 | 18 | equemene | for (uint i=0;i<iterations;i++) {
|
40 | 18 | equemene |
|
41 | 18 | equemene | uint x=(uint)(MWC%sizex) ;
|
42 | 18 | equemene | uint y=(uint)(MWC%sizey) ;
|
43 | 18 | equemene |
|
44 | 18 | equemene | int p=s[x+sizex*y];
|
45 | 18 | equemene |
|
46 | 18 | equemene | int d=s[x+sizex*((y+1)%sizey)];
|
47 | 18 | equemene | int u=s[x+sizex*((y-1)%sizey)];
|
48 | 18 | equemene | int l=s[((x-1)%sizex)+sizex*y];
|
49 | 18 | equemene | int r=s[((x+1)%sizex)+sizex*y];
|
50 | 18 | equemene |
|
51 | 18 | equemene | float DeltaE=2.0f*p*(J*(u+d+l+r)+B);
|
52 | 18 | equemene |
|
53 | 18 | equemene | int factor=((DeltaE < 0.0f) || (MWCfp < exp(-DeltaE/T))) ? -1:1;
|
54 | 18 | equemene | s[x%sizex+sizex*(y%sizey)] = (char)factor*p;
|
55 | 18 | equemene | }
|
56 | 18 | equemene | barrier(CLK_GLOBAL_MEM_FENCE);
|
57 | 18 | equemene | }
|
58 | 18 | equemene |
|
59 | 18 | equemene | __kernel void MainLoopGlobal(__global char *s,__global float *T,float J,float B,
|
60 | 18 | equemene | uint sizex,uint sizey,
|
61 | 18 | equemene | uint iterations,uint seed_w,uint seed_z)
|
62 | 18 | equemene |
|
63 | 18 | equemene | {
|
64 | 18 | equemene | uint z=seed_z/(get_global_id(0)+1);
|
65 | 18 | equemene | uint w=seed_w/(get_global_id(0)+1);
|
66 | 18 | equemene | float t=T[get_global_id(0)];
|
67 | 18 | equemene | uint ind=get_global_id(0);
|
68 | 18 | equemene |
|
69 | 18 | equemene | for (uint i=0;i<iterations;i++) {
|
70 | 18 | equemene |
|
71 | 18 | equemene | uint x=(uint)(MWC%sizex) ;
|
72 | 18 | equemene | uint y=(uint)(MWC%sizey) ;
|
73 | 18 | equemene |
|
74 | 18 | equemene | int p=s[x+sizex*(y+sizey*ind)];
|
75 | 18 | equemene |
|
76 | 18 | equemene | int d=s[x+sizex*((y+1)%sizey+sizey*ind)];
|
77 | 18 | equemene | int u=s[x+sizex*((y-1)%sizey+sizey*ind)];
|
78 | 18 | equemene | int l=s[((x-1)%sizex)+sizex*(y+sizey*ind)];
|
79 | 18 | equemene | int r=s[((x+1)%sizex)+sizex*(y+sizey*ind)];
|
80 | 18 | equemene |
|
81 | 18 | equemene | float DeltaE=2.0f*p*(J*(u+d+l+r)+B);
|
82 | 18 | equemene |
|
83 | 18 | equemene | int factor=((DeltaE < 0.0f) || (MWCfp < exp(-DeltaE/t))) ? -1:1;
|
84 | 18 | equemene | s[x%sizex+sizex*(y%sizey+sizey*ind)] = (char)factor*p;
|
85 | 18 | equemene |
|
86 | 18 | equemene | }
|
87 | 18 | equemene |
|
88 | 18 | equemene | barrier(CLK_GLOBAL_MEM_FENCE);
|
89 | 18 | equemene |
|
90 | 18 | equemene | }
|
91 | 18 | equemene |
|
92 | 18 | equemene | __kernel void MainLoopHybrid(__global char *s,__global float *T,float J,float B,
|
93 | 18 | equemene | uint sizex,uint sizey,
|
94 | 18 | equemene | uint iterations,uint seed_w,uint seed_z)
|
95 | 18 | equemene |
|
96 | 18 | equemene | {
|
97 | 18 | equemene | uint z=seed_z/(get_group_id(0)*get_num_groups(0)+get_local_id(0)+1);
|
98 | 18 | equemene | uint w=seed_w/(get_group_id(0)*get_num_groups(0)+get_local_id(0)+1);
|
99 | 18 | equemene | float t=T[get_group_id(0)*get_num_groups(0)+get_local_id(0)];
|
100 | 18 | equemene | uint ind=get_group_id(0)*get_num_groups(0)+get_local_id(0);
|
101 | 18 | equemene |
|
102 | 18 | equemene | for (uint i=0;i<iterations;i++) {
|
103 | 18 | equemene |
|
104 | 18 | equemene | uint x=(uint)(MWC%sizex) ;
|
105 | 18 | equemene | uint y=(uint)(MWC%sizey) ;
|
106 | 18 | equemene |
|
107 | 18 | equemene | int p=s[x+sizex*(y+sizey*ind)];
|
108 | 18 | equemene |
|
109 | 18 | equemene | int d=s[x+sizex*((y+1)%sizey+sizey*ind)];
|
110 | 18 | equemene | int u=s[x+sizex*((y-1)%sizey+sizey*ind)];
|
111 | 18 | equemene | int l=s[((x-1)%sizex)+sizex*(y+sizey*ind)];
|
112 | 18 | equemene | int r=s[((x+1)%sizex)+sizex*(y+sizey*ind)];
|
113 | 18 | equemene |
|
114 | 18 | equemene | float DeltaE=2.0f*p*(J*(u+d+l+r)+B);
|
115 | 18 | equemene |
|
116 | 18 | equemene | int factor=((DeltaE < 0.0f) || (MWCfp < exp(-DeltaE/t))) ? -1:1;
|
117 | 18 | equemene | s[x%sizex+sizex*(y%sizey+sizey*ind)] = (char)factor*p;
|
118 | 18 | equemene |
|
119 | 18 | equemene | }
|
120 | 18 | equemene |
|
121 | 18 | equemene | barrier(CLK_GLOBAL_MEM_FENCE);
|
122 | 18 | equemene |
|
123 | 18 | equemene | }
|
124 | 18 | equemene |
|
125 | 18 | equemene | __kernel void MainLoopLocal(__global char *s,__global float *T,float J,float B,
|
126 | 18 | equemene | uint sizex,uint sizey,
|
127 | 18 | equemene | uint iterations,uint seed_w,uint seed_z)
|
128 | 18 | equemene | {
|
129 | 18 | equemene | uint z=seed_z/(get_local_id(0)+1);
|
130 | 18 | equemene | uint w=seed_w/(get_local_id(0)+1);
|
131 | 18 | equemene | float t=T[get_local_id(0)];
|
132 | 18 | equemene | uint ind=get_local_id(0);
|
133 | 18 | equemene |
|
134 | 18 | equemene | for (uint i=0;i<iterations;i++) {
|
135 | 18 | equemene |
|
136 | 18 | equemene | uint x=(uint)(MWC%sizex) ;
|
137 | 18 | equemene | uint y=(uint)(MWC%sizey) ;
|
138 | 18 | equemene |
|
139 | 18 | equemene | int p=s[x+sizex*(y+sizey*ind)];
|
140 | 18 | equemene |
|
141 | 18 | equemene | int d=s[x+sizex*((y+1)%sizey+sizey*ind)];
|
142 | 18 | equemene | int u=s[x+sizex*((y-1)%sizey+sizey*ind)];
|
143 | 18 | equemene | int l=s[((x-1)%sizex)+sizex*(y+sizey*ind)];
|
144 | 18 | equemene | int r=s[((x+1)%sizex)+sizex*(y+sizey*ind)];
|
145 | 18 | equemene |
|
146 | 18 | equemene | float DeltaE=2.0f*p*(J*(u+d+l+r)+B);
|
147 | 18 | equemene |
|
148 | 18 | equemene | int factor=((DeltaE < 0.0f) || (MWCfp < exp(-DeltaE/t))) ? -1:1;
|
149 | 18 | equemene | s[x%sizex+sizex*(y%sizey+sizey*ind)] = (char)factor*p;
|
150 | 18 | equemene | }
|
151 | 18 | equemene |
|
152 | 18 | equemene | barrier(CLK_LOCAL_MEM_FENCE);
|
153 | 18 | equemene | barrier(CLK_GLOBAL_MEM_FENCE);
|
154 | 18 | equemene |
|
155 | 18 | equemene | }
|
156 | 18 | equemene | """
|
157 | 18 | equemene | |
158 | 18 | equemene | KERNEL_CODE_CUDA="""
|
159 | 18 | equemene |
|
160 | 18 | equemene | // Marsaglia RNG very simple implementation
|
161 | 18 | equemene | #define znew ((z=36969*(z&65535)+(z>>16))<<16)
|
162 | 18 | equemene | #define wnew ((w=18000*(w&65535)+(w>>16))&65535)
|
163 | 18 | equemene | #define MWC (znew+wnew)
|
164 | 18 | equemene | #define SHR3 (jsr=(jsr=(jsr=jsr^(jsr<<17))^(jsr>>13))^(jsr<<5))
|
165 | 18 | equemene | #define CONG (jcong=69069*jcong+1234567)
|
166 | 18 | equemene | #define KISS ((MWC^CONG)+SHR3)
|
167 | 18 | equemene |
|
168 | 18 | equemene | #define MWCfp MWC * 2.328306435454494e-10f
|
169 | 18 | equemene | #define KISSfp KISS * 2.328306435454494e-10f
|
170 | 18 | equemene |
|
171 | 18 | equemene | __global__ void MainLoopOne(char *s,float T,float J,float B,
|
172 | 18 | equemene | uint sizex,uint sizey,
|
173 | 18 | equemene | uint iterations,uint seed_w,uint seed_z)
|
174 | 18 | equemene |
|
175 | 18 | equemene | {
|
176 | 18 | equemene | uint z=seed_z;
|
177 | 18 | equemene | uint w=seed_w;
|
178 | 18 | equemene |
|
179 | 18 | equemene | for (uint i=0;i<iterations;i++) {
|
180 | 18 | equemene |
|
181 | 18 | equemene | uint x=(uint)(MWC%sizex) ;
|
182 | 18 | equemene | uint y=(uint)(MWC%sizey) ;
|
183 | 18 | equemene |
|
184 | 18 | equemene | int p=s[x+sizex*y];
|
185 | 18 | equemene |
|
186 | 18 | equemene | int d=s[x+sizex*((y+1)%sizey)];
|
187 | 18 | equemene | int u=s[x+sizex*((y-1)%sizey)];
|
188 | 18 | equemene | int l=s[((x-1)%sizex)+sizex*y];
|
189 | 18 | equemene | int r=s[((x+1)%sizex)+sizex*y];
|
190 | 18 | equemene |
|
191 | 18 | equemene | float DeltaE=2.0f*p*(J*(u+d+l+r)+B);
|
192 | 18 | equemene |
|
193 | 18 | equemene | int factor=((DeltaE < 0.0f) || (MWCfp < exp(-DeltaE/T))) ? -1:1;
|
194 | 18 | equemene | s[x%sizex+sizex*(y%sizey)] = (char)factor*p;
|
195 | 18 | equemene | }
|
196 | 18 | equemene | __syncthreads();
|
197 | 18 | equemene |
|
198 | 18 | equemene | }
|
199 | 18 | equemene |
|
200 | 18 | equemene | __global__ void MainLoopGlobal(char *s,float *T,float J,float B,
|
201 | 18 | equemene | uint sizex,uint sizey,
|
202 | 18 | equemene | uint iterations,uint seed_w,uint seed_z)
|
203 | 18 | equemene |
|
204 | 18 | equemene | {
|
205 | 18 | equemene | uint z=seed_z/(blockIdx.x+1);
|
206 | 18 | equemene | uint w=seed_w/(blockIdx.x+1);
|
207 | 18 | equemene | float t=T[blockIdx.x];
|
208 | 18 | equemene | uint ind=blockIdx.x;
|
209 | 18 | equemene |
|
210 | 18 | equemene | for (uint i=0;i<iterations;i++) {
|
211 | 18 | equemene |
|
212 | 18 | equemene | uint x=(uint)(MWC%sizex) ;
|
213 | 18 | equemene | uint y=(uint)(MWC%sizey) ;
|
214 | 18 | equemene |
|
215 | 18 | equemene | int p=s[x+sizex*(y+sizey*ind)];
|
216 | 18 | equemene |
|
217 | 18 | equemene | int d=s[x+sizex*((y+1)%sizey+sizey*ind)];
|
218 | 18 | equemene | int u=s[x+sizex*((y-1)%sizey+sizey*ind)];
|
219 | 18 | equemene | int l=s[((x-1)%sizex)+sizex*(y+sizey*ind)];
|
220 | 18 | equemene | int r=s[((x+1)%sizex)+sizex*(y+sizey*ind)];
|
221 | 18 | equemene |
|
222 | 18 | equemene | float DeltaE=2.0f*p*(J*(u+d+l+r)+B);
|
223 | 18 | equemene |
|
224 | 18 | equemene | int factor=((DeltaE < 0.0f) || (MWCfp < exp(-DeltaE/t))) ? -1:1;
|
225 | 18 | equemene | s[x%sizex+sizex*(y%sizey+sizey*ind)] = (char)factor*p;
|
226 | 18 | equemene |
|
227 | 18 | equemene | }
|
228 | 18 | equemene | __syncthreads();
|
229 | 18 | equemene |
|
230 | 18 | equemene | }
|
231 | 18 | equemene |
|
232 | 18 | equemene | __global__ void MainLoopHybrid(char *s,float *T,float J,float B,
|
233 | 18 | equemene | uint sizex,uint sizey,
|
234 | 18 | equemene | uint iterations,uint seed_w,uint seed_z)
|
235 | 18 | equemene |
|
236 | 18 | equemene | {
|
237 | 18 | equemene | uint z=seed_z/(blockDim.x*blockIdx.x+threadIdx.x+1);
|
238 | 18 | equemene | uint w=seed_w/(blockDim.x*blockIdx.x+threadIdx.x+1);
|
239 | 18 | equemene | float t=T[blockDim.x*blockIdx.x+threadIdx.x];
|
240 | 18 | equemene | uint ind=blockDim.x*blockIdx.x+threadIdx.x;
|
241 | 18 | equemene |
|
242 | 18 | equemene | for (uint i=0;i<iterations;i++) {
|
243 | 18 | equemene |
|
244 | 18 | equemene | uint x=(uint)(MWC%sizex) ;
|
245 | 18 | equemene | uint y=(uint)(MWC%sizey) ;
|
246 | 18 | equemene |
|
247 | 18 | equemene | int p=s[x+sizex*(y+sizey*ind)];
|
248 | 18 | equemene |
|
249 | 18 | equemene | int d=s[x+sizex*((y+1)%sizey+sizey*ind)];
|
250 | 18 | equemene | int u=s[x+sizex*((y-1)%sizey+sizey*ind)];
|
251 | 18 | equemene | int l=s[((x-1)%sizex)+sizex*(y+sizey*ind)];
|
252 | 18 | equemene | int r=s[((x+1)%sizex)+sizex*(y+sizey*ind)];
|
253 | 18 | equemene |
|
254 | 18 | equemene | float DeltaE=2.0f*p*(J*(u+d+l+r)+B);
|
255 | 18 | equemene |
|
256 | 18 | equemene | int factor=((DeltaE < 0.0f) || (MWCfp < exp(-DeltaE/t))) ? -1:1;
|
257 | 18 | equemene | s[x%sizex+sizex*(y%sizey+sizey*ind)] = (char)factor*p;
|
258 | 18 | equemene |
|
259 | 18 | equemene | }
|
260 | 18 | equemene | __syncthreads();
|
261 | 18 | equemene |
|
262 | 18 | equemene | }
|
263 | 18 | equemene |
|
264 | 18 | equemene | __global__ void MainLoopLocal(char *s,float *T,float J,float B,
|
265 | 18 | equemene | uint sizex,uint sizey,
|
266 | 18 | equemene | uint iterations,uint seed_w,uint seed_z)
|
267 | 18 | equemene | {
|
268 | 18 | equemene | uint z=seed_z/(threadIdx.x+1);
|
269 | 18 | equemene | uint w=seed_w/(threadIdx.x+1);
|
270 | 18 | equemene | float t=T[threadIdx.x];
|
271 | 18 | equemene | uint ind=threadIdx.x;
|
272 | 18 | equemene |
|
273 | 18 | equemene | for (uint i=0;i<iterations;i++) {
|
274 | 18 | equemene |
|
275 | 18 | equemene | uint x=(uint)(MWC%sizex) ;
|
276 | 18 | equemene | uint y=(uint)(MWC%sizey) ;
|
277 | 18 | equemene |
|
278 | 18 | equemene | int p=s[x+sizex*(y+sizey*ind)];
|
279 | 18 | equemene |
|
280 | 18 | equemene | int d=s[x+sizex*((y+1)%sizey+sizey*ind)];
|
281 | 18 | equemene | int u=s[x+sizex*((y-1)%sizey+sizey*ind)];
|
282 | 18 | equemene | int l=s[((x-1)%sizex)+sizex*(y+sizey*ind)];
|
283 | 18 | equemene | int r=s[((x+1)%sizex)+sizex*(y+sizey*ind)];
|
284 | 18 | equemene |
|
285 | 18 | equemene | float DeltaE=2.0f*p*(J*(u+d+l+r)+B);
|
286 | 18 | equemene |
|
287 | 18 | equemene | int factor=((DeltaE < 0.0f) || (MWCfp < exp(-DeltaE/t))) ? -1:1;
|
288 | 18 | equemene | s[x%sizex+sizex*(y%sizey+sizey*ind)] = (char)factor*p;
|
289 | 18 | equemene | }
|
290 | 18 | equemene | __syncthreads();
|
291 | 18 | equemene |
|
292 | 18 | equemene | }
|
293 | 18 | equemene | """
|
294 | 18 | equemene | |
295 | 18 | equemene | # find prime factors of a number
|
296 | 18 | equemene | # Get for WWW :
|
297 | 18 | equemene | # http://pythonism.wordpress.com/2008/05/17/looking-at-factorisation-in-python/
|
298 | 18 | equemene | def PrimeFactors(x): |
299 | 18 | equemene | factorlist=numpy.array([]).astype('uint32')
|
300 | 18 | equemene | loop=2
|
301 | 18 | equemene | while loop<=x:
|
302 | 18 | equemene | if x%loop==0: |
303 | 18 | equemene | x/=loop |
304 | 18 | equemene | factorlist=numpy.append(factorlist,[loop]) |
305 | 18 | equemene | else:
|
306 | 18 | equemene | loop+=1
|
307 | 18 | equemene | return factorlist
|
308 | 18 | equemene | |
309 | 18 | equemene | # Try to find the best thread number in Hybrid approach (Blocks&Threads)
|
310 | 18 | equemene | # output is thread number
|
311 | 18 | equemene | def BestThreadsNumber(jobs): |
312 | 18 | equemene | factors=PrimeFactors(jobs) |
313 | 18 | equemene | matrix=numpy.append([factors],[factors[::-1]],axis=0) |
314 | 18 | equemene | threads=1
|
315 | 18 | equemene | for factor in matrix.transpose().ravel(): |
316 | 18 | equemene | threads=threads*factor |
317 | 18 | equemene | if threads*threads>jobs:
|
318 | 18 | equemene | break
|
319 | 18 | equemene | return(long(threads)) |
320 | 18 | equemene | |
321 | 18 | equemene | def ImageOutput(sigma,prefix): |
322 | 18 | equemene | Max=sigma.max() |
323 | 18 | equemene | Min=sigma.min() |
324 | 18 | equemene | |
325 | 18 | equemene | # Normalize value as 8bits Integer
|
326 | 18 | equemene | SigmaInt=(255*(sigma-Min)/(Max-Min)).astype('uint8') |
327 | 18 | equemene | image = Image.fromarray(SigmaInt) |
328 | 18 | equemene | image.save("%s.jpg" % prefix)
|
329 | 18 | equemene | |
330 | 18 | equemene | def Metropolis(sigma,T,J,B,iterations): |
331 | 18 | equemene | start=time.time() |
332 | 18 | equemene | |
333 | 18 | equemene | SizeX,SizeY=sigma.shape |
334 | 18 | equemene | |
335 | 18 | equemene | for p in xrange(0,iterations): |
336 | 18 | equemene | # Random access coordonate
|
337 | 18 | equemene | X,Y=numpy.random.randint(SizeX),numpy.random.randint(SizeY) |
338 | 18 | equemene | |
339 | 18 | equemene | DeltaE=J*sigma[X,Y]*(2*(sigma[X,(Y+1)%SizeY]+ |
340 | 18 | equemene | sigma[X,(Y-1)%SizeY]+
|
341 | 18 | equemene | sigma[(X-1)%SizeX,Y]+
|
342 | 18 | equemene | sigma[(X+1)%SizeX,Y])+B)
|
343 | 18 | equemene | |
344 | 18 | equemene | if DeltaE < 0. or random() < exp(-DeltaE/T): |
345 | 18 | equemene | sigma[X,Y]=-sigma[X,Y] |
346 | 18 | equemene | duration=time.time()-start |
347 | 18 | equemene | return(duration)
|
348 | 18 | equemene | |
349 | 18 | equemene | def MetropolisAllOpenCL(sigmaDict,TList,J,B,iterations,jobs,ParaStyle,Alu,Device): |
350 | 18 | equemene | |
351 | 18 | equemene | # sigmaDict & Tlist are NOT respectively array & float
|
352 | 18 | equemene | # sigmaDict : dict of array for each temperatoire
|
353 | 18 | equemene | # TList : list of temperatures
|
354 | 18 | equemene | |
355 | 18 | equemene | # Initialisation des variables en les CASTant correctement
|
356 | 18 | equemene | |
357 | 18 | equemene | # Je detecte un peripherique GPU dans la liste des peripheriques
|
358 | 18 | equemene | |
359 | 18 | equemene | HasGPU=False
|
360 | 18 | equemene | Id=1
|
361 | 18 | equemene | # Primary Device selection based on Device Id
|
362 | 18 | equemene | for platform in cl.get_platforms(): |
363 | 18 | equemene | for device in platform.get_devices(): |
364 | 18 | equemene | deviceType=cl.device_type.to_string(device.type) |
365 | 18 | equemene | if Id==Device and not HasGPU: |
366 | 18 | equemene | GPU=device |
367 | 18 | equemene | print "CPU/GPU selected: ",device.name |
368 | 18 | equemene | HasGPU=True
|
369 | 18 | equemene | Id=Id+1
|
370 | 18 | equemene | # Default Device selection based on ALU Type
|
371 | 18 | equemene | for platform in cl.get_platforms(): |
372 | 18 | equemene | for device in platform.get_devices(): |
373 | 18 | equemene | deviceType=cl.device_type.to_string(device.type) |
374 | 18 | equemene | if deviceType=="GPU" and Alu=="GPU" and not HasGPU: |
375 | 18 | equemene | GPU=device |
376 | 18 | equemene | print "GPU selected: ",device.name |
377 | 18 | equemene | HasGPU=True
|
378 | 18 | equemene | if deviceType=="CPU" and Alu=="CPU" and not HasGPU: |
379 | 18 | equemene | GPU=device |
380 | 18 | equemene | print "CPU selected: ",device.name |
381 | 18 | equemene | HasGPU=True
|
382 | 18 | equemene | |
383 | 18 | equemene | # Je cree le contexte et la queue pour son execution
|
384 | 18 | equemene | # ctx = cl.create_some_context()
|
385 | 18 | equemene | ctx = cl.Context([GPU]) |
386 | 18 | equemene | queue = cl.CommandQueue(ctx, |
387 | 18 | equemene | properties=cl.command_queue_properties.PROFILING_ENABLE) |
388 | 18 | equemene | |
389 | 18 | equemene | # Je recupere les flag possibles pour les buffers
|
390 | 18 | equemene | mf = cl.mem_flags |
391 | 18 | equemene | |
392 | 18 | equemene | # Concatenate all sigma in single array
|
393 | 18 | equemene | sigma=numpy.copy(sigmaDict[TList[0]])
|
394 | 18 | equemene | for T in TList[1:]: |
395 | 18 | equemene | sigma=numpy.concatenate((sigma,sigmaDict[T]),axis=1)
|
396 | 18 | equemene | |
397 | 18 | equemene | sigmaCL = cl.Buffer(ctx, mf.WRITE_ONLY|mf.COPY_HOST_PTR,hostbuf=sigma) |
398 | 18 | equemene | TCL = cl.Buffer(ctx, mf.WRITE_ONLY|mf.COPY_HOST_PTR,hostbuf=TList) |
399 | 18 | equemene | |
400 | 18 | equemene | MetropolisCL = cl.Program(ctx,KERNEL_CODE_OPENCL).build( \ |
401 | 18 | equemene | options = "-cl-mad-enable -cl-fast-relaxed-math")
|
402 | 18 | equemene | |
403 | 18 | equemene | SizeX,SizeY=sigmaDict[TList[0]].shape
|
404 | 18 | equemene | |
405 | 18 | equemene | if ParaStyle=='Blocks': |
406 | 18 | equemene | # Call OpenCL kernel
|
407 | 18 | equemene | # (1,) is Global work size (only 1 work size)
|
408 | 18 | equemene | # (1,) is local work size
|
409 | 18 | equemene | # SeedZCL is lattice translated in CL format
|
410 | 18 | equemene | # SeedWCL is lattice translated in CL format
|
411 | 18 | equemene | # step is number of iterations
|
412 | 18 | equemene | CLLaunch=MetropolisCL.MainLoopGlobal(queue,(jobs,),None,
|
413 | 18 | equemene | sigmaCL, |
414 | 18 | equemene | TCL, |
415 | 18 | equemene | numpy.float32(J), |
416 | 18 | equemene | numpy.float32(B), |
417 | 18 | equemene | numpy.uint32(SizeX), |
418 | 18 | equemene | numpy.uint32(SizeY), |
419 | 18 | equemene | numpy.uint32(iterations), |
420 | 18 | equemene | numpy.uint32(nprnd(2**31-1)), |
421 | 18 | equemene | numpy.uint32(nprnd(2**31-1))) |
422 | 18 | equemene | print "%s with (WorkItems/Threads)=(%i,%i) %s method done" % \ |
423 | 18 | equemene | (Alu,jobs,1,ParaStyle)
|
424 | 18 | equemene | elif ParaStyle=='Threads': |
425 | 18 | equemene | # It's necessary to put a Local_ID equal to a Global_ID
|
426 | 18 | equemene | # Jobs are to be considerated as global number of jobs to do
|
427 | 18 | equemene | # And to be distributed to entities
|
428 | 18 | equemene | # For example :
|
429 | 18 | equemene | # G_ID=10 & L_ID=10 : 10 Threads on 1 UC
|
430 | 18 | equemene | # G_ID=10 & L_ID=1 : 10 Threads on 1 UC
|
431 | 18 | equemene | |
432 | 18 | equemene | CLLaunch=MetropolisCL.MainLoopLocal(queue,(jobs,),(jobs,), |
433 | 18 | equemene | sigmaCL, |
434 | 18 | equemene | TCL, |
435 | 18 | equemene | numpy.float32(J), |
436 | 18 | equemene | numpy.float32(B), |
437 | 18 | equemene | numpy.uint32(SizeX), |
438 | 18 | equemene | numpy.uint32(SizeY), |
439 | 18 | equemene | numpy.uint32(iterations), |
440 | 18 | equemene | numpy.uint32(nprnd(2**31-1)), |
441 | 18 | equemene | numpy.uint32(nprnd(2**31-1))) |
442 | 18 | equemene | print "%s with (WorkItems/Threads)=(%i,%i) %s method done" % \ |
443 | 18 | equemene | (Alu,1,jobs,ParaStyle)
|
444 | 18 | equemene | else:
|
445 | 18 | equemene | threads=BestThreadsNumber(jobs) |
446 | 18 | equemene | # en OpenCL, necessaire de mettre un Global_id identique au local_id
|
447 | 18 | equemene | CLLaunch=MetropolisCL.MainLoopHybrid(queue,(jobs,),(threads,), |
448 | 18 | equemene | sigmaCL, |
449 | 18 | equemene | TCL, |
450 | 18 | equemene | numpy.float32(J), |
451 | 18 | equemene | numpy.float32(B), |
452 | 18 | equemene | numpy.uint32(SizeX), |
453 | 18 | equemene | numpy.uint32(SizeY), |
454 | 18 | equemene | numpy.uint32(iterations), |
455 | 18 | equemene | numpy.uint32(nprnd(2**31-1)), |
456 | 18 | equemene | numpy.uint32(nprnd(2**31-1))) |
457 | 18 | equemene | print "%s with (WorkItems/Threads)=(%i,%i) %s method done" % \ |
458 | 18 | equemene | (Alu,jobs/threads,threads,ParaStyle) |
459 | 18 | equemene | |
460 | 18 | equemene | CLLaunch.wait() |
461 | 18 | equemene | cl.enqueue_copy(queue, sigma, sigmaCL).wait() |
462 | 18 | equemene | elapsed = 1e-9*(CLLaunch.profile.end - CLLaunch.profile.start)
|
463 | 18 | equemene | sigmaCL.release() |
464 | 18 | equemene | |
465 | 18 | equemene | results=numpy.split(sigma,len(TList),axis=1) |
466 | 18 | equemene | for T in TList: |
467 | 18 | equemene | sigmaDict[T]=numpy.copy(results[numpy.nonzero(TList == T)[0][0]]) |
468 | 18 | equemene | |
469 | 18 | equemene | return(elapsed)
|
470 | 18 | equemene | |
471 | 18 | equemene | def MetropolisAllCuda(sigmaDict,TList,J,B,iterations,jobs,ParaStyle,Alu,Device): |
472 | 18 | equemene | |
473 | 18 | equemene | # sigmaDict & Tlist are NOT respectively array & float
|
474 | 18 | equemene | # sigmaDict : dict of array for each temperatoire
|
475 | 18 | equemene | # TList : list of temperatures
|
476 | 18 | equemene | |
477 | 18 | equemene | # Avec PyCUDA autoinit, rien a faire !
|
478 | 18 | equemene | |
479 | 18 | equemene | mod = SourceModule(KERNEL_CODE_CUDA) |
480 | 18 | equemene | |
481 | 18 | equemene | MetropolisBlocksCuda=mod.get_function("MainLoopGlobal")
|
482 | 18 | equemene | MetropolisThreadsCuda=mod.get_function("MainLoopLocal")
|
483 | 18 | equemene | MetropolisHybridCuda=mod.get_function("MainLoopHybrid")
|
484 | 18 | equemene | |
485 | 18 | equemene | # Concatenate all sigma in single array
|
486 | 18 | equemene | sigma=numpy.copy(sigmaDict[TList[0]])
|
487 | 18 | equemene | for T in TList[1:]: |
488 | 18 | equemene | sigma=numpy.concatenate((sigma,sigmaDict[T]),axis=1)
|
489 | 18 | equemene | |
490 | 18 | equemene | sigmaCU=cuda.InOut(sigma) |
491 | 18 | equemene | TCU=cuda.InOut(TList) |
492 | 18 | equemene | |
493 | 18 | equemene | SizeX,SizeY=sigmaDict[TList[0]].shape
|
494 | 18 | equemene | |
495 | 18 | equemene | start = pycuda.driver.Event() |
496 | 18 | equemene | stop = pycuda.driver.Event() |
497 | 18 | equemene | |
498 | 18 | equemene | start.record() |
499 | 18 | equemene | start.synchronize() |
500 | 18 | equemene | if ParaStyle=='Blocks': |
501 | 18 | equemene | # Call CUDA kernel
|
502 | 18 | equemene | # (1,) is Global work size (only 1 work size)
|
503 | 18 | equemene | # (1,) is local work size
|
504 | 18 | equemene | # SeedZCL is lattice translated in CL format
|
505 | 18 | equemene | # SeedWCL is lattice translated in CL format
|
506 | 18 | equemene | # step is number of iterations
|
507 | 18 | equemene | MetropolisBlocksCuda(sigmaCU, |
508 | 18 | equemene | TCU, |
509 | 18 | equemene | numpy.float32(J), |
510 | 18 | equemene | numpy.float32(B), |
511 | 18 | equemene | numpy.uint32(SizeX), |
512 | 18 | equemene | numpy.uint32(SizeY), |
513 | 18 | equemene | numpy.uint32(iterations), |
514 | 18 | equemene | numpy.uint32(nprnd(2**31-1)), |
515 | 18 | equemene | numpy.uint32(nprnd(2**31-1)), |
516 | 18 | equemene | grid=(jobs,1),block=(1,1,1)) |
517 | 18 | equemene | print "%s with (WorkItems/Threads)=(%i,%i) %s method done" % \ |
518 | 18 | equemene | (Alu,jobs,1,ParaStyle)
|
519 | 18 | equemene | elif ParaStyle=='Threads': |
520 | 18 | equemene | MetropolisThreadsCuda(sigmaCU, |
521 | 18 | equemene | TCU, |
522 | 18 | equemene | numpy.float32(J), |
523 | 18 | equemene | numpy.float32(B), |
524 | 18 | equemene | numpy.uint32(SizeX), |
525 | 18 | equemene | numpy.uint32(SizeY), |
526 | 18 | equemene | numpy.uint32(iterations), |
527 | 18 | equemene | numpy.uint32(nprnd(2**31-1)), |
528 | 18 | equemene | numpy.uint32(nprnd(2**31-1)), |
529 | 18 | equemene | grid=(1,1),block=(jobs,1,1)) |
530 | 18 | equemene | print "%s with (WorkItems/Threads)=(%i,%i) %s method done" % \ |
531 | 18 | equemene | (Alu,1,jobs,ParaStyle)
|
532 | 18 | equemene | else:
|
533 | 18 | equemene | threads=BestThreadsNumber(jobs) |
534 | 18 | equemene | MetropolisHybridCuda(sigmaCU, |
535 | 18 | equemene | TCU, |
536 | 18 | equemene | numpy.float32(J), |
537 | 18 | equemene | numpy.float32(B), |
538 | 18 | equemene | numpy.uint32(SizeX), |
539 | 18 | equemene | numpy.uint32(SizeY), |
540 | 18 | equemene | numpy.uint32(iterations), |
541 | 18 | equemene | numpy.uint32(nprnd(2**31-1)), |
542 | 18 | equemene | numpy.uint32(nprnd(2**31-1)), |
543 | 18 | equemene | grid=(jobs/threads,1),block=(threads,1,1)) |
544 | 18 | equemene | print "%s with (WorkItems/Threads)=(%i,%i) %s method done" % \ |
545 | 18 | equemene | (Alu,jobs/threads,threads,ParaStyle) |
546 | 18 | equemene | |
547 | 18 | equemene | stop.record() |
548 | 18 | equemene | stop.synchronize() |
549 | 18 | equemene | elapsed = start.time_till(stop)*1e-3
|
550 | 18 | equemene | |
551 | 18 | equemene | results=numpy.split(sigma,len(TList),axis=1) |
552 | 18 | equemene | for T in TList: |
553 | 18 | equemene | sigmaDict[T]=numpy.copy(results[numpy.nonzero(TList == T)[0][0]]) |
554 | 18 | equemene | |
555 | 18 | equemene | return(elapsed)
|
556 | 18 | equemene | |
557 | 18 | equemene | |
558 | 18 | equemene | def Magnetization(sigma,M): |
559 | 18 | equemene | return(numpy.sum(sigma)/(sigma.shape[0]*sigma.shape[1]*1.0)) |
560 | 18 | equemene | |
561 | 18 | equemene | def Energy(sigma,J): |
562 | 18 | equemene | # Copier et caster
|
563 | 18 | equemene | E=numpy.copy(sigma).astype(numpy.float32) |
564 | 18 | equemene | |
565 | 18 | equemene | # Appel par slice
|
566 | 18 | equemene | E[1:-1,1:-1]=-J*E[1:-1,1:-1]*(E[:-2,1:-1]+E[2:,1:-1]+ |
567 | 18 | equemene | E[1:-1,:-2]+E[1:-1,2:]) |
568 | 18 | equemene | |
569 | 18 | equemene | # Bien nettoyer la peripherie
|
570 | 18 | equemene | E[:,0]=0 |
571 | 18 | equemene | E[:,-1]=0 |
572 | 18 | equemene | E[0,:]=0 |
573 | 18 | equemene | E[-1,:]=0 |
574 | 18 | equemene | |
575 | 18 | equemene | Energy=numpy.sum(E) |
576 | 18 | equemene | |
577 | 18 | equemene | return(Energy/(E.shape[0]*E.shape[1]*1.0)) |
578 | 18 | equemene | |
579 | 18 | equemene | def DisplayCurves(T,E,M,J,B): |
580 | 18 | equemene | |
581 | 18 | equemene | plt.xlabel("Temperature")
|
582 | 18 | equemene | plt.ylabel("Energy")
|
583 | 18 | equemene | |
584 | 18 | equemene | Experience,=plt.plot(T,E,label="Energy")
|
585 | 18 | equemene | |
586 | 18 | equemene | plt.legend() |
587 | 18 | equemene | plt.show() |
588 | 18 | equemene | |
589 | 18 | equemene | |
590 | 18 | equemene | if __name__=='__main__': |
591 | 18 | equemene | |
592 | 18 | equemene | # Set defaults values
|
593 | 18 | equemene | # Alu can be CPU or GPU
|
594 | 18 | equemene | Alu='CPU'
|
595 | 18 | equemene | # Id of GPU : 0
|
596 | 18 | equemene | Device=0
|
597 | 18 | equemene | # GPU style can be Cuda (Nvidia implementation) or OpenCL
|
598 | 18 | equemene | GpuStyle='OpenCL'
|
599 | 18 | equemene | # Parallel distribution can be on Threads or Blocks
|
600 | 18 | equemene | ParaStyle='Blocks'
|
601 | 18 | equemene | # Coupling factor
|
602 | 18 | equemene | J=1.
|
603 | 18 | equemene | # Magnetic Field
|
604 | 18 | equemene | B=0.
|
605 | 18 | equemene | # Size of Lattice
|
606 | 18 | equemene | Size=256
|
607 | 18 | equemene | # Default Temperatures (start, end, step)
|
608 | 18 | equemene | Tmin=0.1
|
609 | 18 | equemene | Tmax=5
|
610 | 18 | equemene | Tstep=0.1
|
611 | 18 | equemene | # Default Number of Iterations
|
612 | 18 | equemene | Iterations=Size*Size |
613 | 18 | equemene | # Curves is True to print the curves
|
614 | 18 | equemene | Curves=False
|
615 | 18 | equemene | |
616 | 18 | equemene | try:
|
617 | 18 | equemene | opts, args = getopt.getopt(sys.argv[1:],"hcj:b:z:i:s:e:p:a:d:g:t:",["coupling=","magneticfield=","size=","iterations=","tempstart=","tempend=","tempstep=","alu=","gpustyle=","parastyle="]) |
618 | 18 | equemene | except getopt.GetoptError:
|
619 | 18 | equemene | print '%s -j <Coupling Factor> -b <Magnetic Field> -z <Size of Lattice> -i <Iterations> -s <Minimum Temperature> -e <Maximum Temperature> -p <steP Temperature> -c (Print Curves) -a <CPU/GPU> -d <DeviceId> -g <CUDA/OpenCL> -t <Threads/Blocks>' % sys.argv[0] |
620 | 18 | equemene | sys.exit(2)
|
621 | 18 | equemene | |
622 | 18 | equemene | |
623 | 18 | equemene | for opt, arg in opts: |
624 | 18 | equemene | if opt == '-h': |
625 | 18 | equemene | print '%s -j <Coupling Factor> -b <Magnetic Field> -z <Size of Lattice> -i <Iterations> -s <Minimum Temperature> -e <Maximum Temperature> -p <steP Temperature> -c (Print Curves) -a <CPU/GPU> -d <DeviceId> -g <CUDA/OpenCL> -t <Threads/Blocks/Hybrid>' % sys.argv[0] |
626 | 18 | equemene | sys.exit() |
627 | 18 | equemene | elif opt == '-c': |
628 | 18 | equemene | Curves=True
|
629 | 18 | equemene | elif opt in ("-j", "--coupling"): |
630 | 18 | equemene | J = float(arg)
|
631 | 18 | equemene | elif opt in ("-b", "--magneticfield"): |
632 | 18 | equemene | B = float(arg)
|
633 | 18 | equemene | elif opt in ("-s", "--tempmin"): |
634 | 18 | equemene | Tmin = float(arg)
|
635 | 18 | equemene | elif opt in ("-e", "--tempmax"): |
636 | 18 | equemene | Tmax = float(arg)
|
637 | 18 | equemene | elif opt in ("-p", "--tempstep"): |
638 | 18 | equemene | Tstep = float(arg)
|
639 | 18 | equemene | elif opt in ("-i", "--iterations"): |
640 | 18 | equemene | Iterations = int(arg)
|
641 | 18 | equemene | elif opt in ("-z", "--size"): |
642 | 18 | equemene | Size = int(arg)
|
643 | 18 | equemene | elif opt in ("-a", "--alu"): |
644 | 18 | equemene | Alu = arg |
645 | 18 | equemene | elif opt in ("-d", "--device"): |
646 | 18 | equemene | Device = int(arg)
|
647 | 18 | equemene | elif opt in ("-g", "--gpustyle"): |
648 | 18 | equemene | GpuStyle = arg |
649 | 18 | equemene | elif opt in ("-t", "--parastyle"): |
650 | 18 | equemene | ParaStyle = arg |
651 | 18 | equemene | |
652 | 18 | equemene | if Alu=='CPU' and GpuStyle=='CUDA': |
653 | 18 | equemene | print "Alu can't be CPU for CUDA, set Alu to GPU" |
654 | 18 | equemene | Alu='GPU'
|
655 | 18 | equemene | |
656 | 18 | equemene | if ParaStyle not in ('Blocks','Threads','Hybrid'): |
657 | 18 | equemene | print "%s not exists, ParaStyle set as Threads !" % ParaStyle |
658 | 18 | equemene | ParaStyle='Blocks'
|
659 | 18 | equemene | |
660 | 18 | equemene | print "Compute unit : %s" % Alu |
661 | 18 | equemene | print "Device Identification : %s" % Device |
662 | 18 | equemene | print "GpuStyle used : %s" % GpuStyle |
663 | 18 | equemene | print "Parallel Style used : %s" % ParaStyle |
664 | 18 | equemene | print "Coupling Factor : %s" % J |
665 | 18 | equemene | print "Magnetic Field : %s" % B |
666 | 18 | equemene | print "Size of lattice : %s" % Size |
667 | 18 | equemene | print "Iterations : %s" % Iterations |
668 | 18 | equemene | print "Temperature on start : %s" % Tmin |
669 | 18 | equemene | print "Temperature on end : %s" % Tmax |
670 | 18 | equemene | print "Temperature step : %s" % Tstep |
671 | 18 | equemene | |
672 | 18 | equemene | if GpuStyle=='CUDA': |
673 | 18 | equemene | # For PyCUDA import
|
674 | 18 | equemene | import pycuda.driver as cuda |
675 | 18 | equemene | import pycuda.gpuarray as gpuarray |
676 | 18 | equemene | import pycuda.autoinit |
677 | 18 | equemene | from pycuda.compiler import SourceModule |
678 | 18 | equemene | |
679 | 18 | equemene | if GpuStyle=='OpenCL': |
680 | 18 | equemene | # For PyOpenCL import
|
681 | 18 | equemene | import pyopencl as cl |
682 | 18 | equemene | Id=1
|
683 | 18 | equemene | for platform in cl.get_platforms(): |
684 | 18 | equemene | for device in platform.get_devices(): |
685 | 18 | equemene | deviceType=cl.device_type.to_string(device.type) |
686 | 18 | equemene | print "Device #%i of type %s : %s" % (Id,deviceType,device.name) |
687 | 18 | equemene | Id=Id+1
|
688 | 18 | equemene | |
689 | 18 | equemene | LAPIMAGE=False
|
690 | 18 | equemene | |
691 | 18 | equemene | sigmaIn=numpy.where(numpy.random.randn(Size,Size)>0,1,-1).astype(numpy.int8) |
692 | 18 | equemene | |
693 | 18 | equemene | ImageOutput(sigmaIn,"Ising2D_Serial_%i_Initial" % (Size))
|
694 | 18 | equemene | |
695 | 18 | equemene | # La temperature est passee comme parametre, attention au CAST !
|
696 | 18 | equemene | Trange=numpy.arange(Tmin,Tmax+Tstep,Tstep).astype(numpy.float32) |
697 | 18 | equemene | |
698 | 18 | equemene | E=[] |
699 | 18 | equemene | M=[] |
700 | 18 | equemene | |
701 | 18 | equemene | sigma={} |
702 | 18 | equemene | for T in Trange: |
703 | 18 | equemene | sigma[T]=numpy.copy(sigmaIn) |
704 | 18 | equemene | |
705 | 18 | equemene | jobs=len(Trange)
|
706 | 18 | equemene | |
707 | 18 | equemene | # For GPU, all process are launched
|
708 | 18 | equemene | if GpuStyle=='CUDA': |
709 | 18 | equemene | duration=MetropolisAllCuda(sigma,Trange,J,B,Iterations,jobs,ParaStyle,Alu,Device) |
710 | 18 | equemene | else:
|
711 | 18 | equemene | duration=MetropolisAllOpenCL(sigma,Trange,J,B,Iterations,jobs,ParaStyle,Alu,Device) |
712 | 18 | equemene | |
713 | 18 | equemene | print BestThreadsNumber(len(Trange)) |
714 | 18 | equemene | |
715 | 18 | equemene | for T in Trange: |
716 | 18 | equemene | E=numpy.append(E,Energy(sigma[T],J)) |
717 | 18 | equemene | M=numpy.append(M,Magnetization(sigma[T],B)) |
718 | 18 | equemene | print "CPU Time for each : %f" % (duration/len(Trange)) |
719 | 18 | equemene | print "Total Energy at Temperature %f : %f" % (T,E[-1]) |
720 | 18 | equemene | print "Total Magnetization at Temperature %f : %f" % (T,M[-1]) |
721 | 18 | equemene | ImageOutput(sigma[T],"Ising2D_Serial_%i_%1.1f_Final" % (Size,T))
|
722 | 18 | equemene | |
723 | 18 | equemene | if Curves:
|
724 | 18 | equemene | DisplayCurves(Trange,E,M,J,B) |
725 | 18 | equemene |