root / Ising / Numpy-C / Ising2D.py.orig @ 93
Historique | Voir | Annoter | Télécharger (4,5 ko)
1 |
#!/usr/bin/env python |
---|---|
2 |
# |
3 |
# Ising2D model in serial mode |
4 |
# |
5 |
# CC BY-NC-SA 2011 : <emmanuel.quemener@ens-lyon.fr> |
6 |
|
7 |
import sys |
8 |
import numpy |
9 |
from PIL import Image |
10 |
from math import exp |
11 |
from random import random |
12 |
import time |
13 |
import getopt |
14 |
import matplotlib.pyplot as plt |
15 |
|
16 |
def ImageOutput(sigma,prefix): |
17 |
Max=sigma.max() |
18 |
Min=sigma.min() |
19 |
|
20 |
# Normalize value as 8bits Integer |
21 |
SigmaInt=(255*(sigma-Min)/(Max-Min)).astype('uint8') |
22 |
image = Image.fromarray(SigmaInt) |
23 |
image.save("%s.jpg" % prefix) |
24 |
|
25 |
def Metropolis(sigma,J,B,T,iterations): |
26 |
start=time.time() |
27 |
|
28 |
SizeX,SizeY=sigma.shape |
29 |
|
30 |
for p in xrange(0,iterations): |
31 |
# Random access coordonate |
32 |
X,Y=numpy.random.randint(SizeX),numpy.random.randint(SizeY) |
33 |
|
34 |
DeltaE=J*sigma[X,Y]*(2*(sigma[X,(Y+1)%SizeY]+ |
35 |
sigma[X,(Y-1)%SizeY]+ |
36 |
sigma[(X-1)%SizeX,Y]+ |
37 |
sigma[(X+1)%SizeX,Y])+B) |
38 |
|
39 |
if DeltaE < 0. or random() < exp(-DeltaE/T): |
40 |
sigma[X,Y]=-sigma[X,Y] |
41 |
duration=time.time()-start |
42 |
return(duration) |
43 |
|
44 |
def Magnetization(sigma,M): |
45 |
return(numpy.sum(sigma)/(sigma.shape[0]*sigma.shape[1]*1.0)) |
46 |
|
47 |
def Energy(sigma,J): |
48 |
# Copier et caster |
49 |
E=numpy.copy(sigma).astype(numpy.float32) |
50 |
|
51 |
# Appel par slice |
52 |
E[1:-1,1:-1]=-J*E[1:-1,1:-1]*(E[:-2,1:-1]+E[2:,1:-1]+ |
53 |
E[1:-1,:-2]+E[1:-1,2:]) |
54 |
|
55 |
# Bien nettoyer la peripherie |
56 |
E[:,0]=0 |
57 |
E[:,-1]=0 |
58 |
E[0,:]=0 |
59 |
E[-1,:]=0 |
60 |
|
61 |
Energy=numpy.sum(E) |
62 |
|
63 |
return(Energy/(E.shape[0]*E.shape[1]*1.0)) |
64 |
|
65 |
def DisplayCurves(T,E,M,J,B): |
66 |
|
67 |
plt.xlabel("Temperature") |
68 |
plt.ylabel("Energy") |
69 |
|
70 |
Experience,=plt.plot(T,E,label="Energy") |
71 |
|
72 |
plt.legend() |
73 |
plt.show() |
74 |
|
75 |
|
76 |
if __name__=='__main__': |
77 |
|
78 |
# Set defaults values |
79 |
# Coupling factor |
80 |
J=1. |
81 |
# Magnetic Field |
82 |
B=0. |
83 |
# Size of Lattice |
84 |
Size=256 |
85 |
# Default Temperatures (start, end, step) |
86 |
Tmin=0.1 |
87 |
Tmax=5 |
88 |
Tstep=0.1 |
89 |
# Default Number of Iterations |
90 |
Iterations=Size*Size |
91 |
|
92 |
# Curves is True to print the curves |
93 |
Curves=False |
94 |
|
95 |
try: |
96 |
opts, args = getopt.getopt(sys.argv[1:],"hcj:b:z:i:s:e:p:",["coupling=","magneticfield=","size=","iterations=","tempstart=","tempend=","tempstep="]) |
97 |
except getopt.GetoptError: |
98 |
print '%s -j <Coupling Factor> -b <Magnetic Field> -z <Size of Lattice> -i <Iterations> -s <Minimum Temperature> -e <Maximum Temperature> -p <steP Temperature> -c (Print Curves)' % sys.argv[0] |
99 |
sys.exit(2) |
100 |
|
101 |
|
102 |
for opt, arg in opts: |
103 |
if opt == '-h': |
104 |
print '%s -j <Coupling Factor> -b <Magnetic Field> -z <Size of Lattice> -i <Iterations> -s <Minimum Temperature> -e <Maximum Temperature> -p <steP Temperature> -c (Print Curves)' % sys.argv[0] |
105 |
sys.exit() |
106 |
elif opt == '-c': |
107 |
Curves=True |
108 |
elif opt in ("-j", "--coupling"): |
109 |
J = float(arg) |
110 |
elif opt in ("-b", "--magneticfield"): |
111 |
B = float(arg) |
112 |
elif opt in ("-s", "--tempmin"): |
113 |
Tmin = float(arg) |
114 |
elif opt in ("-e", "--tempmax"): |
115 |
Tmax = arg |
116 |
elif opt in ("-p", "--tempstep"): |
117 |
Tstep = numpy.uint32(arg) |
118 |
elif opt in ("-i", "--iterations"): |
119 |
Iterations = int(arg) |
120 |
elif opt in ("-z", "--size"): |
121 |
Size = int(arg) |
122 |
|
123 |
print "Coupling Factor : %s" % J |
124 |
print "Magnetic Field : %s" % B |
125 |
print "Size of lattice : %s" % Size |
126 |
print "Iterations : %s" % Iterations |
127 |
print "Temperature on start : %s" % Tmin |
128 |
print "Temperature on end : %s" % Tmax |
129 |
print "Temperature step : %s" % Tstep |
130 |
|
131 |
LAPIMAGE=False |
132 |
|
133 |
sigmaIn=numpy.where(numpy.random.randn(Size,Size)>0,1,-1).astype(numpy.int8) |
134 |
|
135 |
ImageOutput(sigmaIn,"Ising2D_Serial_%i_Initial" % (Size)) |
136 |
|
137 |
Trange=numpy.arange(Tmin,Tmax+Tstep,Tstep) |
138 |
|
139 |
E=[] |
140 |
M=[] |
141 |
|
142 |
for T in Trange: |
143 |
# Indispensable d'utiliser copy : [:] ne fonctionne pas avec numpy ! |
144 |
sigma=numpy.copy(sigmaIn) |
145 |
duration=Metropolis(sigma,J,B,T,Iterations) |
146 |
E=numpy.append(E,Energy(sigma,J)) |
147 |
M=numpy.append(M,Magnetization(sigma,B)) |
148 |
ImageOutput(sigma,"Ising2D_Serial_%i_%1.1f_Final" % (Size,T)) |
149 |
|
150 |
print "CPU Time : %f" % (duration) |
151 |
print "Total Energy at Temperature %f : %f" % (T,E[-1]) |
152 |
print "Total Magnetization at Temperature %f : %f" % (T,M[-1]) |
153 |
|
154 |
if Curves: |
155 |
DisplayCurves(Trange,E,M,J,B) |
156 |
|
157 |
# Save output |
158 |
numpy.savez("Ising2D_Serial_%i_%.8i" % (Size,Iterations),(Trange,E,M)) |
159 |
|