Révision 89
Ising/Serial/Ising2D-Serial.py (revision 89) | ||
---|---|---|
1 |
#!/usr/bin/env python |
|
2 |
# |
|
3 |
# Ising2D model in serial mode |
|
4 |
# |
|
5 |
# CC BY-NC-SA 2011 : <emmanuel.quemener@ens-lyon.fr> |
|
6 |
|
|
7 |
import sys |
|
8 |
import numpy |
|
9 |
from PIL import Image |
|
10 |
from math import exp |
|
11 |
from random import random |
|
12 |
import time |
|
13 |
import getopt |
|
14 |
import matplotlib.pyplot as plt |
|
15 |
|
|
16 |
def ImageOutput(sigma,prefix): |
|
17 |
Max=sigma.max() |
|
18 |
Min=sigma.min() |
|
19 |
|
|
20 |
# Normalize value as 8bits Integer |
|
21 |
SigmaInt=(255*(sigma-Min)/(Max-Min)).astype('uint8') |
|
22 |
image = Image.fromarray(SigmaInt) |
|
23 |
image.save("%s.jpg" % prefix) |
|
24 |
|
|
25 |
def Metropolis(sigma,J,B,T,iterations): |
|
26 |
start=time.time() |
|
27 |
|
|
28 |
SizeX,SizeY=sigma.shape |
|
29 |
|
|
30 |
for p in xrange(0,iterations): |
|
31 |
# Random access coordonate |
|
32 |
X,Y=numpy.random.randint(SizeX),numpy.random.randint(SizeY) |
|
33 |
|
|
34 |
DeltaE=sigma[X,Y]*(2.*J*(sigma[X,(Y+1)%SizeY]+ |
|
35 |
sigma[X,(Y-1)%SizeY]+ |
|
36 |
sigma[(X-1)%SizeX,Y]+ |
|
37 |
sigma[(X+1)%SizeX,Y])+B) |
|
38 |
|
|
39 |
if DeltaE < 0. or random() < exp(-DeltaE/T): |
|
40 |
sigma[X,Y]=-sigma[X,Y] |
|
41 |
duration=time.time()-start |
|
42 |
return(duration) |
|
43 |
|
|
44 |
def Magnetization(sigma,M): |
|
45 |
return(numpy.sum(sigma)/(sigma.shape[0]*sigma.shape[1]*1.0)) |
|
46 |
|
|
47 |
def Energy(sigma,J,B): |
|
48 |
# Copier et caster |
|
49 |
E=numpy.copy(sigma).astype(numpy.float32) |
|
50 |
|
|
51 |
# Appel par slice |
|
52 |
E[1:-1,1:-1]=E[1:-1,1:-1]*(2.*J*(E[:-2,1:-1]+E[2:,1:-1]+ |
|
53 |
E[1:-1,:-2]+E[1:-1,2:])+B) |
|
54 |
|
|
55 |
# Bien nettoyer la peripherie |
|
56 |
E[:,0]=0 |
|
57 |
E[:,-1]=0 |
|
58 |
E[0,:]=0 |
|
59 |
E[-1,:]=0 |
|
60 |
|
|
61 |
Energy=numpy.sum(E) |
|
62 |
|
|
63 |
return(Energy/(E.shape[0]*E.shape[1]*1.0)) |
|
64 |
|
|
65 |
def CriticalT(T,E): |
|
66 |
|
|
67 |
Epoly=numpy.poly1d(numpy.polyfit(T,E,T.size/3)) |
|
68 |
dEpoly=numpy.diff(Epoly(T)) |
|
69 |
dEpoly=numpy.insert(dEpoly,0,0) |
|
70 |
return(T[numpy.argmin(dEpoly)]) |
|
71 |
|
|
72 |
def DisplayCurves(T,E,M,J,B): |
|
73 |
|
|
74 |
plt.xlabel("Temperature") |
|
75 |
plt.ylabel("Energy") |
|
76 |
|
|
77 |
Experience,=plt.plot(T,E,label="Energy") |
|
78 |
|
|
79 |
plt.legend() |
|
80 |
plt.show() |
|
81 |
|
|
82 |
|
|
83 |
if __name__=='__main__': |
|
84 |
|
|
85 |
# Set defaults values |
|
86 |
# Coupling factor |
|
87 |
J=1. |
|
88 |
# Magnetic Field |
|
89 |
B=0. |
|
90 |
# Size of Lattice |
|
91 |
Size=256 |
|
92 |
# Default Temperatures (start, end, step) |
|
93 |
Tmin=0.1 |
|
94 |
Tmax=5 |
|
95 |
Tstep=0.1 |
|
96 |
# Default Number of Iterations |
|
97 |
Iterations=Size*Size*Size |
|
98 |
|
|
99 |
# Curves is True to print the curves |
|
100 |
Curves=False |
|
101 |
|
|
102 |
try: |
|
103 |
opts, args = getopt.getopt(sys.argv[1:],"hcj:b:z:i:s:e:p:",["coupling=","magneticfield=","size=","iterations=","tempstart=","tempend=","tempstep="]) |
|
104 |
except getopt.GetoptError: |
|
105 |
print '%s -j <Coupling Factor> -b <Magnetic Field> -z <Size of Square Lattice> -i <Iterations> -s <Minimum Temperature> -e <Maximum Temperature> -p <steP Temperature> -c (Print Curves)' % sys.argv[0] |
|
106 |
sys.exit(2) |
|
107 |
|
|
108 |
for opt, arg in opts: |
|
109 |
if opt == '-h': |
|
110 |
print '%s -j <Coupling Factor> -b <Magnetic Field> -z <Size of Square Lattice> -i <Iterations> -s <Minimum Temperature> -e <Maximum Temperature> -p <steP Temperature> -c (Print Curves)' % sys.argv[0] |
|
111 |
sys.exit() |
|
112 |
elif opt == '-c': |
|
113 |
Curves=True |
|
114 |
elif opt in ("-j", "--coupling"): |
|
115 |
J = float(arg) |
|
116 |
elif opt in ("-b", "--magneticfield"): |
|
117 |
B = float(arg) |
|
118 |
elif opt in ("-s", "--tempmin"): |
|
119 |
Tmin = float(arg) |
|
120 |
elif opt in ("-e", "--tempmax"): |
|
121 |
Tmax = float(arg) |
|
122 |
elif opt in ("-p", "--tempstep"): |
|
123 |
Tstep = float(arg) |
|
124 |
elif opt in ("-i", "--iterations"): |
|
125 |
Iterations = int(arg) |
|
126 |
elif opt in ("-z", "--size"): |
|
127 |
Size = int(arg) |
|
128 |
|
|
129 |
print "Coupling Factor : %s" % J |
|
130 |
print "Magnetic Field : %s" % B |
|
131 |
print "Size of square lattice : %s" % Size |
|
132 |
print "Iterations : %s" % Iterations |
|
133 |
print "Temperature on start : %s" % Tmin |
|
134 |
print "Temperature on end : %s" % Tmax |
|
135 |
print "Temperature step : %s" % Tstep |
|
136 |
|
|
137 |
LAPIMAGE=False |
|
138 |
|
|
139 |
sigmaIn=numpy.where(numpy.random.randn(Size,Size)>0,1,-1).astype(numpy.int8) |
|
140 |
|
|
141 |
ImageOutput(sigmaIn,"Ising2D_Serial_%i_Initial" % (Size)) |
|
142 |
|
|
143 |
Trange=numpy.arange(Tmin,Tmax+Tstep,Tstep) |
|
144 |
|
|
145 |
E=[] |
|
146 |
M=[] |
|
147 |
|
|
148 |
for T in Trange: |
|
149 |
# Indispensable d'utiliser copy : [:] ne fonctionne pas avec numpy ! |
|
150 |
sigma=numpy.copy(sigmaIn) |
|
151 |
duration=Metropolis(sigma,J,B,T,Iterations) |
|
152 |
E=numpy.append(E,Energy(sigma,J,B)) |
|
153 |
M=numpy.append(M,Magnetization(sigma,B)) |
|
154 |
ImageOutput(sigma,"Ising2D_Serial_%i_%1.1f_Final" % (Size,T)) |
|
155 |
|
|
156 |
print "CPU Time : %f" % (duration) |
|
157 |
print "Total Energy at Temperature %f : %f" % (T,E[-1]) |
|
158 |
print "Total Magnetization at Temperature %f : %f" % (T,M[-1]) |
|
159 |
|
|
160 |
if Curves: |
|
161 |
DisplayCurves(Trange,E,M,J,B) |
|
162 |
|
|
163 |
# Save output |
|
164 |
numpy.savez("Ising2D_Serial_%i_%.8i" % (Size,Iterations),(Trange,E,M)) |
|
165 |
|
|
166 |
# Estimate Critical temperature |
|
167 |
print "The critical temperature on %ix%i lattice with J=%f, B=%f is %f " % (Size,Size,J,B,CriticalT(Trange,E)) |
|
0 | 168 |
Formats disponibles : Unified diff