root / Pi / GPU / Pi-GPU.py @ 82
Historique | Voir | Annoter | Télécharger (26,47 ko)
1 | 7 | equemene | #!/usr/bin/env python
|
---|---|---|---|
2 | 7 | equemene | |
3 | 7 | equemene | #
|
4 | 55 | equemene | # Pi-by-MonteCarlo using PyCUDA/PyOpenCL
|
5 | 7 | equemene | #
|
6 | 7 | equemene | # CC BY-NC-SA 2011 : <emmanuel.quemener@ens-lyon.fr>
|
7 | 7 | equemene | #
|
8 | 7 | equemene | # Thanks to Andreas Klockner for PyCUDA:
|
9 | 7 | equemene | # http://mathema.tician.de/software/pycuda
|
10 | 7 | equemene | #
|
11 | 7 | equemene | |
12 | 7 | equemene | # 2013-01-01 : problems with launch timeout
|
13 | 7 | equemene | # http://stackoverflow.com/questions/497685/how-do-you-get-around-the-maximum-cuda-run-time
|
14 | 7 | equemene | # Option "Interactive" "0" in /etc/X11/xorg.conf
|
15 | 7 | equemene | |
16 | 7 | equemene | # Common tools
|
17 | 7 | equemene | import numpy |
18 | 7 | equemene | from numpy.random import randint as nprnd |
19 | 7 | equemene | import sys |
20 | 7 | equemene | import getopt |
21 | 7 | equemene | import time |
22 | 7 | equemene | import math |
23 | 7 | equemene | from socket import gethostname |
24 | 7 | equemene | |
25 | 72 | equemene | Marsaglia={'CONG':0,'SHR3':1,'MWC':2,'KISS':3} |
26 | 72 | equemene | Computing={'INT32':0,'INT64':1,'FP32':2,'FP64':3} |
27 | 72 | equemene | |
28 | 17 | equemene | # find prime factors of a number
|
29 | 17 | equemene | # Get for WWW :
|
30 | 17 | equemene | # http://pythonism.wordpress.com/2008/05/17/looking-at-factorisation-in-python/
|
31 | 17 | equemene | def PrimeFactors(x): |
32 | 17 | equemene | factorlist=numpy.array([]).astype('uint32')
|
33 | 17 | equemene | loop=2
|
34 | 17 | equemene | while loop<=x:
|
35 | 17 | equemene | if x%loop==0: |
36 | 17 | equemene | x/=loop |
37 | 17 | equemene | factorlist=numpy.append(factorlist,[loop]) |
38 | 17 | equemene | else:
|
39 | 17 | equemene | loop+=1
|
40 | 17 | equemene | return factorlist
|
41 | 17 | equemene | |
42 | 17 | equemene | # Try to find the best thread number in Hybrid approach (Blocks&Threads)
|
43 | 17 | equemene | # output is thread number
|
44 | 17 | equemene | def BestThreadsNumber(jobs): |
45 | 17 | equemene | factors=PrimeFactors(jobs) |
46 | 17 | equemene | matrix=numpy.append([factors],[factors[::-1]],axis=0) |
47 | 17 | equemene | threads=1
|
48 | 17 | equemene | for factor in matrix.transpose().ravel(): |
49 | 17 | equemene | threads=threads*factor |
50 | 71 | equemene | if threads*threads>jobs or threads>512: |
51 | 17 | equemene | break
|
52 | 17 | equemene | return(long(threads)) |
53 | 17 | equemene | |
54 | 7 | equemene | # Predicted Amdahl Law (Reduced with s=1-p)
|
55 | 7 | equemene | def AmdahlR(N, T1, p): |
56 | 7 | equemene | return (T1*(1-p+p/N)) |
57 | 7 | equemene | |
58 | 7 | equemene | # Predicted Amdahl Law
|
59 | 7 | equemene | def Amdahl(N, T1, s, p): |
60 | 7 | equemene | return (T1*(s+p/N))
|
61 | 7 | equemene | |
62 | 7 | equemene | # Predicted Mylq Law with first order
|
63 | 7 | equemene | def Mylq(N, T1,s,c,p): |
64 | 45 | equemene | return (T1*(s+p/N)+c*N)
|
65 | 7 | equemene | |
66 | 7 | equemene | # Predicted Mylq Law with second order
|
67 | 7 | equemene | def Mylq2(N, T1,s,c1,c2,p): |
68 | 45 | equemene | return (T1*(s+p/N)+c1*N+c2*N*N)
|
69 | 7 | equemene | |
70 | 7 | equemene | KERNEL_CODE_CUDA="""
|
71 | 73 | equemene | #define TCONG 0
|
72 | 73 | equemene | #define TSHR3 1
|
73 | 73 | equemene | #define TMWC 2
|
74 | 73 | equemene | #define TKISS 3
|
75 | 7 | equemene |
|
76 | 73 | equemene | #define TINT32 0
|
77 | 73 | equemene | #define TINT64 1
|
78 | 73 | equemene | #define TFP32 2
|
79 | 73 | equemene | #define TFP64 3
|
80 | 73 | equemene |
|
81 | 7 | equemene | // Marsaglia RNG very simple implementation
|
82 | 7 | equemene |
|
83 | 7 | equemene | #define znew ((z=36969*(z&65535)+(z>>16))<<16)
|
84 | 7 | equemene | #define wnew ((w=18000*(w&65535)+(w>>16))&65535)
|
85 | 7 | equemene | #define MWC (znew+wnew)
|
86 | 7 | equemene | #define SHR3 (jsr=(jsr=(jsr=jsr^(jsr<<17))^(jsr>>13))^(jsr<<5))
|
87 | 7 | equemene | #define CONG (jcong=69069*jcong+1234567)
|
88 | 7 | equemene | #define KISS ((MWC^CONG)+SHR3)
|
89 | 7 | equemene |
|
90 | 7 | equemene | #define MWCfp MWC * 2.328306435454494e-10f
|
91 | 7 | equemene | #define KISSfp KISS * 2.328306435454494e-10f
|
92 | 72 | equemene | #define SHR3fp SHR3 * 2.328306435454494e-10f
|
93 | 72 | equemene | #define CONGfp CONG * 2.328306435454494e-10f
|
94 | 7 | equemene |
|
95 | 74 | equemene | __device__ ulong MainLoop(ulong iterations,uint seed_w,uint seed_z,size_t work)
|
96 | 7 | equemene | {
|
97 | 7 | equemene |
|
98 | 74 | equemene | #if TRNG == TCONG
|
99 | 74 | equemene | uint jcong=seed_z+work;
|
100 | 74 | equemene | #elif TRNG == TSHR3
|
101 | 74 | equemene | uint jsr=seed_w+work;
|
102 | 74 | equemene | #elif TRNG == TMWC
|
103 | 74 | equemene | uint z=seed_z+work;
|
104 | 74 | equemene | uint w=seed_w+work;
|
105 | 74 | equemene | #elif TRNG == TKISS
|
106 | 74 | equemene | uint jcong=seed_z+work;
|
107 | 74 | equemene | uint jsr=seed_w+work;
|
108 | 74 | equemene | uint z=seed_z-work;
|
109 | 74 | equemene | uint w=seed_w-work;
|
110 | 74 | equemene | #endif
|
111 | 7 | equemene |
|
112 | 17 | equemene | ulong total=0;
|
113 | 7 | equemene |
|
114 | 17 | equemene | for (ulong i=0;i<iterations;i++) {
|
115 | 7 | equemene |
|
116 | 74 | equemene | #if TYPE == TINT32
|
117 | 74 | equemene | #define THEONE 1073741824
|
118 | 74 | equemene | #if TRNG == TCONG
|
119 | 74 | equemene | uint x=CONG>>17 ;
|
120 | 74 | equemene | uint y=CONG>>17 ;
|
121 | 74 | equemene | #elif TRNG == TSHR3
|
122 | 74 | equemene | uint x=SHR3>>17 ;
|
123 | 74 | equemene | uint y=SHR3>>17 ;
|
124 | 74 | equemene | #elif TRNG == TMWC
|
125 | 74 | equemene | uint x=MWC>>17 ;
|
126 | 74 | equemene | uint y=MWC>>17 ;
|
127 | 74 | equemene | #elif TRNG == TKISS
|
128 | 74 | equemene | uint x=KISS>>17 ;
|
129 | 74 | equemene | uint y=KISS>>17 ;
|
130 | 74 | equemene | #endif
|
131 | 74 | equemene | #elif TYPE == TINT64
|
132 | 74 | equemene | #define THEONE 4611686018427387904
|
133 | 74 | equemene | #if TRNG == TCONG
|
134 | 74 | equemene | ulong x=(ulong)(CONG>>1) ;
|
135 | 74 | equemene | ulong y=(ulong)(CONG>>1) ;
|
136 | 74 | equemene | #elif TRNG == TSHR3
|
137 | 74 | equemene | ulong x=(ulong)(SHR3>>1) ;
|
138 | 74 | equemene | ulong y=(ulong)(SHR3>>1) ;
|
139 | 74 | equemene | #elif TRNG == TMWC
|
140 | 74 | equemene | ulong x=(ulong)(MWC>>1) ;
|
141 | 74 | equemene | ulong y=(ulong)(MWC>>1) ;
|
142 | 74 | equemene | #elif TRNG == TKISS
|
143 | 74 | equemene | ulong x=(ulong)(KISS>>1) ;
|
144 | 74 | equemene | ulong y=(ulong)(KISS>>1) ;
|
145 | 74 | equemene | #endif
|
146 | 74 | equemene | #elif TYPE == TFP32
|
147 | 74 | equemene | #define THEONE 1.0f
|
148 | 74 | equemene | #if TRNG == TCONG
|
149 | 74 | equemene | float x=CONGfp ;
|
150 | 74 | equemene | float y=CONGfp ;
|
151 | 74 | equemene | #elif TRNG == TSHR3
|
152 | 74 | equemene | float x=SHR3fp ;
|
153 | 74 | equemene | float y=SHR3fp ;
|
154 | 74 | equemene | #elif TRNG == TMWC
|
155 | 74 | equemene | float x=MWCfp ;
|
156 | 74 | equemene | float y=MWCfp ;
|
157 | 74 | equemene | #elif TRNG == TKISS
|
158 | 74 | equemene | float x=KISSfp ;
|
159 | 74 | equemene | float y=KISSfp ;
|
160 | 74 | equemene | #endif
|
161 | 74 | equemene | #elif TYPE == TFP64
|
162 | 74 | equemene | #define THEONE 1.0f
|
163 | 74 | equemene | #if TRNG == TCONG
|
164 | 74 | equemene | double x=(double)CONGfp ;
|
165 | 74 | equemene | double y=(double)CONGfp ;
|
166 | 74 | equemene | #elif TRNG == TSHR3
|
167 | 74 | equemene | double x=(double)SHR3fp ;
|
168 | 74 | equemene | double y=(double)SHR3fp ;
|
169 | 74 | equemene | #elif TRNG == TMWC
|
170 | 74 | equemene | double x=(double)MWCfp ;
|
171 | 74 | equemene | double y=(double)MWCfp ;
|
172 | 74 | equemene | #elif TRNG == TKISS
|
173 | 74 | equemene | double x=(double)KISSfp ;
|
174 | 74 | equemene | double y=(double)KISSfp ;
|
175 | 74 | equemene | #endif
|
176 | 74 | equemene | #endif
|
177 | 7 | equemene |
|
178 | 74 | equemene | ulong inside=((x*x+y*y) <= THEONE) ? 1:0;
|
179 | 7 | equemene | total+=inside;
|
180 | 7 | equemene | }
|
181 | 7 | equemene |
|
182 | 74 | equemene | return(total);
|
183 | 7 | equemene | }
|
184 | 7 | equemene |
|
185 | 74 | equemene | __global__ void MainLoopBlocks(ulong *s,ulong iterations,uint seed_w,uint seed_z)
|
186 | 7 | equemene | {
|
187 | 74 | equemene | ulong total=MainLoop(iterations,seed_z,seed_w,blockIdx.x);
|
188 | 50 | equemene | s[blockIdx.x]=total;
|
189 | 50 | equemene | __syncthreads();
|
190 | 50 | equemene |
|
191 | 50 | equemene | }
|
192 | 50 | equemene |
|
193 | 74 | equemene | __global__ void MainLoopThreads(ulong *s,ulong iterations,uint seed_w,uint seed_z)
|
194 | 50 | equemene | {
|
195 | 74 | equemene | ulong total=MainLoop(iterations,seed_z,seed_w,threadIdx.x);
|
196 | 50 | equemene | s[threadIdx.x]=total;
|
197 | 50 | equemene | __syncthreads();
|
198 | 50 | equemene |
|
199 | 50 | equemene | }
|
200 | 50 | equemene |
|
201 | 74 | equemene | __global__ void MainLoopHybrid(ulong *s,ulong iterations,uint seed_w,uint seed_z)
|
202 | 50 | equemene | {
|
203 | 74 | equemene | ulong total=MainLoop(iterations,seed_z,seed_w,blockDim.x*blockIdx.x+threadIdx.x);
|
204 | 50 | equemene | s[blockDim.x*blockIdx.x+threadIdx.x]=total;
|
205 | 50 | equemene | __syncthreads();
|
206 | 50 | equemene | }
|
207 | 74 | equemene |
|
208 | 7 | equemene | """
|
209 | 7 | equemene | |
210 | 7 | equemene | KERNEL_CODE_OPENCL="""
|
211 | 72 | equemene | #define TCONG 0
|
212 | 72 | equemene | #define TSHR3 1
|
213 | 72 | equemene | #define TMWC 2
|
214 | 72 | equemene | #define TKISS 3
|
215 | 72 | equemene |
|
216 | 72 | equemene | #define TINT32 0
|
217 | 72 | equemene | #define TINT64 1
|
218 | 72 | equemene | #define TFP32 2
|
219 | 72 | equemene | #define TFP64 3
|
220 | 72 | equemene |
|
221 | 7 | equemene | // Marsaglia RNG very simple implementation
|
222 | 7 | equemene | #define znew ((z=36969*(z&65535)+(z>>16))<<16)
|
223 | 7 | equemene | #define wnew ((w=18000*(w&65535)+(w>>16))&65535)
|
224 | 72 | equemene |
|
225 | 7 | equemene | #define MWC (znew+wnew)
|
226 | 7 | equemene | #define SHR3 (jsr=(jsr=(jsr=jsr^(jsr<<17))^(jsr>>13))^(jsr<<5))
|
227 | 7 | equemene | #define CONG (jcong=69069*jcong+1234567)
|
228 | 7 | equemene | #define KISS ((MWC^CONG)+SHR3)
|
229 | 7 | equemene |
|
230 | 7 | equemene | #define MWCfp MWC * 2.328306435454494e-10f
|
231 | 7 | equemene | #define KISSfp KISS * 2.328306435454494e-10f
|
232 | 72 | equemene | #define CONGfp CONG * 2.328306435454494e-10f
|
233 | 72 | equemene | #define SHR3fp SHR3 * 2.328306435454494e-10f
|
234 | 7 | equemene |
|
235 | 73 | equemene | ulong MainLoop(ulong iterations,uint seed_z,uint seed_w,size_t work)
|
236 | 7 | equemene | {
|
237 | 72 | equemene |
|
238 | 72 | equemene | #if TRNG == TCONG
|
239 | 73 | equemene | uint jcong=seed_z+work;
|
240 | 72 | equemene | #elif TRNG == TSHR3
|
241 | 73 | equemene | uint jsr=seed_w+work;
|
242 | 72 | equemene | #elif TRNG == TMWC
|
243 | 73 | equemene | uint z=seed_z+work;
|
244 | 73 | equemene | uint w=seed_w+work;
|
245 | 72 | equemene | #elif TRNG == TKISS
|
246 | 73 | equemene | uint jcong=seed_z+work;
|
247 | 73 | equemene | uint jsr=seed_w+work;
|
248 | 73 | equemene | uint z=seed_z-work;
|
249 | 73 | equemene | uint w=seed_w-work;
|
250 | 72 | equemene | #endif
|
251 | 7 | equemene |
|
252 | 17 | equemene | ulong total=0;
|
253 | 7 | equemene |
|
254 | 17 | equemene | for (ulong i=0;i<iterations;i++) {
|
255 | 7 | equemene |
|
256 | 72 | equemene | #if TYPE == TINT32
|
257 | 73 | equemene | #define THEONE 1073741824
|
258 | 73 | equemene | #if TRNG == TCONG
|
259 | 73 | equemene | uint x=CONG>>17 ;
|
260 | 73 | equemene | uint y=CONG>>17 ;
|
261 | 73 | equemene | #elif TRNG == TSHR3
|
262 | 73 | equemene | uint x=SHR3>>17 ;
|
263 | 73 | equemene | uint y=SHR3>>17 ;
|
264 | 73 | equemene | #elif TRNG == TMWC
|
265 | 73 | equemene | uint x=MWC>>17 ;
|
266 | 73 | equemene | uint y=MWC>>17 ;
|
267 | 73 | equemene | #elif TRNG == TKISS
|
268 | 73 | equemene | uint x=KISS>>17 ;
|
269 | 73 | equemene | uint y=KISS>>17 ;
|
270 | 73 | equemene | #endif
|
271 | 72 | equemene | #elif TYPE == TINT64
|
272 | 73 | equemene | #define THEONE 4611686018427387904
|
273 | 73 | equemene | #if TRNG == TCONG
|
274 | 73 | equemene | ulong x=(ulong)(CONG>>1) ;
|
275 | 73 | equemene | ulong y=(ulong)(CONG>>1) ;
|
276 | 73 | equemene | #elif TRNG == TSHR3
|
277 | 73 | equemene | ulong x=(ulong)(SHR3>>1) ;
|
278 | 73 | equemene | ulong y=(ulong)(SHR3>>1) ;
|
279 | 73 | equemene | #elif TRNG == TMWC
|
280 | 73 | equemene | ulong x=(ulong)(MWC>>1) ;
|
281 | 73 | equemene | ulong y=(ulong)(MWC>>1) ;
|
282 | 73 | equemene | #elif TRNG == TKISS
|
283 | 73 | equemene | ulong x=(ulong)(KISS>>1) ;
|
284 | 73 | equemene | ulong y=(ulong)(KISS>>1) ;
|
285 | 73 | equemene | #endif
|
286 | 72 | equemene | #elif TYPE == TFP32
|
287 | 73 | equemene | #define THEONE 1.0f
|
288 | 73 | equemene | #if TRNG == TCONG
|
289 | 73 | equemene | float x=CONGfp ;
|
290 | 73 | equemene | float y=CONGfp ;
|
291 | 73 | equemene | #elif TRNG == TSHR3
|
292 | 73 | equemene | float x=SHR3fp ;
|
293 | 73 | equemene | float y=SHR3fp ;
|
294 | 73 | equemene | #elif TRNG == TMWC
|
295 | 73 | equemene | float x=MWCfp ;
|
296 | 73 | equemene | float y=MWCfp ;
|
297 | 73 | equemene | #elif TRNG == TKISS
|
298 | 72 | equemene | float x=KISSfp ;
|
299 | 72 | equemene | float y=KISSfp ;
|
300 | 73 | equemene | #endif
|
301 | 72 | equemene | #elif TYPE == TFP64
|
302 | 73 | equemene | #pragma OPENCL EXTENSION cl_khr_fp64: enable
|
303 | 73 | equemene | #define THEONE 1.0f
|
304 | 73 | equemene | #if TRNG == TCONG
|
305 | 73 | equemene | double x=(double)CONGfp ;
|
306 | 73 | equemene | double y=(double)CONGfp ;
|
307 | 73 | equemene | #elif TRNG == TSHR3
|
308 | 73 | equemene | double x=(double)SHR3fp ;
|
309 | 73 | equemene | double y=(double)SHR3fp ;
|
310 | 73 | equemene | #elif TRNG == TMWC
|
311 | 73 | equemene | double x=(double)MWCfp ;
|
312 | 73 | equemene | double y=(double)MWCfp ;
|
313 | 73 | equemene | #elif TRNG == TKISS
|
314 | 73 | equemene | double x=(double)KISSfp ;
|
315 | 73 | equemene | double y=(double)KISSfp ;
|
316 | 73 | equemene | #endif
|
317 | 72 | equemene | #endif
|
318 | 7 | equemene |
|
319 | 72 | equemene | ulong inside=((x*x+y*y) <= THEONE) ? 1:0;
|
320 | 7 | equemene | total+=inside;
|
321 | 7 | equemene | }
|
322 | 73 | equemene |
|
323 | 73 | equemene | return(total);
|
324 | 73 | equemene | }
|
325 | 72 | equemene |
|
326 | 73 | equemene | __kernel void MainLoopGlobal(__global ulong *s,ulong iterations,uint seed_w,uint seed_z)
|
327 | 73 | equemene | {
|
328 | 73 | equemene | ulong total=MainLoop(iterations,seed_z,seed_w,get_global_id(0));
|
329 | 71 | equemene | barrier(CLK_GLOBAL_MEM_FENCE);
|
330 | 73 | equemene | s[get_global_id(0)]=total;
|
331 | 7 | equemene | }
|
332 | 7 | equemene |
|
333 | 73 | equemene |
|
334 | 17 | equemene | __kernel void MainLoopLocal(__global ulong *s,ulong iterations,uint seed_w,uint seed_z)
|
335 | 7 | equemene | {
|
336 | 73 | equemene | ulong total=MainLoop(iterations,seed_z,seed_w,get_local_id(0));
|
337 | 71 | equemene | barrier(CLK_LOCAL_MEM_FENCE);
|
338 | 7 | equemene | s[get_local_id(0)]=total;
|
339 | 7 | equemene | }
|
340 | 7 | equemene |
|
341 | 17 | equemene | __kernel void MainLoopHybrid(__global ulong *s,ulong iterations,uint seed_w,uint seed_z)
|
342 | 7 | equemene | {
|
343 | 73 | equemene | ulong total=MainLoop(iterations,seed_z,seed_w,get_global_id(0));
|
344 | 73 | equemene | barrier(CLK_GLOBAL_MEM_FENCE || CLK_LOCAL_MEM_FENCE);
|
345 | 71 | equemene | s[get_global_id(0)]=total;
|
346 | 7 | equemene | }
|
347 | 50 | equemene |
|
348 | 7 | equemene | """
|
349 | 7 | equemene | |
350 | 74 | equemene | def MetropolisCuda(circle,iterations,steps,jobs,ParaStyle,RNG,ValueType): |
351 | 7 | equemene | |
352 | 7 | equemene | # Avec PyCUDA autoinit, rien a faire !
|
353 | 7 | equemene | |
354 | 7 | equemene | circleCU = cuda.InOut(circle) |
355 | 7 | equemene | |
356 | 74 | equemene | try:
|
357 | 74 | equemene | mod = SourceModule(KERNEL_CODE_CUDA,options=['--compiler-options','-Wall -DTRNG=%i -DTYPE=%s' % (Marsaglia[RNG],Computing[ValueType])]) |
358 | 74 | equemene | except:
|
359 | 74 | equemene | print "Compilation seems to brake" |
360 | 74 | equemene | |
361 | 7 | equemene | MetropolisBlocksCU=mod.get_function("MainLoopBlocks")
|
362 | 7 | equemene | MetropolisJobsCU=mod.get_function("MainLoopThreads")
|
363 | 7 | equemene | MetropolisHybridCU=mod.get_function("MainLoopHybrid")
|
364 | 7 | equemene | |
365 | 7 | equemene | start = pycuda.driver.Event() |
366 | 7 | equemene | stop = pycuda.driver.Event() |
367 | 7 | equemene | |
368 | 7 | equemene | MyPi=numpy.zeros(steps) |
369 | 7 | equemene | MyDuration=numpy.zeros(steps) |
370 | 50 | equemene | |
371 | 7 | equemene | if iterations%jobs==0: |
372 | 17 | equemene | iterationsCL=numpy.uint64(iterations/jobs) |
373 | 7 | equemene | iterationsNew=iterationsCL*jobs |
374 | 7 | equemene | else:
|
375 | 17 | equemene | iterationsCL=numpy.uint64(iterations/jobs+1)
|
376 | 7 | equemene | iterationsNew=iterations |
377 | 7 | equemene | |
378 | 7 | equemene | for i in range(steps): |
379 | 7 | equemene | start.record() |
380 | 7 | equemene | start.synchronize() |
381 | 7 | equemene | if ParaStyle=='Blocks': |
382 | 74 | equemene | MetropolisBlocksCU(circleCU, |
383 | 74 | equemene | numpy.uint64(iterationsCL), |
384 | 74 | equemene | numpy.uint32(nprnd(2**30/jobs)), |
385 | 74 | equemene | numpy.uint32(nprnd(2**30/jobs)), |
386 | 74 | equemene | grid=(jobs,1),
|
387 | 74 | equemene | block=(1,1,1)) |
388 | 17 | equemene | print "%s with (WorkItems/Threads)=(%i,%i) %s method done" % \ |
389 | 17 | equemene | (Alu,jobs,1,ParaStyle)
|
390 | 7 | equemene | elif ParaStyle=='Hybrid': |
391 | 17 | equemene | threads=BestThreadsNumber(jobs) |
392 | 74 | equemene | MetropolisHybridCU(circleCU, |
393 | 50 | equemene | numpy.uint64(iterationsCL), |
394 | 50 | equemene | numpy.uint32(nprnd(2**30/jobs)), |
395 | 50 | equemene | numpy.uint32(nprnd(2**30/jobs)), |
396 | 74 | equemene | grid=(jobs,1),
|
397 | 74 | equemene | block=(threads,1,1)) |
398 | 17 | equemene | print "%s with (WorkItems/Threads)=(%i,%i) %s method done" % \ |
399 | 74 | equemene | (Alu,jobs/threads,threads,ParaStyle) |
400 | 74 | equemene | else:
|
401 | 74 | equemene | MetropolisJobsCU(circleCU, |
402 | 74 | equemene | numpy.uint64(iterationsCL), |
403 | 74 | equemene | numpy.uint32(nprnd(2**30/jobs)), |
404 | 74 | equemene | numpy.uint32(nprnd(2**30/jobs)), |
405 | 74 | equemene | grid=(1,1), |
406 | 74 | equemene | block=(jobs,1,1)) |
407 | 74 | equemene | print "%s with (WorkItems/Threads)=(%i,%i) %s method done" % \ |
408 | 17 | equemene | (Alu,jobs,1,ParaStyle)
|
409 | 7 | equemene | stop.record() |
410 | 7 | equemene | stop.synchronize() |
411 | 7 | equemene | |
412 | 7 | equemene | elapsed = start.time_till(stop)*1e-3
|
413 | 7 | equemene | |
414 | 7 | equemene | MyDuration[i]=elapsed |
415 | 50 | equemene | AllPi=4./numpy.float32(iterationsCL)*circle.astype(numpy.float32)
|
416 | 50 | equemene | MyPi[i]=numpy.median(AllPi) |
417 | 50 | equemene | print MyPi[i],numpy.std(AllPi),MyDuration[i]
|
418 | 7 | equemene | |
419 | 50 | equemene | |
420 | 75 | equemene | print jobs,numpy.mean(MyDuration),numpy.median(MyDuration),numpy.std(MyDuration),numpy.mean(Iterations/MyDuration),numpy.median(Iterations/MyDuration),numpy.std(Iterations/MyDuration)
|
421 | 7 | equemene | |
422 | 75 | equemene | return(numpy.mean(MyDuration),numpy.median(MyDuration),numpy.std(MyDuration),numpy.mean(Iterations/MyDuration),numpy.median(Iterations/MyDuration),numpy.std(Iterations/MyDuration))
|
423 | 7 | equemene | |
424 | 7 | equemene | |
425 | 50 | equemene | def MetropolisOpenCL(circle,iterations,steps,jobs,ParaStyle,Alu,Device, |
426 | 73 | equemene | RNG,ValueType): |
427 | 7 | equemene | |
428 | 7 | equemene | # Initialisation des variables en les CASTant correctement
|
429 | 7 | equemene | |
430 | 46 | equemene | if Device==0: |
431 | 46 | equemene | print "Enter XPU selector based on ALU type: first selected" |
432 | 46 | equemene | HasXPU=False
|
433 | 46 | equemene | # Default Device selection based on ALU Type
|
434 | 46 | equemene | for platform in cl.get_platforms(): |
435 | 46 | equemene | for device in platform.get_devices(): |
436 | 46 | equemene | deviceType=cl.device_type.to_string(device.type) |
437 | 46 | equemene | if deviceType=="GPU" and Alu=="GPU" and not HasXPU: |
438 | 46 | equemene | XPU=device |
439 | 46 | equemene | print "GPU selected: ",device.name |
440 | 46 | equemene | HasXPU=True
|
441 | 46 | equemene | if deviceType=="CPU" and Alu=="CPU" and not HasXPU: |
442 | 46 | equemene | XPU=device |
443 | 46 | equemene | print "CPU selected: ",device.name |
444 | 46 | equemene | HasXPU=True
|
445 | 46 | equemene | else:
|
446 | 46 | equemene | print "Enter XPU selector based on device number & ALU type" |
447 | 46 | equemene | Id=1
|
448 | 46 | equemene | HasXPU=False
|
449 | 46 | equemene | # Primary Device selection based on Device Id
|
450 | 46 | equemene | for platform in cl.get_platforms(): |
451 | 46 | equemene | for device in platform.get_devices(): |
452 | 46 | equemene | deviceType=cl.device_type.to_string(device.type) |
453 | 46 | equemene | if Id==Device and Alu==deviceType and HasXPU==False: |
454 | 46 | equemene | XPU=device |
455 | 73 | equemene | print "CPU/GPU selected: ",device.name.lstrip() |
456 | 46 | equemene | HasXPU=True
|
457 | 46 | equemene | Id=Id+1
|
458 | 46 | equemene | if HasXPU==False: |
459 | 46 | equemene | print "No XPU #%i of type %s found in all of %i devices, sorry..." % \ |
460 | 46 | equemene | (Device,Alu,Id-1)
|
461 | 46 | equemene | return(0,0,0) |
462 | 7 | equemene | |
463 | 7 | equemene | # Je cree le contexte et la queue pour son execution
|
464 | 46 | equemene | ctx = cl.Context([XPU]) |
465 | 7 | equemene | queue = cl.CommandQueue(ctx, |
466 | 7 | equemene | properties=cl.command_queue_properties.PROFILING_ENABLE) |
467 | 7 | equemene | |
468 | 7 | equemene | # Je recupere les flag possibles pour les buffers
|
469 | 7 | equemene | mf = cl.mem_flags |
470 | 7 | equemene | |
471 | 7 | equemene | circleCL = cl.Buffer(ctx, mf.WRITE_ONLY|mf.COPY_HOST_PTR,hostbuf=circle) |
472 | 7 | equemene | |
473 | 72 | equemene | |
474 | 7 | equemene | MetropolisCL = cl.Program(ctx,KERNEL_CODE_OPENCL).build( \ |
475 | 72 | equemene | options = "-cl-mad-enable -cl-fast-relaxed-math -DTRNG=%i -DTYPE=%s" % (Marsaglia[RNG],Computing[ValueType]))
|
476 | 7 | equemene | |
477 | 7 | equemene | i=0
|
478 | 7 | equemene | |
479 | 7 | equemene | MyPi=numpy.zeros(steps) |
480 | 7 | equemene | MyDuration=numpy.zeros(steps) |
481 | 7 | equemene | |
482 | 7 | equemene | if iterations%jobs==0: |
483 | 41 | equemene | iterationsCL=numpy.uint64(iterations/jobs) |
484 | 47 | equemene | iterationsNew=numpy.uint64(iterationsCL*jobs) |
485 | 7 | equemene | else:
|
486 | 41 | equemene | iterationsCL=numpy.uint64(iterations/jobs+1)
|
487 | 47 | equemene | iterationsNew=numpy.uint64(iterations) |
488 | 7 | equemene | |
489 | 7 | equemene | for i in range(steps): |
490 | 7 | equemene | |
491 | 7 | equemene | if ParaStyle=='Blocks': |
492 | 7 | equemene | # Call OpenCL kernel
|
493 | 7 | equemene | # (1,) is Global work size (only 1 work size)
|
494 | 7 | equemene | # (1,) is local work size
|
495 | 7 | equemene | # circleCL is lattice translated in CL format
|
496 | 7 | equemene | # SeedZCL is lattice translated in CL format
|
497 | 7 | equemene | # SeedWCL is lattice translated in CL format
|
498 | 7 | equemene | # step is number of iterations
|
499 | 73 | equemene | CLLaunch=MetropolisCL.MainLoopGlobal(queue,(jobs,),None,
|
500 | 73 | equemene | circleCL, |
501 | 73 | equemene | numpy.uint64(iterationsCL), |
502 | 73 | equemene | numpy.uint32(nprnd(2**30/jobs)), |
503 | 73 | equemene | numpy.uint32(nprnd(2**30/jobs))) |
504 | 17 | equemene | print "%s with (WorkItems/Threads)=(%i,%i) %s method done" % \ |
505 | 17 | equemene | (Alu,jobs,1,ParaStyle)
|
506 | 7 | equemene | elif ParaStyle=='Hybrid': |
507 | 17 | equemene | threads=BestThreadsNumber(jobs) |
508 | 7 | equemene | # en OpenCL, necessaire de mettre un Global_id identique au local_id
|
509 | 73 | equemene | CLLaunch=MetropolisCL.MainLoopHybrid(queue,(jobs,),(threads,), |
510 | 73 | equemene | circleCL, |
511 | 73 | equemene | numpy.uint64(iterationsCL), |
512 | 73 | equemene | numpy.uint32(nprnd(2**30/jobs)), |
513 | 73 | equemene | numpy.uint32(nprnd(2**30/jobs))) |
514 | 50 | equemene | |
515 | 17 | equemene | print "%s with (WorkItems/Threads)=(%i,%i) %s method done" % \ |
516 | 17 | equemene | (Alu,jobs/threads,threads,ParaStyle) |
517 | 7 | equemene | else:
|
518 | 7 | equemene | # en OpenCL, necessaire de mettre un Global_id identique au local_id
|
519 | 73 | equemene | CLLaunch=MetropolisCL.MainLoopLocal(queue,(jobs,),(jobs,), |
520 | 73 | equemene | circleCL, |
521 | 73 | equemene | numpy.uint64(iterationsCL), |
522 | 73 | equemene | numpy.uint32(nprnd(2**30/jobs)), |
523 | 73 | equemene | numpy.uint32(nprnd(2**30/jobs))) |
524 | 7 | equemene | print "%s with %i %s done" % (Alu,jobs,ParaStyle) |
525 | 7 | equemene | |
526 | 7 | equemene | CLLaunch.wait() |
527 | 7 | equemene | cl.enqueue_copy(queue, circle, circleCL).wait() |
528 | 7 | equemene | |
529 | 7 | equemene | elapsed = 1e-9*(CLLaunch.profile.end - CLLaunch.profile.start)
|
530 | 7 | equemene | |
531 | 71 | equemene | print circle,numpy.mean(circle),numpy.median(circle),numpy.std(circle)
|
532 | 7 | equemene | MyDuration[i]=elapsed |
533 | 49 | equemene | AllPi=4./numpy.float32(iterationsCL)*circle.astype(numpy.float32)
|
534 | 49 | equemene | MyPi[i]=numpy.median(AllPi) |
535 | 49 | equemene | print MyPi[i],numpy.std(AllPi),MyDuration[i]
|
536 | 7 | equemene | |
537 | 7 | equemene | circleCL.release() |
538 | 7 | equemene | |
539 | 75 | equemene | print jobs,numpy.mean(MyDuration),numpy.median(MyDuration),numpy.std(MyDuration),numpy.mean(Iterations/MyDuration),numpy.median(Iterations/MyDuration),numpy.std(Iterations/MyDuration)
|
540 | 7 | equemene | |
541 | 75 | equemene | return(numpy.mean(MyDuration),numpy.median(MyDuration),numpy.std(MyDuration),numpy.mean(Iterations/MyDuration),numpy.median(Iterations/MyDuration),numpy.std(Iterations/MyDuration))
|
542 | 7 | equemene | |
543 | 7 | equemene | |
544 | 7 | equemene | def FitAndPrint(N,D,Curves): |
545 | 7 | equemene | |
546 | 55 | equemene | from scipy.optimize import curve_fit |
547 | 55 | equemene | import matplotlib.pyplot as plt |
548 | 55 | equemene | |
549 | 7 | equemene | try:
|
550 | 7 | equemene | coeffs_Amdahl, matcov_Amdahl = curve_fit(Amdahl, N, D) |
551 | 7 | equemene | |
552 | 7 | equemene | D_Amdahl=Amdahl(N,coeffs_Amdahl[0],coeffs_Amdahl[1],coeffs_Amdahl[2]) |
553 | 7 | equemene | coeffs_Amdahl[1]=coeffs_Amdahl[1]*coeffs_Amdahl[0]/D[0] |
554 | 7 | equemene | coeffs_Amdahl[2]=coeffs_Amdahl[2]*coeffs_Amdahl[0]/D[0] |
555 | 7 | equemene | coeffs_Amdahl[0]=D[0] |
556 | 7 | equemene | print "Amdahl Normalized: T=%.2f(%.6f+%.6f/N)" % \ |
557 | 7 | equemene | (coeffs_Amdahl[0],coeffs_Amdahl[1],coeffs_Amdahl[2]) |
558 | 7 | equemene | except:
|
559 | 7 | equemene | print "Impossible to fit for Amdahl law : only %i elements" % len(D) |
560 | 7 | equemene | |
561 | 7 | equemene | try:
|
562 | 7 | equemene | coeffs_AmdahlR, matcov_AmdahlR = curve_fit(AmdahlR, N, D) |
563 | 7 | equemene | |
564 | 7 | equemene | D_AmdahlR=AmdahlR(N,coeffs_AmdahlR[0],coeffs_AmdahlR[1]) |
565 | 7 | equemene | coeffs_AmdahlR[1]=coeffs_AmdahlR[1]*coeffs_AmdahlR[0]/D[0] |
566 | 7 | equemene | coeffs_AmdahlR[0]=D[0] |
567 | 7 | equemene | print "Amdahl Reduced Normalized: T=%.2f(%.6f+%.6f/N)" % \ |
568 | 7 | equemene | (coeffs_AmdahlR[0],1-coeffs_AmdahlR[1],coeffs_AmdahlR[1]) |
569 | 7 | equemene | |
570 | 7 | equemene | except:
|
571 | 7 | equemene | print "Impossible to fit for Reduced Amdahl law : only %i elements" % len(D) |
572 | 7 | equemene | |
573 | 7 | equemene | try:
|
574 | 7 | equemene | coeffs_Mylq, matcov_Mylq = curve_fit(Mylq, N, D) |
575 | 7 | equemene | |
576 | 7 | equemene | coeffs_Mylq[1]=coeffs_Mylq[1]*coeffs_Mylq[0]/D[0] |
577 | 45 | equemene | # coeffs_Mylq[2]=coeffs_Mylq[2]*coeffs_Mylq[0]/D[0]
|
578 | 7 | equemene | coeffs_Mylq[3]=coeffs_Mylq[3]*coeffs_Mylq[0]/D[0] |
579 | 7 | equemene | coeffs_Mylq[0]=D[0] |
580 | 45 | equemene | print "Mylq Normalized : T=%.2f(%.6f+%.6f/N)+%.6f*N" % (coeffs_Mylq[0], |
581 | 7 | equemene | coeffs_Mylq[1],
|
582 | 45 | equemene | coeffs_Mylq[3],
|
583 | 45 | equemene | coeffs_Mylq[2])
|
584 | 7 | equemene | D_Mylq=Mylq(N,coeffs_Mylq[0],coeffs_Mylq[1],coeffs_Mylq[2], |
585 | 7 | equemene | coeffs_Mylq[3])
|
586 | 7 | equemene | except:
|
587 | 7 | equemene | print "Impossible to fit for Mylq law : only %i elements" % len(D) |
588 | 7 | equemene | |
589 | 7 | equemene | try:
|
590 | 7 | equemene | coeffs_Mylq2, matcov_Mylq2 = curve_fit(Mylq2, N, D) |
591 | 7 | equemene | |
592 | 7 | equemene | coeffs_Mylq2[1]=coeffs_Mylq2[1]*coeffs_Mylq2[0]/D[0] |
593 | 45 | equemene | # coeffs_Mylq2[2]=coeffs_Mylq2[2]*coeffs_Mylq2[0]/D[0]
|
594 | 45 | equemene | # coeffs_Mylq2[3]=coeffs_Mylq2[3]*coeffs_Mylq2[0]/D[0]
|
595 | 7 | equemene | coeffs_Mylq2[4]=coeffs_Mylq2[4]*coeffs_Mylq2[0]/D[0] |
596 | 7 | equemene | coeffs_Mylq2[0]=D[0] |
597 | 45 | equemene | print "Mylq 2nd order Normalized: T=%.2f(%.6f+%.6f/N)+%.6f*N+%.6f*N^2" % \ |
598 | 45 | equemene | (coeffs_Mylq2[0],coeffs_Mylq2[1], |
599 | 45 | equemene | coeffs_Mylq2[4],coeffs_Mylq2[2],coeffs_Mylq2[3]) |
600 | 7 | equemene | |
601 | 7 | equemene | except:
|
602 | 7 | equemene | print "Impossible to fit for 2nd order Mylq law : only %i elements" % len(D) |
603 | 7 | equemene | |
604 | 7 | equemene | if Curves:
|
605 | 7 | equemene | plt.xlabel("Number of Threads/work Items")
|
606 | 7 | equemene | plt.ylabel("Total Elapsed Time")
|
607 | 7 | equemene | |
608 | 7 | equemene | Experience,=plt.plot(N,D,'ro')
|
609 | 7 | equemene | try:
|
610 | 7 | equemene | pAmdahl,=plt.plot(N,D_Amdahl,label="Loi de Amdahl")
|
611 | 7 | equemene | pMylq,=plt.plot(N,D_Mylq,label="Loi de Mylq")
|
612 | 7 | equemene | except:
|
613 | 7 | equemene | print "Fit curves seem not to be available" |
614 | 7 | equemene | |
615 | 7 | equemene | plt.legend() |
616 | 7 | equemene | plt.show() |
617 | 7 | equemene | |
618 | 7 | equemene | if __name__=='__main__': |
619 | 7 | equemene | |
620 | 7 | equemene | # Set defaults values
|
621 | 55 | equemene | |
622 | 55 | equemene | # Alu can be CPU, GPU or ACCELERATOR
|
623 | 7 | equemene | Alu='CPU'
|
624 | 46 | equemene | # Id of GPU : 1 is for first find !
|
625 | 17 | equemene | Device=0
|
626 | 7 | equemene | # GPU style can be Cuda (Nvidia implementation) or OpenCL
|
627 | 7 | equemene | GpuStyle='OpenCL'
|
628 | 7 | equemene | # Parallel distribution can be on Threads or Blocks
|
629 | 7 | equemene | ParaStyle='Blocks'
|
630 | 7 | equemene | # Iterations is integer
|
631 | 7 | equemene | Iterations=100000000
|
632 | 7 | equemene | # JobStart in first number of Jobs to explore
|
633 | 7 | equemene | JobStart=1
|
634 | 7 | equemene | # JobEnd is last number of Jobs to explore
|
635 | 7 | equemene | JobEnd=16
|
636 | 47 | equemene | # JobStep is the step of Jobs to explore
|
637 | 47 | equemene | JobStep=1
|
638 | 7 | equemene | # Redo is the times to redo the test to improve metrology
|
639 | 7 | equemene | Redo=1
|
640 | 7 | equemene | # OutMetrology is method for duration estimation : False is GPU inside
|
641 | 7 | equemene | OutMetrology=False
|
642 | 45 | equemene | Metrology='InMetro'
|
643 | 7 | equemene | # Curves is True to print the curves
|
644 | 7 | equemene | Curves=False
|
645 | 55 | equemene | # Fit is True to print the curves
|
646 | 55 | equemene | Fit=False
|
647 | 72 | equemene | # Marsaglia RNG
|
648 | 72 | equemene | RNG='KISS'
|
649 | 72 | equemene | # Value type : INT32, INT64, FP32, FP64
|
650 | 72 | equemene | ValueType='INT32'
|
651 | 72 | equemene | |
652 | 7 | equemene | try:
|
653 | 72 | equemene | opts, args = getopt.getopt(sys.argv[1:],"hocfa:g:p:i:s:e:t:r:d:m:v:",["alu=","gpustyle=","parastyle=","iterations=","jobstart=","jobend=","jobstep=","redo=","device=","marsaglia=","valuetype="]) |
654 | 7 | equemene | except getopt.GetoptError:
|
655 | 72 | equemene | print '%s -o (Out of Core Metrology) -c (Print Curves) -f (Fit to Amdahl Law) -a <CPU/GPU/ACCELERATOR> -d <DeviceId> -g <CUDA/OpenCL> -p <Threads/Hybrid/Blocks> -i <Iterations> -s <JobStart> -e <JobEnd> -t <JobStep> -r <RedoToImproveStats> -m <SHR3/CONG/MWC/KISS> -v <INT32/INT64/FP32/FP64> ' % sys.argv[0] |
656 | 7 | equemene | sys.exit(2)
|
657 | 7 | equemene | |
658 | 7 | equemene | for opt, arg in opts: |
659 | 7 | equemene | if opt == '-h': |
660 | 72 | equemene | print '%s -o (Out of Core Metrology) -c (Print Curves) -f (Fit to Amdahl Law) -a <CPU/GPU/ACCELERATOR> -d <DeviceId> -g <CUDA/OpenCL> -p <Threads/Hybrid/Blocks> -i <Iterations> -s <JobStart> -e <JobEnd> -t <JobStep> -r <RedoToImproveStats> -m <SHR3/CONG/MWC/KISS> -v <INT32/INT64/FP32/FP64>' % sys.argv[0] |
661 | 46 | equemene | |
662 | 46 | equemene | print "\nInformations about devices detected under OpenCL:" |
663 | 46 | equemene | # For PyOpenCL import
|
664 | 55 | equemene | try:
|
665 | 55 | equemene | import pyopencl as cl |
666 | 55 | equemene | Id=1
|
667 | 55 | equemene | for platform in cl.get_platforms(): |
668 | 55 | equemene | for device in platform.get_devices(): |
669 | 55 | equemene | deviceType=cl.device_type.to_string(device.type) |
670 | 73 | equemene | print "Device #%i from %s of type %s : %s" % (Id,platform.vendor.lstrip(),deviceType,device.name.lstrip()) |
671 | 55 | equemene | Id=Id+1
|
672 | 46 | equemene | |
673 | 55 | equemene | print
|
674 | 55 | equemene | sys.exit() |
675 | 55 | equemene | except ImportError: |
676 | 55 | equemene | print "Your platform does not seem to support OpenCL" |
677 | 55 | equemene | |
678 | 7 | equemene | elif opt == '-o': |
679 | 7 | equemene | OutMetrology=True
|
680 | 45 | equemene | Metrology='OutMetro'
|
681 | 7 | equemene | elif opt == '-c': |
682 | 7 | equemene | Curves=True
|
683 | 55 | equemene | elif opt == '-f': |
684 | 55 | equemene | Fit=True
|
685 | 7 | equemene | elif opt in ("-a", "--alu"): |
686 | 7 | equemene | Alu = arg |
687 | 7 | equemene | elif opt in ("-d", "--device"): |
688 | 7 | equemene | Device = int(arg)
|
689 | 7 | equemene | elif opt in ("-g", "--gpustyle"): |
690 | 7 | equemene | GpuStyle = arg |
691 | 7 | equemene | elif opt in ("-p", "--parastyle"): |
692 | 7 | equemene | ParaStyle = arg |
693 | 72 | equemene | elif opt in ("-m", "--marsaglia"): |
694 | 72 | equemene | RNG = arg |
695 | 72 | equemene | elif opt in ("-v", "--valuetype"): |
696 | 72 | equemene | ValueType = arg |
697 | 7 | equemene | elif opt in ("-i", "--iterations"): |
698 | 40 | equemene | Iterations = numpy.uint64(arg) |
699 | 7 | equemene | elif opt in ("-s", "--jobstart"): |
700 | 7 | equemene | JobStart = int(arg)
|
701 | 7 | equemene | elif opt in ("-e", "--jobend"): |
702 | 7 | equemene | JobEnd = int(arg)
|
703 | 47 | equemene | elif opt in ("-t", "--jobstep"): |
704 | 47 | equemene | JobStep = int(arg)
|
705 | 7 | equemene | elif opt in ("-r", "--redo"): |
706 | 7 | equemene | Redo = int(arg)
|
707 | 7 | equemene | |
708 | 7 | equemene | if Alu=='CPU' and GpuStyle=='CUDA': |
709 | 7 | equemene | print "Alu can't be CPU for CUDA, set Alu to GPU" |
710 | 7 | equemene | Alu='GPU'
|
711 | 7 | equemene | |
712 | 7 | equemene | if ParaStyle not in ('Blocks','Threads','Hybrid'): |
713 | 7 | equemene | print "%s not exists, ParaStyle set as Threads !" % ParaStyle |
714 | 7 | equemene | ParaStyle='Threads'
|
715 | 7 | equemene | |
716 | 7 | equemene | print "Compute unit : %s" % Alu |
717 | 7 | equemene | print "Device Identification : %s" % Device |
718 | 7 | equemene | print "GpuStyle used : %s" % GpuStyle |
719 | 7 | equemene | print "Parallel Style used : %s" % ParaStyle |
720 | 7 | equemene | print "Iterations : %s" % Iterations |
721 | 7 | equemene | print "Number of threads on start : %s" % JobStart |
722 | 7 | equemene | print "Number of threads on end : %s" % JobEnd |
723 | 7 | equemene | print "Number of redo : %s" % Redo |
724 | 7 | equemene | print "Metrology done out of CPU/GPU : %r" % OutMetrology |
725 | 72 | equemene | print "Type of Marsaglia RNG used : %s" % RNG |
726 | 72 | equemene | print "Type of variable : %s" % ValueType |
727 | 7 | equemene | |
728 | 7 | equemene | if GpuStyle=='CUDA': |
729 | 55 | equemene | try:
|
730 | 55 | equemene | # For PyCUDA import
|
731 | 55 | equemene | import pycuda.driver as cuda |
732 | 55 | equemene | import pycuda.gpuarray as gpuarray |
733 | 55 | equemene | import pycuda.autoinit |
734 | 55 | equemene | from pycuda.compiler import SourceModule |
735 | 55 | equemene | except ImportError: |
736 | 55 | equemene | print "Platform does not seem to support CUDA" |
737 | 7 | equemene | |
738 | 7 | equemene | if GpuStyle=='OpenCL': |
739 | 55 | equemene | try:
|
740 | 55 | equemene | # For PyOpenCL import
|
741 | 55 | equemene | import pyopencl as cl |
742 | 55 | equemene | Id=1
|
743 | 55 | equemene | for platform in cl.get_platforms(): |
744 | 55 | equemene | for device in platform.get_devices(): |
745 | 55 | equemene | deviceType=cl.device_type.to_string(device.type) |
746 | 73 | equemene | print "Device #%i from %s of type %s : %s" % (Id,platform.vendor.lstrip(),deviceType,device.name.lstrip()) |
747 | 73 | equemene | |
748 | 55 | equemene | if Id == Device:
|
749 | 55 | equemene | # Set the Alu as detected Device Type
|
750 | 55 | equemene | Alu=deviceType |
751 | 55 | equemene | Id=Id+1
|
752 | 55 | equemene | except ImportError: |
753 | 55 | equemene | print "Platform does not seem to support CUDA" |
754 | 55 | equemene | |
755 | 7 | equemene | average=numpy.array([]).astype(numpy.float32) |
756 | 7 | equemene | median=numpy.array([]).astype(numpy.float32) |
757 | 7 | equemene | stddev=numpy.array([]).astype(numpy.float32) |
758 | 75 | equemene | averageRate=numpy.array([]).astype(numpy.float32) |
759 | 75 | equemene | medianRate=numpy.array([]).astype(numpy.float32) |
760 | 75 | equemene | stddevRate=numpy.array([]).astype(numpy.float32) |
761 | 7 | equemene | |
762 | 7 | equemene | ExploredJobs=numpy.array([]).astype(numpy.uint32) |
763 | 7 | equemene | |
764 | 7 | equemene | Jobs=JobStart |
765 | 7 | equemene | |
766 | 7 | equemene | while Jobs <= JobEnd:
|
767 | 7 | equemene | avg,med,std=0,0,0 |
768 | 7 | equemene | ExploredJobs=numpy.append(ExploredJobs,Jobs) |
769 | 17 | equemene | circle=numpy.zeros(Jobs).astype(numpy.uint64) |
770 | 7 | equemene | |
771 | 75 | equemene | if OutMetrology:
|
772 | 7 | equemene | duration=numpy.array([]).astype(numpy.float32) |
773 | 75 | equemene | rate=numpy.array([]).astype(numpy.float32) |
774 | 7 | equemene | for i in range(Redo): |
775 | 7 | equemene | start=time.time() |
776 | 7 | equemene | if GpuStyle=='CUDA': |
777 | 7 | equemene | try:
|
778 | 75 | equemene | a,m,s,aR,mR,sR=MetropolisCuda(circle,Iterations,1,Jobs,ParaStyle,RNG,ValueType)
|
779 | 7 | equemene | except:
|
780 | 7 | equemene | print "Problem with %i // computations on Cuda" % Jobs |
781 | 7 | equemene | elif GpuStyle=='OpenCL': |
782 | 7 | equemene | try:
|
783 | 75 | equemene | a,m,s,aR,mR,sR=MetropolisOpenCL(circle,Iterations,1,Jobs,ParaStyle,Alu,Device,RNG,ValueType)
|
784 | 7 | equemene | except:
|
785 | 7 | equemene | print "Problem with %i // computations on OpenCL" % Jobs |
786 | 7 | equemene | duration=numpy.append(duration,time.time()-start) |
787 | 75 | equemene | rate=numpy.append(rate,Iterations/(time.time()-start)) |
788 | 75 | equemene | if (a,m,s) != (0,0,0): |
789 | 46 | equemene | avg=numpy.mean(duration) |
790 | 46 | equemene | med=numpy.median(duration) |
791 | 46 | equemene | std=numpy.std(duration) |
792 | 75 | equemene | avgR=numpy.mean(Iterations/duration) |
793 | 75 | equemene | medR=numpy.median(Iterations/duration) |
794 | 75 | equemene | stdR=numpy.std(Iterations/duration) |
795 | 46 | equemene | else:
|
796 | 46 | equemene | print "Values seem to be wrong..." |
797 | 7 | equemene | else:
|
798 | 7 | equemene | if GpuStyle=='CUDA': |
799 | 7 | equemene | try:
|
800 | 75 | equemene | avg,med,std,avgR,medR,stdR=MetropolisCuda(circle,Iterations,Redo,Jobs,ParaStyle,RNG,ValueType) |
801 | 7 | equemene | except:
|
802 | 7 | equemene | print "Problem with %i // computations on Cuda" % Jobs |
803 | 7 | equemene | elif GpuStyle=='OpenCL': |
804 | 55 | equemene | try:
|
805 | 75 | equemene | avg,med,std,avgR,medR,stdR=MetropolisOpenCL(circle,Iterations,Redo,Jobs,ParaStyle,Alu,Device,RNG,ValueType) |
806 | 55 | equemene | except:
|
807 | 55 | equemene | print "Problem with %i // computations on OpenCL" % Jobs |
808 | 7 | equemene | |
809 | 7 | equemene | if (avg,med,std) != (0,0,0): |
810 | 15 | equemene | print "jobs,avg,med,std",Jobs,avg,med,std |
811 | 7 | equemene | average=numpy.append(average,avg) |
812 | 7 | equemene | median=numpy.append(median,med) |
813 | 7 | equemene | stddev=numpy.append(stddev,std) |
814 | 75 | equemene | averageRate=numpy.append(averageRate,avgR) |
815 | 75 | equemene | medianRate=numpy.append(medianRate,medR) |
816 | 75 | equemene | stddevRate=numpy.append(stddevRate,stdR) |
817 | 7 | equemene | else:
|
818 | 7 | equemene | print "Values seem to be wrong..." |
819 | 7 | equemene | #THREADS*=2
|
820 | 46 | equemene | if len(average)!=0: |
821 | 75 | equemene | averageRate=averageRate.astype(int)
|
822 | 75 | equemene | medianRate=medianRate.astype(int)
|
823 | 75 | equemene | stddevRate=stddevRate.astype(int)
|
824 | 75 | equemene | numpy.savez("Pi_%s_%s_%s_%s_%s_%s_%i_%.8i_Device%i_%s_%s" % (ValueType,RNG,Alu,GpuStyle,ParaStyle,JobStart,JobEnd,Iterations,Device,Metrology,gethostname()),(ExploredJobs,average,median,stddev,averageRate,medianRate,stddevRate))
|
825 | 75 | equemene | ToSave=[ ExploredJobs,average,median,stddev,averageRate,medianRate,stddevRate ] |
826 | 75 | equemene | numpy.savetxt("Pi_%s_%s_%s_%s_%s_%s_%i_%.8i_Device%i_%s_%s" % (ValueType,RNG,Alu,GpuStyle,ParaStyle,JobStart,JobEnd,Iterations,Device,Metrology,gethostname()),numpy.transpose(ToSave),fmt='%i %e %e %e %i %i %i') |
827 | 47 | equemene | Jobs+=JobStep |
828 | 7 | equemene | |
829 | 55 | equemene | if Fit:
|
830 | 55 | equemene | FitAndPrint(ExploredJobs,median,Curves) |