root / Pi / GPU / Pi-GPU.py @ 79
Historique | Voir | Annoter | Télécharger (26,47 ko)
1 |
#!/usr/bin/env python
|
---|---|
2 |
|
3 |
#
|
4 |
# Pi-by-MonteCarlo using PyCUDA/PyOpenCL
|
5 |
#
|
6 |
# CC BY-NC-SA 2011 : <emmanuel.quemener@ens-lyon.fr>
|
7 |
#
|
8 |
# Thanks to Andreas Klockner for PyCUDA:
|
9 |
# http://mathema.tician.de/software/pycuda
|
10 |
#
|
11 |
|
12 |
# 2013-01-01 : problems with launch timeout
|
13 |
# http://stackoverflow.com/questions/497685/how-do-you-get-around-the-maximum-cuda-run-time
|
14 |
# Option "Interactive" "0" in /etc/X11/xorg.conf
|
15 |
|
16 |
# Common tools
|
17 |
import numpy |
18 |
from numpy.random import randint as nprnd |
19 |
import sys |
20 |
import getopt |
21 |
import time |
22 |
import math |
23 |
from socket import gethostname |
24 |
|
25 |
Marsaglia={'CONG':0,'SHR3':1,'MWC':2,'KISS':3} |
26 |
Computing={'INT32':0,'INT64':1,'FP32':2,'FP64':3} |
27 |
|
28 |
# find prime factors of a number
|
29 |
# Get for WWW :
|
30 |
# http://pythonism.wordpress.com/2008/05/17/looking-at-factorisation-in-python/
|
31 |
def PrimeFactors(x): |
32 |
factorlist=numpy.array([]).astype('uint32')
|
33 |
loop=2
|
34 |
while loop<=x:
|
35 |
if x%loop==0: |
36 |
x/=loop |
37 |
factorlist=numpy.append(factorlist,[loop]) |
38 |
else:
|
39 |
loop+=1
|
40 |
return factorlist
|
41 |
|
42 |
# Try to find the best thread number in Hybrid approach (Blocks&Threads)
|
43 |
# output is thread number
|
44 |
def BestThreadsNumber(jobs): |
45 |
factors=PrimeFactors(jobs) |
46 |
matrix=numpy.append([factors],[factors[::-1]],axis=0) |
47 |
threads=1
|
48 |
for factor in matrix.transpose().ravel(): |
49 |
threads=threads*factor |
50 |
if threads*threads>jobs or threads>512: |
51 |
break
|
52 |
return(long(threads)) |
53 |
|
54 |
# Predicted Amdahl Law (Reduced with s=1-p)
|
55 |
def AmdahlR(N, T1, p): |
56 |
return (T1*(1-p+p/N)) |
57 |
|
58 |
# Predicted Amdahl Law
|
59 |
def Amdahl(N, T1, s, p): |
60 |
return (T1*(s+p/N))
|
61 |
|
62 |
# Predicted Mylq Law with first order
|
63 |
def Mylq(N, T1,s,c,p): |
64 |
return (T1*(s+p/N)+c*N)
|
65 |
|
66 |
# Predicted Mylq Law with second order
|
67 |
def Mylq2(N, T1,s,c1,c2,p): |
68 |
return (T1*(s+p/N)+c1*N+c2*N*N)
|
69 |
|
70 |
KERNEL_CODE_CUDA="""
|
71 |
#define TCONG 0
|
72 |
#define TSHR3 1
|
73 |
#define TMWC 2
|
74 |
#define TKISS 3
|
75 |
|
76 |
#define TINT32 0
|
77 |
#define TINT64 1
|
78 |
#define TFP32 2
|
79 |
#define TFP64 3
|
80 |
|
81 |
// Marsaglia RNG very simple implementation
|
82 |
|
83 |
#define znew ((z=36969*(z&65535)+(z>>16))<<16)
|
84 |
#define wnew ((w=18000*(w&65535)+(w>>16))&65535)
|
85 |
#define MWC (znew+wnew)
|
86 |
#define SHR3 (jsr=(jsr=(jsr=jsr^(jsr<<17))^(jsr>>13))^(jsr<<5))
|
87 |
#define CONG (jcong=69069*jcong+1234567)
|
88 |
#define KISS ((MWC^CONG)+SHR3)
|
89 |
|
90 |
#define MWCfp MWC * 2.328306435454494e-10f
|
91 |
#define KISSfp KISS * 2.328306435454494e-10f
|
92 |
#define SHR3fp SHR3 * 2.328306435454494e-10f
|
93 |
#define CONGfp CONG * 2.328306435454494e-10f
|
94 |
|
95 |
__device__ ulong MainLoop(ulong iterations,uint seed_w,uint seed_z,size_t work)
|
96 |
{
|
97 |
|
98 |
#if TRNG == TCONG
|
99 |
uint jcong=seed_z+work;
|
100 |
#elif TRNG == TSHR3
|
101 |
uint jsr=seed_w+work;
|
102 |
#elif TRNG == TMWC
|
103 |
uint z=seed_z+work;
|
104 |
uint w=seed_w+work;
|
105 |
#elif TRNG == TKISS
|
106 |
uint jcong=seed_z+work;
|
107 |
uint jsr=seed_w+work;
|
108 |
uint z=seed_z-work;
|
109 |
uint w=seed_w-work;
|
110 |
#endif
|
111 |
|
112 |
ulong total=0;
|
113 |
|
114 |
for (ulong i=0;i<iterations;i++) {
|
115 |
|
116 |
#if TYPE == TINT32
|
117 |
#define THEONE 1073741824
|
118 |
#if TRNG == TCONG
|
119 |
uint x=CONG>>17 ;
|
120 |
uint y=CONG>>17 ;
|
121 |
#elif TRNG == TSHR3
|
122 |
uint x=SHR3>>17 ;
|
123 |
uint y=SHR3>>17 ;
|
124 |
#elif TRNG == TMWC
|
125 |
uint x=MWC>>17 ;
|
126 |
uint y=MWC>>17 ;
|
127 |
#elif TRNG == TKISS
|
128 |
uint x=KISS>>17 ;
|
129 |
uint y=KISS>>17 ;
|
130 |
#endif
|
131 |
#elif TYPE == TINT64
|
132 |
#define THEONE 4611686018427387904
|
133 |
#if TRNG == TCONG
|
134 |
ulong x=(ulong)(CONG>>1) ;
|
135 |
ulong y=(ulong)(CONG>>1) ;
|
136 |
#elif TRNG == TSHR3
|
137 |
ulong x=(ulong)(SHR3>>1) ;
|
138 |
ulong y=(ulong)(SHR3>>1) ;
|
139 |
#elif TRNG == TMWC
|
140 |
ulong x=(ulong)(MWC>>1) ;
|
141 |
ulong y=(ulong)(MWC>>1) ;
|
142 |
#elif TRNG == TKISS
|
143 |
ulong x=(ulong)(KISS>>1) ;
|
144 |
ulong y=(ulong)(KISS>>1) ;
|
145 |
#endif
|
146 |
#elif TYPE == TFP32
|
147 |
#define THEONE 1.0f
|
148 |
#if TRNG == TCONG
|
149 |
float x=CONGfp ;
|
150 |
float y=CONGfp ;
|
151 |
#elif TRNG == TSHR3
|
152 |
float x=SHR3fp ;
|
153 |
float y=SHR3fp ;
|
154 |
#elif TRNG == TMWC
|
155 |
float x=MWCfp ;
|
156 |
float y=MWCfp ;
|
157 |
#elif TRNG == TKISS
|
158 |
float x=KISSfp ;
|
159 |
float y=KISSfp ;
|
160 |
#endif
|
161 |
#elif TYPE == TFP64
|
162 |
#define THEONE 1.0f
|
163 |
#if TRNG == TCONG
|
164 |
double x=(double)CONGfp ;
|
165 |
double y=(double)CONGfp ;
|
166 |
#elif TRNG == TSHR3
|
167 |
double x=(double)SHR3fp ;
|
168 |
double y=(double)SHR3fp ;
|
169 |
#elif TRNG == TMWC
|
170 |
double x=(double)MWCfp ;
|
171 |
double y=(double)MWCfp ;
|
172 |
#elif TRNG == TKISS
|
173 |
double x=(double)KISSfp ;
|
174 |
double y=(double)KISSfp ;
|
175 |
#endif
|
176 |
#endif
|
177 |
|
178 |
ulong inside=((x*x+y*y) <= THEONE) ? 1:0;
|
179 |
total+=inside;
|
180 |
}
|
181 |
|
182 |
return(total);
|
183 |
}
|
184 |
|
185 |
__global__ void MainLoopBlocks(ulong *s,ulong iterations,uint seed_w,uint seed_z)
|
186 |
{
|
187 |
ulong total=MainLoop(iterations,seed_z,seed_w,blockIdx.x);
|
188 |
s[blockIdx.x]=total;
|
189 |
__syncthreads();
|
190 |
|
191 |
}
|
192 |
|
193 |
__global__ void MainLoopThreads(ulong *s,ulong iterations,uint seed_w,uint seed_z)
|
194 |
{
|
195 |
ulong total=MainLoop(iterations,seed_z,seed_w,threadIdx.x);
|
196 |
s[threadIdx.x]=total;
|
197 |
__syncthreads();
|
198 |
|
199 |
}
|
200 |
|
201 |
__global__ void MainLoopHybrid(ulong *s,ulong iterations,uint seed_w,uint seed_z)
|
202 |
{
|
203 |
ulong total=MainLoop(iterations,seed_z,seed_w,blockDim.x*blockIdx.x+threadIdx.x);
|
204 |
s[blockDim.x*blockIdx.x+threadIdx.x]=total;
|
205 |
__syncthreads();
|
206 |
}
|
207 |
|
208 |
"""
|
209 |
|
210 |
KERNEL_CODE_OPENCL="""
|
211 |
#define TCONG 0
|
212 |
#define TSHR3 1
|
213 |
#define TMWC 2
|
214 |
#define TKISS 3
|
215 |
|
216 |
#define TINT32 0
|
217 |
#define TINT64 1
|
218 |
#define TFP32 2
|
219 |
#define TFP64 3
|
220 |
|
221 |
// Marsaglia RNG very simple implementation
|
222 |
#define znew ((z=36969*(z&65535)+(z>>16))<<16)
|
223 |
#define wnew ((w=18000*(w&65535)+(w>>16))&65535)
|
224 |
|
225 |
#define MWC (znew+wnew)
|
226 |
#define SHR3 (jsr=(jsr=(jsr=jsr^(jsr<<17))^(jsr>>13))^(jsr<<5))
|
227 |
#define CONG (jcong=69069*jcong+1234567)
|
228 |
#define KISS ((MWC^CONG)+SHR3)
|
229 |
|
230 |
#define MWCfp MWC * 2.328306435454494e-10f
|
231 |
#define KISSfp KISS * 2.328306435454494e-10f
|
232 |
#define CONGfp CONG * 2.328306435454494e-10f
|
233 |
#define SHR3fp SHR3 * 2.328306435454494e-10f
|
234 |
|
235 |
ulong MainLoop(ulong iterations,uint seed_z,uint seed_w,size_t work)
|
236 |
{
|
237 |
|
238 |
#if TRNG == TCONG
|
239 |
uint jcong=seed_z+work;
|
240 |
#elif TRNG == TSHR3
|
241 |
uint jsr=seed_w+work;
|
242 |
#elif TRNG == TMWC
|
243 |
uint z=seed_z+work;
|
244 |
uint w=seed_w+work;
|
245 |
#elif TRNG == TKISS
|
246 |
uint jcong=seed_z+work;
|
247 |
uint jsr=seed_w+work;
|
248 |
uint z=seed_z-work;
|
249 |
uint w=seed_w-work;
|
250 |
#endif
|
251 |
|
252 |
ulong total=0;
|
253 |
|
254 |
for (ulong i=0;i<iterations;i++) {
|
255 |
|
256 |
#if TYPE == TINT32
|
257 |
#define THEONE 1073741824
|
258 |
#if TRNG == TCONG
|
259 |
uint x=CONG>>17 ;
|
260 |
uint y=CONG>>17 ;
|
261 |
#elif TRNG == TSHR3
|
262 |
uint x=SHR3>>17 ;
|
263 |
uint y=SHR3>>17 ;
|
264 |
#elif TRNG == TMWC
|
265 |
uint x=MWC>>17 ;
|
266 |
uint y=MWC>>17 ;
|
267 |
#elif TRNG == TKISS
|
268 |
uint x=KISS>>17 ;
|
269 |
uint y=KISS>>17 ;
|
270 |
#endif
|
271 |
#elif TYPE == TINT64
|
272 |
#define THEONE 4611686018427387904
|
273 |
#if TRNG == TCONG
|
274 |
ulong x=(ulong)(CONG>>1) ;
|
275 |
ulong y=(ulong)(CONG>>1) ;
|
276 |
#elif TRNG == TSHR3
|
277 |
ulong x=(ulong)(SHR3>>1) ;
|
278 |
ulong y=(ulong)(SHR3>>1) ;
|
279 |
#elif TRNG == TMWC
|
280 |
ulong x=(ulong)(MWC>>1) ;
|
281 |
ulong y=(ulong)(MWC>>1) ;
|
282 |
#elif TRNG == TKISS
|
283 |
ulong x=(ulong)(KISS>>1) ;
|
284 |
ulong y=(ulong)(KISS>>1) ;
|
285 |
#endif
|
286 |
#elif TYPE == TFP32
|
287 |
#define THEONE 1.0f
|
288 |
#if TRNG == TCONG
|
289 |
float x=CONGfp ;
|
290 |
float y=CONGfp ;
|
291 |
#elif TRNG == TSHR3
|
292 |
float x=SHR3fp ;
|
293 |
float y=SHR3fp ;
|
294 |
#elif TRNG == TMWC
|
295 |
float x=MWCfp ;
|
296 |
float y=MWCfp ;
|
297 |
#elif TRNG == TKISS
|
298 |
float x=KISSfp ;
|
299 |
float y=KISSfp ;
|
300 |
#endif
|
301 |
#elif TYPE == TFP64
|
302 |
#pragma OPENCL EXTENSION cl_khr_fp64: enable
|
303 |
#define THEONE 1.0f
|
304 |
#if TRNG == TCONG
|
305 |
double x=(double)CONGfp ;
|
306 |
double y=(double)CONGfp ;
|
307 |
#elif TRNG == TSHR3
|
308 |
double x=(double)SHR3fp ;
|
309 |
double y=(double)SHR3fp ;
|
310 |
#elif TRNG == TMWC
|
311 |
double x=(double)MWCfp ;
|
312 |
double y=(double)MWCfp ;
|
313 |
#elif TRNG == TKISS
|
314 |
double x=(double)KISSfp ;
|
315 |
double y=(double)KISSfp ;
|
316 |
#endif
|
317 |
#endif
|
318 |
|
319 |
ulong inside=((x*x+y*y) <= THEONE) ? 1:0;
|
320 |
total+=inside;
|
321 |
}
|
322 |
|
323 |
return(total);
|
324 |
}
|
325 |
|
326 |
__kernel void MainLoopGlobal(__global ulong *s,ulong iterations,uint seed_w,uint seed_z)
|
327 |
{
|
328 |
ulong total=MainLoop(iterations,seed_z,seed_w,get_global_id(0));
|
329 |
barrier(CLK_GLOBAL_MEM_FENCE);
|
330 |
s[get_global_id(0)]=total;
|
331 |
}
|
332 |
|
333 |
|
334 |
__kernel void MainLoopLocal(__global ulong *s,ulong iterations,uint seed_w,uint seed_z)
|
335 |
{
|
336 |
ulong total=MainLoop(iterations,seed_z,seed_w,get_local_id(0));
|
337 |
barrier(CLK_LOCAL_MEM_FENCE);
|
338 |
s[get_local_id(0)]=total;
|
339 |
}
|
340 |
|
341 |
__kernel void MainLoopHybrid(__global ulong *s,ulong iterations,uint seed_w,uint seed_z)
|
342 |
{
|
343 |
ulong total=MainLoop(iterations,seed_z,seed_w,get_global_id(0));
|
344 |
barrier(CLK_GLOBAL_MEM_FENCE || CLK_LOCAL_MEM_FENCE);
|
345 |
s[get_global_id(0)]=total;
|
346 |
}
|
347 |
|
348 |
"""
|
349 |
|
350 |
def MetropolisCuda(circle,iterations,steps,jobs,ParaStyle,RNG,ValueType): |
351 |
|
352 |
# Avec PyCUDA autoinit, rien a faire !
|
353 |
|
354 |
circleCU = cuda.InOut(circle) |
355 |
|
356 |
try:
|
357 |
mod = SourceModule(KERNEL_CODE_CUDA,options=['--compiler-options','-Wall -DTRNG=%i -DTYPE=%s' % (Marsaglia[RNG],Computing[ValueType])]) |
358 |
except:
|
359 |
print "Compilation seems to brake" |
360 |
|
361 |
MetropolisBlocksCU=mod.get_function("MainLoopBlocks")
|
362 |
MetropolisJobsCU=mod.get_function("MainLoopThreads")
|
363 |
MetropolisHybridCU=mod.get_function("MainLoopHybrid")
|
364 |
|
365 |
start = pycuda.driver.Event() |
366 |
stop = pycuda.driver.Event() |
367 |
|
368 |
MyPi=numpy.zeros(steps) |
369 |
MyDuration=numpy.zeros(steps) |
370 |
|
371 |
if iterations%jobs==0: |
372 |
iterationsCL=numpy.uint64(iterations/jobs) |
373 |
iterationsNew=iterationsCL*jobs |
374 |
else:
|
375 |
iterationsCL=numpy.uint64(iterations/jobs+1)
|
376 |
iterationsNew=iterations |
377 |
|
378 |
for i in range(steps): |
379 |
start.record() |
380 |
start.synchronize() |
381 |
if ParaStyle=='Blocks': |
382 |
MetropolisBlocksCU(circleCU, |
383 |
numpy.uint64(iterationsCL), |
384 |
numpy.uint32(nprnd(2**30/jobs)), |
385 |
numpy.uint32(nprnd(2**30/jobs)), |
386 |
grid=(jobs,1),
|
387 |
block=(1,1,1)) |
388 |
print "%s with (WorkItems/Threads)=(%i,%i) %s method done" % \ |
389 |
(Alu,jobs,1,ParaStyle)
|
390 |
elif ParaStyle=='Hybrid': |
391 |
threads=BestThreadsNumber(jobs) |
392 |
MetropolisHybridCU(circleCU, |
393 |
numpy.uint64(iterationsCL), |
394 |
numpy.uint32(nprnd(2**30/jobs)), |
395 |
numpy.uint32(nprnd(2**30/jobs)), |
396 |
grid=(jobs,1),
|
397 |
block=(threads,1,1)) |
398 |
print "%s with (WorkItems/Threads)=(%i,%i) %s method done" % \ |
399 |
(Alu,jobs/threads,threads,ParaStyle) |
400 |
else:
|
401 |
MetropolisJobsCU(circleCU, |
402 |
numpy.uint64(iterationsCL), |
403 |
numpy.uint32(nprnd(2**30/jobs)), |
404 |
numpy.uint32(nprnd(2**30/jobs)), |
405 |
grid=(1,1), |
406 |
block=(jobs,1,1)) |
407 |
print "%s with (WorkItems/Threads)=(%i,%i) %s method done" % \ |
408 |
(Alu,jobs,1,ParaStyle)
|
409 |
stop.record() |
410 |
stop.synchronize() |
411 |
|
412 |
elapsed = start.time_till(stop)*1e-3
|
413 |
|
414 |
MyDuration[i]=elapsed |
415 |
AllPi=4./numpy.float32(iterationsCL)*circle.astype(numpy.float32)
|
416 |
MyPi[i]=numpy.median(AllPi) |
417 |
print MyPi[i],numpy.std(AllPi),MyDuration[i]
|
418 |
|
419 |
|
420 |
print jobs,numpy.mean(MyDuration),numpy.median(MyDuration),numpy.std(MyDuration),numpy.mean(Iterations/MyDuration),numpy.median(Iterations/MyDuration),numpy.std(Iterations/MyDuration)
|
421 |
|
422 |
return(numpy.mean(MyDuration),numpy.median(MyDuration),numpy.std(MyDuration),numpy.mean(Iterations/MyDuration),numpy.median(Iterations/MyDuration),numpy.std(Iterations/MyDuration))
|
423 |
|
424 |
|
425 |
def MetropolisOpenCL(circle,iterations,steps,jobs,ParaStyle,Alu,Device, |
426 |
RNG,ValueType): |
427 |
|
428 |
# Initialisation des variables en les CASTant correctement
|
429 |
|
430 |
if Device==0: |
431 |
print "Enter XPU selector based on ALU type: first selected" |
432 |
HasXPU=False
|
433 |
# Default Device selection based on ALU Type
|
434 |
for platform in cl.get_platforms(): |
435 |
for device in platform.get_devices(): |
436 |
deviceType=cl.device_type.to_string(device.type) |
437 |
if deviceType=="GPU" and Alu=="GPU" and not HasXPU: |
438 |
XPU=device |
439 |
print "GPU selected: ",device.name |
440 |
HasXPU=True
|
441 |
if deviceType=="CPU" and Alu=="CPU" and not HasXPU: |
442 |
XPU=device |
443 |
print "CPU selected: ",device.name |
444 |
HasXPU=True
|
445 |
else:
|
446 |
print "Enter XPU selector based on device number & ALU type" |
447 |
Id=1
|
448 |
HasXPU=False
|
449 |
# Primary Device selection based on Device Id
|
450 |
for platform in cl.get_platforms(): |
451 |
for device in platform.get_devices(): |
452 |
deviceType=cl.device_type.to_string(device.type) |
453 |
if Id==Device and Alu==deviceType and HasXPU==False: |
454 |
XPU=device |
455 |
print "CPU/GPU selected: ",device.name.lstrip() |
456 |
HasXPU=True
|
457 |
Id=Id+1
|
458 |
if HasXPU==False: |
459 |
print "No XPU #%i of type %s found in all of %i devices, sorry..." % \ |
460 |
(Device,Alu,Id-1)
|
461 |
return(0,0,0) |
462 |
|
463 |
# Je cree le contexte et la queue pour son execution
|
464 |
ctx = cl.Context([XPU]) |
465 |
queue = cl.CommandQueue(ctx, |
466 |
properties=cl.command_queue_properties.PROFILING_ENABLE) |
467 |
|
468 |
# Je recupere les flag possibles pour les buffers
|
469 |
mf = cl.mem_flags |
470 |
|
471 |
circleCL = cl.Buffer(ctx, mf.WRITE_ONLY|mf.COPY_HOST_PTR,hostbuf=circle) |
472 |
|
473 |
|
474 |
MetropolisCL = cl.Program(ctx,KERNEL_CODE_OPENCL).build( \ |
475 |
options = "-cl-mad-enable -cl-fast-relaxed-math -DTRNG=%i -DTYPE=%s" % (Marsaglia[RNG],Computing[ValueType]))
|
476 |
|
477 |
i=0
|
478 |
|
479 |
MyPi=numpy.zeros(steps) |
480 |
MyDuration=numpy.zeros(steps) |
481 |
|
482 |
if iterations%jobs==0: |
483 |
iterationsCL=numpy.uint64(iterations/jobs) |
484 |
iterationsNew=numpy.uint64(iterationsCL*jobs) |
485 |
else:
|
486 |
iterationsCL=numpy.uint64(iterations/jobs+1)
|
487 |
iterationsNew=numpy.uint64(iterations) |
488 |
|
489 |
for i in range(steps): |
490 |
|
491 |
if ParaStyle=='Blocks': |
492 |
# Call OpenCL kernel
|
493 |
# (1,) is Global work size (only 1 work size)
|
494 |
# (1,) is local work size
|
495 |
# circleCL is lattice translated in CL format
|
496 |
# SeedZCL is lattice translated in CL format
|
497 |
# SeedWCL is lattice translated in CL format
|
498 |
# step is number of iterations
|
499 |
CLLaunch=MetropolisCL.MainLoopGlobal(queue,(jobs,),None,
|
500 |
circleCL, |
501 |
numpy.uint64(iterationsCL), |
502 |
numpy.uint32(nprnd(2**30/jobs)), |
503 |
numpy.uint32(nprnd(2**30/jobs))) |
504 |
print "%s with (WorkItems/Threads)=(%i,%i) %s method done" % \ |
505 |
(Alu,jobs,1,ParaStyle)
|
506 |
elif ParaStyle=='Hybrid': |
507 |
threads=BestThreadsNumber(jobs) |
508 |
# en OpenCL, necessaire de mettre un Global_id identique au local_id
|
509 |
CLLaunch=MetropolisCL.MainLoopHybrid(queue,(jobs,),(threads,), |
510 |
circleCL, |
511 |
numpy.uint64(iterationsCL), |
512 |
numpy.uint32(nprnd(2**30/jobs)), |
513 |
numpy.uint32(nprnd(2**30/jobs))) |
514 |
|
515 |
print "%s with (WorkItems/Threads)=(%i,%i) %s method done" % \ |
516 |
(Alu,jobs/threads,threads,ParaStyle) |
517 |
else:
|
518 |
# en OpenCL, necessaire de mettre un Global_id identique au local_id
|
519 |
CLLaunch=MetropolisCL.MainLoopLocal(queue,(jobs,),(jobs,), |
520 |
circleCL, |
521 |
numpy.uint64(iterationsCL), |
522 |
numpy.uint32(nprnd(2**30/jobs)), |
523 |
numpy.uint32(nprnd(2**30/jobs))) |
524 |
print "%s with %i %s done" % (Alu,jobs,ParaStyle) |
525 |
|
526 |
CLLaunch.wait() |
527 |
cl.enqueue_copy(queue, circle, circleCL).wait() |
528 |
|
529 |
elapsed = 1e-9*(CLLaunch.profile.end - CLLaunch.profile.start)
|
530 |
|
531 |
print circle,numpy.mean(circle),numpy.median(circle),numpy.std(circle)
|
532 |
MyDuration[i]=elapsed |
533 |
AllPi=4./numpy.float32(iterationsCL)*circle.astype(numpy.float32)
|
534 |
MyPi[i]=numpy.median(AllPi) |
535 |
print MyPi[i],numpy.std(AllPi),MyDuration[i]
|
536 |
|
537 |
circleCL.release() |
538 |
|
539 |
print jobs,numpy.mean(MyDuration),numpy.median(MyDuration),numpy.std(MyDuration),numpy.mean(Iterations/MyDuration),numpy.median(Iterations/MyDuration),numpy.std(Iterations/MyDuration)
|
540 |
|
541 |
return(numpy.mean(MyDuration),numpy.median(MyDuration),numpy.std(MyDuration),numpy.mean(Iterations/MyDuration),numpy.median(Iterations/MyDuration),numpy.std(Iterations/MyDuration))
|
542 |
|
543 |
|
544 |
def FitAndPrint(N,D,Curves): |
545 |
|
546 |
from scipy.optimize import curve_fit |
547 |
import matplotlib.pyplot as plt |
548 |
|
549 |
try:
|
550 |
coeffs_Amdahl, matcov_Amdahl = curve_fit(Amdahl, N, D) |
551 |
|
552 |
D_Amdahl=Amdahl(N,coeffs_Amdahl[0],coeffs_Amdahl[1],coeffs_Amdahl[2]) |
553 |
coeffs_Amdahl[1]=coeffs_Amdahl[1]*coeffs_Amdahl[0]/D[0] |
554 |
coeffs_Amdahl[2]=coeffs_Amdahl[2]*coeffs_Amdahl[0]/D[0] |
555 |
coeffs_Amdahl[0]=D[0] |
556 |
print "Amdahl Normalized: T=%.2f(%.6f+%.6f/N)" % \ |
557 |
(coeffs_Amdahl[0],coeffs_Amdahl[1],coeffs_Amdahl[2]) |
558 |
except:
|
559 |
print "Impossible to fit for Amdahl law : only %i elements" % len(D) |
560 |
|
561 |
try:
|
562 |
coeffs_AmdahlR, matcov_AmdahlR = curve_fit(AmdahlR, N, D) |
563 |
|
564 |
D_AmdahlR=AmdahlR(N,coeffs_AmdahlR[0],coeffs_AmdahlR[1]) |
565 |
coeffs_AmdahlR[1]=coeffs_AmdahlR[1]*coeffs_AmdahlR[0]/D[0] |
566 |
coeffs_AmdahlR[0]=D[0] |
567 |
print "Amdahl Reduced Normalized: T=%.2f(%.6f+%.6f/N)" % \ |
568 |
(coeffs_AmdahlR[0],1-coeffs_AmdahlR[1],coeffs_AmdahlR[1]) |
569 |
|
570 |
except:
|
571 |
print "Impossible to fit for Reduced Amdahl law : only %i elements" % len(D) |
572 |
|
573 |
try:
|
574 |
coeffs_Mylq, matcov_Mylq = curve_fit(Mylq, N, D) |
575 |
|
576 |
coeffs_Mylq[1]=coeffs_Mylq[1]*coeffs_Mylq[0]/D[0] |
577 |
# coeffs_Mylq[2]=coeffs_Mylq[2]*coeffs_Mylq[0]/D[0]
|
578 |
coeffs_Mylq[3]=coeffs_Mylq[3]*coeffs_Mylq[0]/D[0] |
579 |
coeffs_Mylq[0]=D[0] |
580 |
print "Mylq Normalized : T=%.2f(%.6f+%.6f/N)+%.6f*N" % (coeffs_Mylq[0], |
581 |
coeffs_Mylq[1],
|
582 |
coeffs_Mylq[3],
|
583 |
coeffs_Mylq[2])
|
584 |
D_Mylq=Mylq(N,coeffs_Mylq[0],coeffs_Mylq[1],coeffs_Mylq[2], |
585 |
coeffs_Mylq[3])
|
586 |
except:
|
587 |
print "Impossible to fit for Mylq law : only %i elements" % len(D) |
588 |
|
589 |
try:
|
590 |
coeffs_Mylq2, matcov_Mylq2 = curve_fit(Mylq2, N, D) |
591 |
|
592 |
coeffs_Mylq2[1]=coeffs_Mylq2[1]*coeffs_Mylq2[0]/D[0] |
593 |
# coeffs_Mylq2[2]=coeffs_Mylq2[2]*coeffs_Mylq2[0]/D[0]
|
594 |
# coeffs_Mylq2[3]=coeffs_Mylq2[3]*coeffs_Mylq2[0]/D[0]
|
595 |
coeffs_Mylq2[4]=coeffs_Mylq2[4]*coeffs_Mylq2[0]/D[0] |
596 |
coeffs_Mylq2[0]=D[0] |
597 |
print "Mylq 2nd order Normalized: T=%.2f(%.6f+%.6f/N)+%.6f*N+%.6f*N^2" % \ |
598 |
(coeffs_Mylq2[0],coeffs_Mylq2[1], |
599 |
coeffs_Mylq2[4],coeffs_Mylq2[2],coeffs_Mylq2[3]) |
600 |
|
601 |
except:
|
602 |
print "Impossible to fit for 2nd order Mylq law : only %i elements" % len(D) |
603 |
|
604 |
if Curves:
|
605 |
plt.xlabel("Number of Threads/work Items")
|
606 |
plt.ylabel("Total Elapsed Time")
|
607 |
|
608 |
Experience,=plt.plot(N,D,'ro')
|
609 |
try:
|
610 |
pAmdahl,=plt.plot(N,D_Amdahl,label="Loi de Amdahl")
|
611 |
pMylq,=plt.plot(N,D_Mylq,label="Loi de Mylq")
|
612 |
except:
|
613 |
print "Fit curves seem not to be available" |
614 |
|
615 |
plt.legend() |
616 |
plt.show() |
617 |
|
618 |
if __name__=='__main__': |
619 |
|
620 |
# Set defaults values
|
621 |
|
622 |
# Alu can be CPU, GPU or ACCELERATOR
|
623 |
Alu='CPU'
|
624 |
# Id of GPU : 1 is for first find !
|
625 |
Device=0
|
626 |
# GPU style can be Cuda (Nvidia implementation) or OpenCL
|
627 |
GpuStyle='OpenCL'
|
628 |
# Parallel distribution can be on Threads or Blocks
|
629 |
ParaStyle='Blocks'
|
630 |
# Iterations is integer
|
631 |
Iterations=100000000
|
632 |
# JobStart in first number of Jobs to explore
|
633 |
JobStart=1
|
634 |
# JobEnd is last number of Jobs to explore
|
635 |
JobEnd=16
|
636 |
# JobStep is the step of Jobs to explore
|
637 |
JobStep=1
|
638 |
# Redo is the times to redo the test to improve metrology
|
639 |
Redo=1
|
640 |
# OutMetrology is method for duration estimation : False is GPU inside
|
641 |
OutMetrology=False
|
642 |
Metrology='InMetro'
|
643 |
# Curves is True to print the curves
|
644 |
Curves=False
|
645 |
# Fit is True to print the curves
|
646 |
Fit=False
|
647 |
# Marsaglia RNG
|
648 |
RNG='KISS'
|
649 |
# Value type : INT32, INT64, FP32, FP64
|
650 |
ValueType='INT32'
|
651 |
|
652 |
try:
|
653 |
opts, args = getopt.getopt(sys.argv[1:],"hocfa:g:p:i:s:e:t:r:d:m:v:",["alu=","gpustyle=","parastyle=","iterations=","jobstart=","jobend=","jobstep=","redo=","device=","marsaglia=","valuetype="]) |
654 |
except getopt.GetoptError:
|
655 |
print '%s -o (Out of Core Metrology) -c (Print Curves) -f (Fit to Amdahl Law) -a <CPU/GPU/ACCELERATOR> -d <DeviceId> -g <CUDA/OpenCL> -p <Threads/Hybrid/Blocks> -i <Iterations> -s <JobStart> -e <JobEnd> -t <JobStep> -r <RedoToImproveStats> -m <SHR3/CONG/MWC/KISS> -v <INT32/INT64/FP32/FP64> ' % sys.argv[0] |
656 |
sys.exit(2)
|
657 |
|
658 |
for opt, arg in opts: |
659 |
if opt == '-h': |
660 |
print '%s -o (Out of Core Metrology) -c (Print Curves) -f (Fit to Amdahl Law) -a <CPU/GPU/ACCELERATOR> -d <DeviceId> -g <CUDA/OpenCL> -p <Threads/Hybrid/Blocks> -i <Iterations> -s <JobStart> -e <JobEnd> -t <JobStep> -r <RedoToImproveStats> -m <SHR3/CONG/MWC/KISS> -v <INT32/INT64/FP32/FP64>' % sys.argv[0] |
661 |
|
662 |
print "\nInformations about devices detected under OpenCL:" |
663 |
# For PyOpenCL import
|
664 |
try:
|
665 |
import pyopencl as cl |
666 |
Id=1
|
667 |
for platform in cl.get_platforms(): |
668 |
for device in platform.get_devices(): |
669 |
deviceType=cl.device_type.to_string(device.type) |
670 |
print "Device #%i from %s of type %s : %s" % (Id,platform.vendor.lstrip(),deviceType,device.name.lstrip()) |
671 |
Id=Id+1
|
672 |
|
673 |
print
|
674 |
sys.exit() |
675 |
except ImportError: |
676 |
print "Your platform does not seem to support OpenCL" |
677 |
|
678 |
elif opt == '-o': |
679 |
OutMetrology=True
|
680 |
Metrology='OutMetro'
|
681 |
elif opt == '-c': |
682 |
Curves=True
|
683 |
elif opt == '-f': |
684 |
Fit=True
|
685 |
elif opt in ("-a", "--alu"): |
686 |
Alu = arg |
687 |
elif opt in ("-d", "--device"): |
688 |
Device = int(arg)
|
689 |
elif opt in ("-g", "--gpustyle"): |
690 |
GpuStyle = arg |
691 |
elif opt in ("-p", "--parastyle"): |
692 |
ParaStyle = arg |
693 |
elif opt in ("-m", "--marsaglia"): |
694 |
RNG = arg |
695 |
elif opt in ("-v", "--valuetype"): |
696 |
ValueType = arg |
697 |
elif opt in ("-i", "--iterations"): |
698 |
Iterations = numpy.uint64(arg) |
699 |
elif opt in ("-s", "--jobstart"): |
700 |
JobStart = int(arg)
|
701 |
elif opt in ("-e", "--jobend"): |
702 |
JobEnd = int(arg)
|
703 |
elif opt in ("-t", "--jobstep"): |
704 |
JobStep = int(arg)
|
705 |
elif opt in ("-r", "--redo"): |
706 |
Redo = int(arg)
|
707 |
|
708 |
if Alu=='CPU' and GpuStyle=='CUDA': |
709 |
print "Alu can't be CPU for CUDA, set Alu to GPU" |
710 |
Alu='GPU'
|
711 |
|
712 |
if ParaStyle not in ('Blocks','Threads','Hybrid'): |
713 |
print "%s not exists, ParaStyle set as Threads !" % ParaStyle |
714 |
ParaStyle='Threads'
|
715 |
|
716 |
print "Compute unit : %s" % Alu |
717 |
print "Device Identification : %s" % Device |
718 |
print "GpuStyle used : %s" % GpuStyle |
719 |
print "Parallel Style used : %s" % ParaStyle |
720 |
print "Iterations : %s" % Iterations |
721 |
print "Number of threads on start : %s" % JobStart |
722 |
print "Number of threads on end : %s" % JobEnd |
723 |
print "Number of redo : %s" % Redo |
724 |
print "Metrology done out of CPU/GPU : %r" % OutMetrology |
725 |
print "Type of Marsaglia RNG used : %s" % RNG |
726 |
print "Type of variable : %s" % ValueType |
727 |
|
728 |
if GpuStyle=='CUDA': |
729 |
try:
|
730 |
# For PyCUDA import
|
731 |
import pycuda.driver as cuda |
732 |
import pycuda.gpuarray as gpuarray |
733 |
import pycuda.autoinit |
734 |
from pycuda.compiler import SourceModule |
735 |
except ImportError: |
736 |
print "Platform does not seem to support CUDA" |
737 |
|
738 |
if GpuStyle=='OpenCL': |
739 |
try:
|
740 |
# For PyOpenCL import
|
741 |
import pyopencl as cl |
742 |
Id=1
|
743 |
for platform in cl.get_platforms(): |
744 |
for device in platform.get_devices(): |
745 |
deviceType=cl.device_type.to_string(device.type) |
746 |
print "Device #%i from %s of type %s : %s" % (Id,platform.vendor.lstrip(),deviceType,device.name.lstrip()) |
747 |
|
748 |
if Id == Device:
|
749 |
# Set the Alu as detected Device Type
|
750 |
Alu=deviceType |
751 |
Id=Id+1
|
752 |
except ImportError: |
753 |
print "Platform does not seem to support CUDA" |
754 |
|
755 |
average=numpy.array([]).astype(numpy.float32) |
756 |
median=numpy.array([]).astype(numpy.float32) |
757 |
stddev=numpy.array([]).astype(numpy.float32) |
758 |
averageRate=numpy.array([]).astype(numpy.float32) |
759 |
medianRate=numpy.array([]).astype(numpy.float32) |
760 |
stddevRate=numpy.array([]).astype(numpy.float32) |
761 |
|
762 |
ExploredJobs=numpy.array([]).astype(numpy.uint32) |
763 |
|
764 |
Jobs=JobStart |
765 |
|
766 |
while Jobs <= JobEnd:
|
767 |
avg,med,std=0,0,0 |
768 |
ExploredJobs=numpy.append(ExploredJobs,Jobs) |
769 |
circle=numpy.zeros(Jobs).astype(numpy.uint64) |
770 |
|
771 |
if OutMetrology:
|
772 |
duration=numpy.array([]).astype(numpy.float32) |
773 |
rate=numpy.array([]).astype(numpy.float32) |
774 |
for i in range(Redo): |
775 |
start=time.time() |
776 |
if GpuStyle=='CUDA': |
777 |
try:
|
778 |
a,m,s,aR,mR,sR=MetropolisCuda(circle,Iterations,1,Jobs,ParaStyle,RNG,ValueType)
|
779 |
except:
|
780 |
print "Problem with %i // computations on Cuda" % Jobs |
781 |
elif GpuStyle=='OpenCL': |
782 |
try:
|
783 |
a,m,s,aR,mR,sR=MetropolisOpenCL(circle,Iterations,1,Jobs,ParaStyle,Alu,Device,RNG,ValueType)
|
784 |
except:
|
785 |
print "Problem with %i // computations on OpenCL" % Jobs |
786 |
duration=numpy.append(duration,time.time()-start) |
787 |
rate=numpy.append(rate,Iterations/(time.time()-start)) |
788 |
if (a,m,s) != (0,0,0): |
789 |
avg=numpy.mean(duration) |
790 |
med=numpy.median(duration) |
791 |
std=numpy.std(duration) |
792 |
avgR=numpy.mean(Iterations/duration) |
793 |
medR=numpy.median(Iterations/duration) |
794 |
stdR=numpy.std(Iterations/duration) |
795 |
else:
|
796 |
print "Values seem to be wrong..." |
797 |
else:
|
798 |
if GpuStyle=='CUDA': |
799 |
try:
|
800 |
avg,med,std,avgR,medR,stdR=MetropolisCuda(circle,Iterations,Redo,Jobs,ParaStyle,RNG,ValueType) |
801 |
except:
|
802 |
print "Problem with %i // computations on Cuda" % Jobs |
803 |
elif GpuStyle=='OpenCL': |
804 |
try:
|
805 |
avg,med,std,avgR,medR,stdR=MetropolisOpenCL(circle,Iterations,Redo,Jobs,ParaStyle,Alu,Device,RNG,ValueType) |
806 |
except:
|
807 |
print "Problem with %i // computations on OpenCL" % Jobs |
808 |
|
809 |
if (avg,med,std) != (0,0,0): |
810 |
print "jobs,avg,med,std",Jobs,avg,med,std |
811 |
average=numpy.append(average,avg) |
812 |
median=numpy.append(median,med) |
813 |
stddev=numpy.append(stddev,std) |
814 |
averageRate=numpy.append(averageRate,avgR) |
815 |
medianRate=numpy.append(medianRate,medR) |
816 |
stddevRate=numpy.append(stddevRate,stdR) |
817 |
else:
|
818 |
print "Values seem to be wrong..." |
819 |
#THREADS*=2
|
820 |
if len(average)!=0: |
821 |
averageRate=averageRate.astype(int)
|
822 |
medianRate=medianRate.astype(int)
|
823 |
stddevRate=stddevRate.astype(int)
|
824 |
numpy.savez("Pi_%s_%s_%s_%s_%s_%s_%i_%.8i_Device%i_%s_%s" % (ValueType,RNG,Alu,GpuStyle,ParaStyle,JobStart,JobEnd,Iterations,Device,Metrology,gethostname()),(ExploredJobs,average,median,stddev,averageRate,medianRate,stddevRate))
|
825 |
ToSave=[ ExploredJobs,average,median,stddev,averageRate,medianRate,stddevRate ] |
826 |
numpy.savetxt("Pi_%s_%s_%s_%s_%s_%s_%i_%.8i_Device%i_%s_%s" % (ValueType,RNG,Alu,GpuStyle,ParaStyle,JobStart,JobEnd,Iterations,Device,Metrology,gethostname()),numpy.transpose(ToSave),fmt='%i %e %e %e %i %i %i') |
827 |
Jobs+=JobStep |
828 |
|
829 |
if Fit:
|
830 |
FitAndPrint(ExploredJobs,median,Curves) |