root / Pi / GPU / Pi-GPU.py @ 7
Historique | Voir | Annoter | Télécharger (18,28 ko)
1 | 7 | equemene | #!/usr/bin/env python
|
---|---|---|---|
2 | 7 | equemene | |
3 | 7 | equemene | #
|
4 | 7 | equemene | # Pi-by-MC using PyCUDA/PyOpenCL
|
5 | 7 | equemene | #
|
6 | 7 | equemene | # CC BY-NC-SA 2011 : <emmanuel.quemener@ens-lyon.fr>
|
7 | 7 | equemene | #
|
8 | 7 | equemene | # Thanks to Andreas Klockner for PyCUDA:
|
9 | 7 | equemene | # http://mathema.tician.de/software/pycuda
|
10 | 7 | equemene | #
|
11 | 7 | equemene | |
12 | 7 | equemene | # 2013-01-01 : problems with launch timeout
|
13 | 7 | equemene | # http://stackoverflow.com/questions/497685/how-do-you-get-around-the-maximum-cuda-run-time
|
14 | 7 | equemene | # Option "Interactive" "0" in /etc/X11/xorg.conf
|
15 | 7 | equemene | |
16 | 7 | equemene | # Common tools
|
17 | 7 | equemene | import numpy |
18 | 7 | equemene | from numpy.random import randint as nprnd |
19 | 7 | equemene | import sys |
20 | 7 | equemene | import getopt |
21 | 7 | equemene | import time |
22 | 7 | equemene | import matplotlib.pyplot as plt |
23 | 7 | equemene | import math |
24 | 7 | equemene | from scipy.optimize import curve_fit |
25 | 7 | equemene | from socket import gethostname |
26 | 7 | equemene | |
27 | 7 | equemene | # Predicted Amdahl Law (Reduced with s=1-p)
|
28 | 7 | equemene | def AmdahlR(N, T1, p): |
29 | 7 | equemene | return (T1*(1-p+p/N)) |
30 | 7 | equemene | |
31 | 7 | equemene | # Predicted Amdahl Law
|
32 | 7 | equemene | def Amdahl(N, T1, s, p): |
33 | 7 | equemene | return (T1*(s+p/N))
|
34 | 7 | equemene | |
35 | 7 | equemene | # Predicted Mylq Law with first order
|
36 | 7 | equemene | def Mylq(N, T1,s,c,p): |
37 | 7 | equemene | return (T1*(s+c*N+p/N))
|
38 | 7 | equemene | |
39 | 7 | equemene | # Predicted Mylq Law with second order
|
40 | 7 | equemene | def Mylq2(N, T1,s,c1,c2,p): |
41 | 7 | equemene | return (T1*(s+c1*N+c2*N*N+p/N))
|
42 | 7 | equemene | |
43 | 7 | equemene | KERNEL_CODE_CUDA="""
|
44 | 7 | equemene |
|
45 | 7 | equemene | // Marsaglia RNG very simple implementation
|
46 | 7 | equemene |
|
47 | 7 | equemene | #define znew ((z=36969*(z&65535)+(z>>16))<<16)
|
48 | 7 | equemene | #define wnew ((w=18000*(w&65535)+(w>>16))&65535)
|
49 | 7 | equemene | #define MWC (znew+wnew)
|
50 | 7 | equemene | #define SHR3 (jsr=(jsr=(jsr=jsr^(jsr<<17))^(jsr>>13))^(jsr<<5))
|
51 | 7 | equemene | #define CONG (jcong=69069*jcong+1234567)
|
52 | 7 | equemene | #define KISS ((MWC^CONG)+SHR3)
|
53 | 7 | equemene |
|
54 | 7 | equemene | #define MWCfp MWC * 2.328306435454494e-10f
|
55 | 7 | equemene | #define KISSfp KISS * 2.328306435454494e-10f
|
56 | 7 | equemene |
|
57 | 7 | equemene | __global__ void MainLoopBlocks(uint *s,uint iterations,uint seed_w,uint seed_z)
|
58 | 7 | equemene | {
|
59 | 7 | equemene | uint z=seed_z/(blockIdx.x+1);
|
60 | 7 | equemene | uint w=seed_w/(blockIdx.x+1);
|
61 | 7 | equemene |
|
62 | 7 | equemene | int total=0;
|
63 | 7 | equemene |
|
64 | 7 | equemene | for (uint i=0;i<iterations;i++) {
|
65 | 7 | equemene |
|
66 | 7 | equemene | float x=MWCfp ;
|
67 | 7 | equemene | float y=MWCfp ;
|
68 | 7 | equemene |
|
69 | 7 | equemene | // Matching test
|
70 | 7 | equemene | int inside=((x*x+y*y) < 1.0f) ? 1:0;
|
71 | 7 | equemene | total+=inside;
|
72 | 7 | equemene |
|
73 | 7 | equemene | }
|
74 | 7 | equemene |
|
75 | 7 | equemene | s[blockIdx.x]=total;
|
76 | 7 | equemene | __syncthreads();
|
77 | 7 | equemene |
|
78 | 7 | equemene | }
|
79 | 7 | equemene |
|
80 | 7 | equemene | __global__ void MainLoopThreads(uint *s,uint iterations,uint seed_w,uint seed_z)
|
81 | 7 | equemene | {
|
82 | 7 | equemene | uint z=seed_z/(threadIdx.x+1);
|
83 | 7 | equemene | uint w=seed_w/(threadIdx.x+1);
|
84 | 7 | equemene |
|
85 | 7 | equemene | int total=0;
|
86 | 7 | equemene |
|
87 | 7 | equemene | for (uint i=0;i<iterations;i++) {
|
88 | 7 | equemene |
|
89 | 7 | equemene | float x=MWCfp ;
|
90 | 7 | equemene | float y=MWCfp ;
|
91 | 7 | equemene |
|
92 | 7 | equemene | // Matching test
|
93 | 7 | equemene | int inside=((x*x+y*y) < 1.0f) ? 1:0;
|
94 | 7 | equemene | total+=inside;
|
95 | 7 | equemene |
|
96 | 7 | equemene | }
|
97 | 7 | equemene |
|
98 | 7 | equemene | s[threadIdx.x]=total;
|
99 | 7 | equemene | __syncthreads();
|
100 | 7 | equemene |
|
101 | 7 | equemene | }
|
102 | 7 | equemene |
|
103 | 7 | equemene | __global__ void MainLoopHybrid(uint *s,uint iterations,uint seed_w,uint seed_z)
|
104 | 7 | equemene | {
|
105 | 7 | equemene | uint z=seed_z/(blockDim.x*blockIdx.x+threadIdx.x+1);
|
106 | 7 | equemene | uint w=seed_w/(blockDim.x*blockIdx.x+threadIdx.x+1);
|
107 | 7 | equemene |
|
108 | 7 | equemene | int total=0;
|
109 | 7 | equemene |
|
110 | 7 | equemene | for (uint i=0;i<iterations;i++) {
|
111 | 7 | equemene |
|
112 | 7 | equemene | float x=MWCfp ;
|
113 | 7 | equemene | float y=MWCfp ;
|
114 | 7 | equemene |
|
115 | 7 | equemene | // Matching test
|
116 | 7 | equemene | int inside=((x*x+y*y) < 1.0f) ? 1:0;
|
117 | 7 | equemene | total+=inside;
|
118 | 7 | equemene |
|
119 | 7 | equemene | }
|
120 | 7 | equemene |
|
121 | 7 | equemene | s[blockDim.x*blockIdx.x+threadIdx.x]=total;
|
122 | 7 | equemene | __syncthreads();
|
123 | 7 | equemene |
|
124 | 7 | equemene | }
|
125 | 7 | equemene | """
|
126 | 7 | equemene | |
127 | 7 | equemene | KERNEL_CODE_OPENCL="""
|
128 | 7 | equemene |
|
129 | 7 | equemene | // Marsaglia RNG very simple implementation
|
130 | 7 | equemene | #define znew ((z=36969*(z&65535)+(z>>16))<<16)
|
131 | 7 | equemene | #define wnew ((w=18000*(w&65535)+(w>>16))&65535)
|
132 | 7 | equemene | #define MWC (znew+wnew)
|
133 | 7 | equemene | #define SHR3 (jsr=(jsr=(jsr=jsr^(jsr<<17))^(jsr>>13))^(jsr<<5))
|
134 | 7 | equemene | #define CONG (jcong=69069*jcong+1234567)
|
135 | 7 | equemene | #define KISS ((MWC^CONG)+SHR3)
|
136 | 7 | equemene |
|
137 | 7 | equemene | #define MWCfp MWC * 2.328306435454494e-10f
|
138 | 7 | equemene | #define KISSfp KISS * 2.328306435454494e-10f
|
139 | 7 | equemene |
|
140 | 7 | equemene | __kernel void MainLoopGlobal(__global uint *s,uint iterations,uint seed_w,uint seed_z)
|
141 | 7 | equemene | {
|
142 | 7 | equemene | uint z=seed_z/(get_global_id(0)+1);
|
143 | 7 | equemene | uint w=seed_w/(get_global_id(0)+1);
|
144 | 7 | equemene |
|
145 | 7 | equemene | int total=0;
|
146 | 7 | equemene |
|
147 | 7 | equemene | for (uint i=0;i<iterations;i++) {
|
148 | 7 | equemene |
|
149 | 7 | equemene | float x=MWCfp ;
|
150 | 7 | equemene | float y=MWCfp ;
|
151 | 7 | equemene |
|
152 | 7 | equemene | // Matching test
|
153 | 7 | equemene | int inside=((x*x+y*y) < 1.0f) ? 1:0;
|
154 | 7 | equemene | total+=inside;
|
155 | 7 | equemene | }
|
156 | 7 | equemene | s[get_global_id(0)]=total;
|
157 | 7 | equemene | barrier(CLK_GLOBAL_MEM_FENCE);
|
158 | 7 | equemene |
|
159 | 7 | equemene | }
|
160 | 7 | equemene |
|
161 | 7 | equemene | __kernel void MainLoopLocal(__global uint *s,uint iterations,uint seed_w,uint seed_z)
|
162 | 7 | equemene | {
|
163 | 7 | equemene | uint z=seed_z/(get_local_id(0)+1);
|
164 | 7 | equemene | uint w=seed_w/(get_local_id(0)+1);
|
165 | 7 | equemene |
|
166 | 7 | equemene | int total=0;
|
167 | 7 | equemene |
|
168 | 7 | equemene | for (uint i=0;i<iterations;i++) {
|
169 | 7 | equemene |
|
170 | 7 | equemene | float x=MWCfp ;
|
171 | 7 | equemene | float y=MWCfp ;
|
172 | 7 | equemene |
|
173 | 7 | equemene | // Matching test
|
174 | 7 | equemene | int inside=((x*x+y*y) < 1.0f) ? 1:0;
|
175 | 7 | equemene | total+=inside;
|
176 | 7 | equemene | }
|
177 | 7 | equemene | s[get_local_id(0)]=total;
|
178 | 7 | equemene | barrier(CLK_LOCAL_MEM_FENCE);
|
179 | 7 | equemene |
|
180 | 7 | equemene | }
|
181 | 7 | equemene |
|
182 | 7 | equemene | __kernel void MainLoopHybrid(__global uint *s,uint iterations,uint seed_w,uint seed_z)
|
183 | 7 | equemene | {
|
184 | 7 | equemene | uint z=seed_z/(get_group_id(0)*get_num_groups(0)+get_local_id(0)+1);
|
185 | 7 | equemene | uint w=seed_w/(get_group_id(0)*get_num_groups(0)+get_local_id(0)+1);
|
186 | 7 | equemene |
|
187 | 7 | equemene | // uint jsr=123456789;
|
188 | 7 | equemene | // uint jcong=380116160;
|
189 | 7 | equemene |
|
190 | 7 | equemene | int total=0;
|
191 | 7 | equemene |
|
192 | 7 | equemene | for (uint i=0;i<iterations;i++) {
|
193 | 7 | equemene |
|
194 | 7 | equemene | float x=MWCfp ;
|
195 | 7 | equemene | float y=MWCfp ;
|
196 | 7 | equemene |
|
197 | 7 | equemene | // Matching test
|
198 | 7 | equemene | int inside=((x*x+y*y) < 1.0f) ? 1:0;
|
199 | 7 | equemene | total+=inside;
|
200 | 7 | equemene | }
|
201 | 7 | equemene | barrier(CLK_LOCAL_MEM_FENCE);
|
202 | 7 | equemene | s[get_group_id(0)*get_num_groups(0)+get_local_id(0)]=total;
|
203 | 7 | equemene |
|
204 | 7 | equemene | }
|
205 | 7 | equemene | """
|
206 | 7 | equemene | |
207 | 7 | equemene | def MetropolisCuda(circle,iterations,steps,jobs,ParaStyle): |
208 | 7 | equemene | |
209 | 7 | equemene | # Avec PyCUDA autoinit, rien a faire !
|
210 | 7 | equemene | |
211 | 7 | equemene | circleCU = cuda.InOut(circle) |
212 | 7 | equemene | |
213 | 7 | equemene | mod = SourceModule(KERNEL_CODE_CUDA) |
214 | 7 | equemene | |
215 | 7 | equemene | MetropolisBlocksCU=mod.get_function("MainLoopBlocks")
|
216 | 7 | equemene | MetropolisJobsCU=mod.get_function("MainLoopThreads")
|
217 | 7 | equemene | MetropolisHybridCU=mod.get_function("MainLoopHybrid")
|
218 | 7 | equemene | |
219 | 7 | equemene | start = pycuda.driver.Event() |
220 | 7 | equemene | stop = pycuda.driver.Event() |
221 | 7 | equemene | |
222 | 7 | equemene | MyPi=numpy.zeros(steps) |
223 | 7 | equemene | MyDuration=numpy.zeros(steps) |
224 | 7 | equemene | |
225 | 7 | equemene | if iterations%jobs==0: |
226 | 7 | equemene | iterationsCL=numpy.uint32(iterations/jobs) |
227 | 7 | equemene | iterationsNew=iterationsCL*jobs |
228 | 7 | equemene | else:
|
229 | 7 | equemene | iterationsCL=numpy.uint32(iterations/jobs+1)
|
230 | 7 | equemene | iterationsNew=iterations |
231 | 7 | equemene | |
232 | 7 | equemene | for i in range(steps): |
233 | 7 | equemene | start.record() |
234 | 7 | equemene | start.synchronize() |
235 | 7 | equemene | if ParaStyle=='Blocks': |
236 | 7 | equemene | MetropolisBlocksCU(circleCU, |
237 | 7 | equemene | numpy.uint32(iterationsCL), |
238 | 7 | equemene | numpy.uint32(nprnd(2**32/jobs)), |
239 | 7 | equemene | numpy.uint32(nprnd(2**32/jobs)), |
240 | 7 | equemene | grid=(jobs,1),
|
241 | 7 | equemene | block=(1,1,1)) |
242 | 7 | equemene | print "GPU with %i %s done" % (jobs,ParaStyle) |
243 | 7 | equemene | elif ParaStyle=='Hybrid': |
244 | 7 | equemene | blocks=jobs/int(math.sqrt(float(jobs))) |
245 | 7 | equemene | MetropolisHybridCU(circleCU, |
246 | 7 | equemene | numpy.uint32(iterationsCL), |
247 | 7 | equemene | numpy.uint32(nprnd(2**32/jobs)), |
248 | 7 | equemene | numpy.uint32(nprnd(2**32/jobs)), |
249 | 7 | equemene | grid=(blocks,1),
|
250 | 7 | equemene | block=(jobs/blocks,1,1)) |
251 | 7 | equemene | print "GPU with (blocks,jobs)=(%i,%i) %s done" % (blocks,jobs/blocks,ParaStyle) |
252 | 7 | equemene | else:
|
253 | 7 | equemene | MetropolisJobsCU(circleCU, |
254 | 7 | equemene | numpy.uint32(iterationsCL), |
255 | 7 | equemene | numpy.uint32(nprnd(2**32/jobs)), |
256 | 7 | equemene | numpy.uint32(nprnd(2**32/jobs)), |
257 | 7 | equemene | grid=(1,1), |
258 | 7 | equemene | block=(jobs,1,1)) |
259 | 7 | equemene | print "GPU with %i %s done" % (jobs,ParaStyle) |
260 | 7 | equemene | stop.record() |
261 | 7 | equemene | stop.synchronize() |
262 | 7 | equemene | |
263 | 7 | equemene | #elapsed = stop.time_since(start)*1e-3
|
264 | 7 | equemene | elapsed = start.time_till(stop)*1e-3
|
265 | 7 | equemene | |
266 | 7 | equemene | #print circle,float(numpy.sum(circle))
|
267 | 7 | equemene | MyPi[i]=4.*float(numpy.sum(circle))/float(iterationsCL) |
268 | 7 | equemene | MyDuration[i]=elapsed |
269 | 7 | equemene | #print MyPi[i],MyDuration[i]
|
270 | 7 | equemene | #time.sleep(1)
|
271 | 7 | equemene | |
272 | 7 | equemene | print jobs,numpy.mean(MyDuration),numpy.median(MyDuration),numpy.std(MyDuration)
|
273 | 7 | equemene | |
274 | 7 | equemene | return(numpy.mean(MyDuration),numpy.median(MyDuration),numpy.std(MyDuration))
|
275 | 7 | equemene | |
276 | 7 | equemene | |
277 | 7 | equemene | def MetropolisOpenCL(circle,iterations,steps,jobs,ParaStyle,Alu,Device): |
278 | 7 | equemene | |
279 | 7 | equemene | # Initialisation des variables en les CASTant correctement
|
280 | 7 | equemene | |
281 | 7 | equemene | # Je detecte un peripherique GPU dans la liste des peripheriques
|
282 | 7 | equemene | # for platform in cl.get_platforms():
|
283 | 7 | equemene | # for device in platform.get_devices():
|
284 | 7 | equemene | # if cl.device_type.to_string(device.type)=='GPU':
|
285 | 7 | equemene | # GPU=device
|
286 | 7 | equemene | #print "GPU detected: ",device.name
|
287 | 7 | equemene | |
288 | 7 | equemene | HasGPU=False
|
289 | 7 | equemene | Id=1
|
290 | 7 | equemene | # Device selection based on choice (default is GPU)
|
291 | 7 | equemene | for platform in cl.get_platforms(): |
292 | 7 | equemene | for device in platform.get_devices(): |
293 | 7 | equemene | if not HasGPU: |
294 | 7 | equemene | deviceType=cl.device_type.to_string(device.type) |
295 | 7 | equemene | if deviceType=="GPU" and Alu=="GPU" and Id==Device: |
296 | 7 | equemene | GPU=device |
297 | 7 | equemene | print "GPU selected: ",device.name |
298 | 7 | equemene | HasGPU=True
|
299 | 7 | equemene | if deviceType=="CPU" and Alu=="CPU": |
300 | 7 | equemene | GPU=device |
301 | 7 | equemene | print "CPU selected: ",device.name |
302 | 7 | equemene | HasGPU=True
|
303 | 7 | equemene | Id=Id+1
|
304 | 7 | equemene | |
305 | 7 | equemene | # Je cree le contexte et la queue pour son execution
|
306 | 7 | equemene | #ctx = cl.create_some_context()
|
307 | 7 | equemene | ctx = cl.Context([GPU]) |
308 | 7 | equemene | queue = cl.CommandQueue(ctx, |
309 | 7 | equemene | properties=cl.command_queue_properties.PROFILING_ENABLE) |
310 | 7 | equemene | |
311 | 7 | equemene | # Je recupere les flag possibles pour les buffers
|
312 | 7 | equemene | mf = cl.mem_flags |
313 | 7 | equemene | |
314 | 7 | equemene | circleCL = cl.Buffer(ctx, mf.WRITE_ONLY|mf.COPY_HOST_PTR,hostbuf=circle) |
315 | 7 | equemene | |
316 | 7 | equemene | MetropolisCL = cl.Program(ctx,KERNEL_CODE_OPENCL).build( \ |
317 | 7 | equemene | options = "-cl-mad-enable -cl-fast-relaxed-math")
|
318 | 7 | equemene | |
319 | 7 | equemene | #MetropolisCL = cl.Program(ctx,KERNEL_CODE_OPENCL).build()
|
320 | 7 | equemene | |
321 | 7 | equemene | i=0
|
322 | 7 | equemene | |
323 | 7 | equemene | MyPi=numpy.zeros(steps) |
324 | 7 | equemene | MyDuration=numpy.zeros(steps) |
325 | 7 | equemene | |
326 | 7 | equemene | if iterations%jobs==0: |
327 | 7 | equemene | iterationsCL=numpy.uint32(iterations/jobs) |
328 | 7 | equemene | iterationsNew=iterationsCL*jobs |
329 | 7 | equemene | else:
|
330 | 7 | equemene | iterationsCL=numpy.uint32(iterations/jobs+1)
|
331 | 7 | equemene | iterationsNew=iterations |
332 | 7 | equemene | |
333 | 7 | equemene | blocks=int(math.sqrt(jobs))
|
334 | 7 | equemene | |
335 | 7 | equemene | for i in range(steps): |
336 | 7 | equemene | |
337 | 7 | equemene | if ParaStyle=='Blocks': |
338 | 7 | equemene | # Call OpenCL kernel
|
339 | 7 | equemene | # (1,) is Global work size (only 1 work size)
|
340 | 7 | equemene | # (1,) is local work size
|
341 | 7 | equemene | # circleCL is lattice translated in CL format
|
342 | 7 | equemene | # SeedZCL is lattice translated in CL format
|
343 | 7 | equemene | # SeedWCL is lattice translated in CL format
|
344 | 7 | equemene | # step is number of iterations
|
345 | 7 | equemene | CLLaunch=MetropolisCL.MainLoopGlobal(queue,(jobs,),None,
|
346 | 7 | equemene | circleCL, |
347 | 7 | equemene | numpy.uint32(iterationsCL), |
348 | 7 | equemene | numpy.uint32(nprnd(2**32/jobs)), |
349 | 7 | equemene | numpy.uint32(nprnd(2**32/jobs))) |
350 | 7 | equemene | print "%s with %i %s done" % (Alu,jobs,ParaStyle) |
351 | 7 | equemene | elif ParaStyle=='Hybrid': |
352 | 7 | equemene | # en OpenCL, necessaire de mettre un Global_id identique au local_id
|
353 | 7 | equemene | CLLaunch=MetropolisCL.MainLoopHybrid(queue,(blocks*blocks,),(blocks,), |
354 | 7 | equemene | circleCL, |
355 | 7 | equemene | numpy.uint32(iterationsCL), |
356 | 7 | equemene | numpy.uint32(nprnd(2**32/jobs)), |
357 | 7 | equemene | numpy.uint32(nprnd(2**32/jobs))) |
358 | 7 | equemene | print "%s with (Blocks,Threads)=(%i,%i) %s done" % (Alu,blocks,blocks,ParaStyle) |
359 | 7 | equemene | else:
|
360 | 7 | equemene | # en OpenCL, necessaire de mettre un Global_id identique au local_id
|
361 | 7 | equemene | CLLaunch=MetropolisCL.MainLoopLocal(queue,(jobs,),(jobs,), |
362 | 7 | equemene | circleCL, |
363 | 7 | equemene | numpy.uint32(iterationsCL), |
364 | 7 | equemene | numpy.uint32(nprnd(2**32/jobs)), |
365 | 7 | equemene | numpy.uint32(nprnd(2**32/jobs))) |
366 | 7 | equemene | print "%s with %i %s done" % (Alu,jobs,ParaStyle) |
367 | 7 | equemene | |
368 | 7 | equemene | CLLaunch.wait() |
369 | 7 | equemene | cl.enqueue_copy(queue, circle, circleCL).wait() |
370 | 7 | equemene | |
371 | 7 | equemene | elapsed = 1e-9*(CLLaunch.profile.end - CLLaunch.profile.start)
|
372 | 7 | equemene | |
373 | 7 | equemene | #print circle,float(numpy.sum(circle))
|
374 | 7 | equemene | MyPi[i]=4.*float(numpy.sum(circle))/float(iterationsNew) |
375 | 7 | equemene | MyDuration[i]=elapsed |
376 | 7 | equemene | #print MyPi[i],MyDuration[i]
|
377 | 7 | equemene | |
378 | 7 | equemene | circleCL.release() |
379 | 7 | equemene | |
380 | 7 | equemene | #print jobs,numpy.mean(MyPi),numpy.median(MyPi),numpy.std(MyPi)
|
381 | 7 | equemene | print jobs,numpy.mean(MyDuration),numpy.median(MyDuration),numpy.std(MyDuration)
|
382 | 7 | equemene | |
383 | 7 | equemene | return(numpy.mean(MyDuration),numpy.median(MyDuration),numpy.std(MyDuration))
|
384 | 7 | equemene | |
385 | 7 | equemene | |
386 | 7 | equemene | def FitAndPrint(N,D,Curves): |
387 | 7 | equemene | |
388 | 7 | equemene | try:
|
389 | 7 | equemene | coeffs_Amdahl, matcov_Amdahl = curve_fit(Amdahl, N, D) |
390 | 7 | equemene | |
391 | 7 | equemene | D_Amdahl=Amdahl(N,coeffs_Amdahl[0],coeffs_Amdahl[1],coeffs_Amdahl[2]) |
392 | 7 | equemene | coeffs_Amdahl[1]=coeffs_Amdahl[1]*coeffs_Amdahl[0]/D[0] |
393 | 7 | equemene | coeffs_Amdahl[2]=coeffs_Amdahl[2]*coeffs_Amdahl[0]/D[0] |
394 | 7 | equemene | coeffs_Amdahl[0]=D[0] |
395 | 7 | equemene | print "Amdahl Normalized: T=%.2f(%.6f+%.6f/N)" % \ |
396 | 7 | equemene | (coeffs_Amdahl[0],coeffs_Amdahl[1],coeffs_Amdahl[2]) |
397 | 7 | equemene | except:
|
398 | 7 | equemene | print "Impossible to fit for Amdahl law : only %i elements" % len(D) |
399 | 7 | equemene | |
400 | 7 | equemene | try:
|
401 | 7 | equemene | coeffs_AmdahlR, matcov_AmdahlR = curve_fit(AmdahlR, N, D) |
402 | 7 | equemene | |
403 | 7 | equemene | D_AmdahlR=AmdahlR(N,coeffs_AmdahlR[0],coeffs_AmdahlR[1]) |
404 | 7 | equemene | coeffs_AmdahlR[1]=coeffs_AmdahlR[1]*coeffs_AmdahlR[0]/D[0] |
405 | 7 | equemene | coeffs_AmdahlR[0]=D[0] |
406 | 7 | equemene | print "Amdahl Reduced Normalized: T=%.2f(%.6f+%.6f/N)" % \ |
407 | 7 | equemene | (coeffs_AmdahlR[0],1-coeffs_AmdahlR[1],coeffs_AmdahlR[1]) |
408 | 7 | equemene | |
409 | 7 | equemene | except:
|
410 | 7 | equemene | print "Impossible to fit for Reduced Amdahl law : only %i elements" % len(D) |
411 | 7 | equemene | |
412 | 7 | equemene | try:
|
413 | 7 | equemene | coeffs_Mylq, matcov_Mylq = curve_fit(Mylq, N, D) |
414 | 7 | equemene | |
415 | 7 | equemene | coeffs_Mylq[1]=coeffs_Mylq[1]*coeffs_Mylq[0]/D[0] |
416 | 7 | equemene | coeffs_Mylq[2]=coeffs_Mylq[2]*coeffs_Mylq[0]/D[0] |
417 | 7 | equemene | coeffs_Mylq[3]=coeffs_Mylq[3]*coeffs_Mylq[0]/D[0] |
418 | 7 | equemene | coeffs_Mylq[0]=D[0] |
419 | 7 | equemene | print "Mylq Normalized : T=%.2f(%.6f+%.6f*N+%.6f/N)" % (coeffs_Mylq[0], |
420 | 7 | equemene | coeffs_Mylq[1],
|
421 | 7 | equemene | coeffs_Mylq[2],
|
422 | 7 | equemene | coeffs_Mylq[3])
|
423 | 7 | equemene | D_Mylq=Mylq(N,coeffs_Mylq[0],coeffs_Mylq[1],coeffs_Mylq[2], |
424 | 7 | equemene | coeffs_Mylq[3])
|
425 | 7 | equemene | except:
|
426 | 7 | equemene | print "Impossible to fit for Mylq law : only %i elements" % len(D) |
427 | 7 | equemene | |
428 | 7 | equemene | try:
|
429 | 7 | equemene | coeffs_Mylq2, matcov_Mylq2 = curve_fit(Mylq2, N, D) |
430 | 7 | equemene | |
431 | 7 | equemene | coeffs_Mylq2[1]=coeffs_Mylq2[1]*coeffs_Mylq2[0]/D[0] |
432 | 7 | equemene | coeffs_Mylq2[2]=coeffs_Mylq2[2]*coeffs_Mylq2[0]/D[0] |
433 | 7 | equemene | coeffs_Mylq2[3]=coeffs_Mylq2[3]*coeffs_Mylq2[0]/D[0] |
434 | 7 | equemene | coeffs_Mylq2[4]=coeffs_Mylq2[4]*coeffs_Mylq2[0]/D[0] |
435 | 7 | equemene | coeffs_Mylq2[0]=D[0] |
436 | 7 | equemene | print "Mylq 2nd order Normalized: T=%.2f(%.6f+%.6f*N+%.6f*N^2+%.6f/N)" % \ |
437 | 7 | equemene | (coeffs_Mylq2[0],coeffs_Mylq2[1],coeffs_Mylq2[2],coeffs_Mylq2[3], |
438 | 7 | equemene | coeffs_Mylq2[4])
|
439 | 7 | equemene | |
440 | 7 | equemene | except:
|
441 | 7 | equemene | print "Impossible to fit for 2nd order Mylq law : only %i elements" % len(D) |
442 | 7 | equemene | |
443 | 7 | equemene | if Curves:
|
444 | 7 | equemene | plt.xlabel("Number of Threads/work Items")
|
445 | 7 | equemene | plt.ylabel("Total Elapsed Time")
|
446 | 7 | equemene | |
447 | 7 | equemene | Experience,=plt.plot(N,D,'ro')
|
448 | 7 | equemene | try:
|
449 | 7 | equemene | pAmdahl,=plt.plot(N,D_Amdahl,label="Loi de Amdahl")
|
450 | 7 | equemene | pMylq,=plt.plot(N,D_Mylq,label="Loi de Mylq")
|
451 | 7 | equemene | except:
|
452 | 7 | equemene | print "Fit curves seem not to be available" |
453 | 7 | equemene | |
454 | 7 | equemene | plt.legend() |
455 | 7 | equemene | plt.show() |
456 | 7 | equemene | |
457 | 7 | equemene | if __name__=='__main__': |
458 | 7 | equemene | |
459 | 7 | equemene | # Set defaults values
|
460 | 7 | equemene | # Alu can be CPU or GPU
|
461 | 7 | equemene | Alu='CPU'
|
462 | 7 | equemene | # Id of GPU
|
463 | 7 | equemene | Device=1
|
464 | 7 | equemene | # GPU style can be Cuda (Nvidia implementation) or OpenCL
|
465 | 7 | equemene | GpuStyle='OpenCL'
|
466 | 7 | equemene | # Parallel distribution can be on Threads or Blocks
|
467 | 7 | equemene | ParaStyle='Blocks'
|
468 | 7 | equemene | # Iterations is integer
|
469 | 7 | equemene | Iterations=100000000
|
470 | 7 | equemene | # JobStart in first number of Jobs to explore
|
471 | 7 | equemene | JobStart=1
|
472 | 7 | equemene | # JobEnd is last number of Jobs to explore
|
473 | 7 | equemene | JobEnd=16
|
474 | 7 | equemene | # Redo is the times to redo the test to improve metrology
|
475 | 7 | equemene | Redo=1
|
476 | 7 | equemene | # OutMetrology is method for duration estimation : False is GPU inside
|
477 | 7 | equemene | OutMetrology=False
|
478 | 7 | equemene | # Curves is True to print the curves
|
479 | 7 | equemene | Curves=False
|
480 | 7 | equemene | |
481 | 7 | equemene | try:
|
482 | 7 | equemene | opts, args = getopt.getopt(sys.argv[1:],"hoca:g:p:i:s:e:r:d:",["alu=","gpustyle=","parastyle=","iterations=","jobstart=","jobend=","redo=","device="]) |
483 | 7 | equemene | except getopt.GetoptError:
|
484 | 7 | equemene | print '%s -o (Out of Core Metrology) -c (Print Curves) -a <CPU/GPU> -d <DeviceId> -g <CUDA/OpenCL> -p <Threads/Hybrid/Blocks> -i <Iterations> -s <JobStart> -e <JobEnd> -r <RedoToImproveStats>' % sys.argv[0] |
485 | 7 | equemene | sys.exit(2)
|
486 | 7 | equemene | |
487 | 7 | equemene | for opt, arg in opts: |
488 | 7 | equemene | if opt == '-h': |
489 | 7 | equemene | print '%s -o (Out of Core Metrology) -c (Print Curves) -a <CPU/GPU> -d <DeviceId> -g <CUDA/OpenCL> -p <Threads/Hybrid/Blocks> -i <Iterations> -s <JobStart> -e <JobEnd> -r <RedoToImproveStats>' % sys.argv[0] |
490 | 7 | equemene | sys.exit() |
491 | 7 | equemene | elif opt == '-o': |
492 | 7 | equemene | OutMetrology=True
|
493 | 7 | equemene | elif opt == '-c': |
494 | 7 | equemene | Curves=True
|
495 | 7 | equemene | elif opt in ("-a", "--alu"): |
496 | 7 | equemene | Alu = arg |
497 | 7 | equemene | elif opt in ("-d", "--device"): |
498 | 7 | equemene | Device = int(arg)
|
499 | 7 | equemene | elif opt in ("-g", "--gpustyle"): |
500 | 7 | equemene | GpuStyle = arg |
501 | 7 | equemene | elif opt in ("-p", "--parastyle"): |
502 | 7 | equemene | ParaStyle = arg |
503 | 7 | equemene | elif opt in ("-i", "--iterations"): |
504 | 7 | equemene | Iterations = numpy.uint32(arg) |
505 | 7 | equemene | elif opt in ("-s", "--jobstart"): |
506 | 7 | equemene | JobStart = int(arg)
|
507 | 7 | equemene | elif opt in ("-e", "--jobend"): |
508 | 7 | equemene | JobEnd = int(arg)
|
509 | 7 | equemene | elif opt in ("-r", "--redo"): |
510 | 7 | equemene | Redo = int(arg)
|
511 | 7 | equemene | |
512 | 7 | equemene | if Alu=='CPU' and GpuStyle=='CUDA': |
513 | 7 | equemene | print "Alu can't be CPU for CUDA, set Alu to GPU" |
514 | 7 | equemene | Alu='GPU'
|
515 | 7 | equemene | |
516 | 7 | equemene | if ParaStyle not in ('Blocks','Threads','Hybrid'): |
517 | 7 | equemene | print "%s not exists, ParaStyle set as Threads !" % ParaStyle |
518 | 7 | equemene | ParaStyle='Threads'
|
519 | 7 | equemene | |
520 | 7 | equemene | print "Compute unit : %s" % Alu |
521 | 7 | equemene | print "Device Identification : %s" % Device |
522 | 7 | equemene | print "GpuStyle used : %s" % GpuStyle |
523 | 7 | equemene | print "Parallel Style used : %s" % ParaStyle |
524 | 7 | equemene | print "Iterations : %s" % Iterations |
525 | 7 | equemene | print "Number of threads on start : %s" % JobStart |
526 | 7 | equemene | print "Number of threads on end : %s" % JobEnd |
527 | 7 | equemene | print "Number of redo : %s" % Redo |
528 | 7 | equemene | print "Metrology done out of CPU/GPU : %r" % OutMetrology |
529 | 7 | equemene | |
530 | 7 | equemene | if GpuStyle=='CUDA': |
531 | 7 | equemene | # For PyCUDA import
|
532 | 7 | equemene | import pycuda.driver as cuda |
533 | 7 | equemene | import pycuda.gpuarray as gpuarray |
534 | 7 | equemene | import pycuda.autoinit |
535 | 7 | equemene | from pycuda.compiler import SourceModule |
536 | 7 | equemene | |
537 | 7 | equemene | if GpuStyle=='OpenCL': |
538 | 7 | equemene | # For PyOpenCL import
|
539 | 7 | equemene | import pyopencl as cl |
540 | 7 | equemene | Id=1
|
541 | 7 | equemene | for platform in cl.get_platforms(): |
542 | 7 | equemene | for device in platform.get_devices(): |
543 | 7 | equemene | deviceType=cl.device_type.to_string(device.type) |
544 | 7 | equemene | print "Device #%i of type %s : %s" % (Id,deviceType,device.name) |
545 | 7 | equemene | Id=Id+1
|
546 | 7 | equemene | |
547 | 7 | equemene | average=numpy.array([]).astype(numpy.float32) |
548 | 7 | equemene | median=numpy.array([]).astype(numpy.float32) |
549 | 7 | equemene | stddev=numpy.array([]).astype(numpy.float32) |
550 | 7 | equemene | |
551 | 7 | equemene | ExploredJobs=numpy.array([]).astype(numpy.uint32) |
552 | 7 | equemene | |
553 | 7 | equemene | Jobs=JobStart |
554 | 7 | equemene | |
555 | 7 | equemene | while Jobs <= JobEnd:
|
556 | 7 | equemene | avg,med,std=0,0,0 |
557 | 7 | equemene | ExploredJobs=numpy.append(ExploredJobs,Jobs) |
558 | 7 | equemene | circle=numpy.zeros(Jobs).astype(numpy.uint32) |
559 | 7 | equemene | |
560 | 7 | equemene | if OutMetrology:
|
561 | 7 | equemene | duration=numpy.array([]).astype(numpy.float32) |
562 | 7 | equemene | for i in range(Redo): |
563 | 7 | equemene | start=time.time() |
564 | 7 | equemene | if GpuStyle=='CUDA': |
565 | 7 | equemene | try:
|
566 | 7 | equemene | MetropolisCuda(circle,Iterations,1,Jobs,ParaStyle)
|
567 | 7 | equemene | except:
|
568 | 7 | equemene | print "Problem with %i // computations on Cuda" % Jobs |
569 | 7 | equemene | elif GpuStyle=='OpenCL': |
570 | 7 | equemene | try:
|
571 | 7 | equemene | MetropolisOpenCL(circle,Iterations,1,Jobs,ParaStyle,Alu,Device)
|
572 | 7 | equemene | except:
|
573 | 7 | equemene | print "Problem with %i // computations on OpenCL" % Jobs |
574 | 7 | equemene | duration=numpy.append(duration,time.time()-start) |
575 | 7 | equemene | avg=numpy.mean(duration) |
576 | 7 | equemene | med=numpy.median(duration) |
577 | 7 | equemene | std=numpy.std(duration) |
578 | 7 | equemene | else:
|
579 | 7 | equemene | if GpuStyle=='CUDA': |
580 | 7 | equemene | try:
|
581 | 7 | equemene | avg,med,std=MetropolisCuda(circle,Iterations,Redo,Jobs,ParaStyle) |
582 | 7 | equemene | except:
|
583 | 7 | equemene | print "Problem with %i // computations on Cuda" % Jobs |
584 | 7 | equemene | elif GpuStyle=='OpenCL': |
585 | 7 | equemene | try:
|
586 | 7 | equemene | avg,med,std=MetropolisOpenCL(circle,Iterations,Redo,Jobs,ParaStyle,Alu,Device) |
587 | 7 | equemene | except:
|
588 | 7 | equemene | print "Problem with %i // computations on OpenCL" % Jobs |
589 | 7 | equemene | |
590 | 7 | equemene | if (avg,med,std) != (0,0,0): |
591 | 7 | equemene | print "avg,med,std",avg,med,std |
592 | 7 | equemene | average=numpy.append(average,avg) |
593 | 7 | equemene | median=numpy.append(median,med) |
594 | 7 | equemene | stddev=numpy.append(stddev,std) |
595 | 7 | equemene | else:
|
596 | 7 | equemene | print "Values seem to be wrong..." |
597 | 7 | equemene | #THREADS*=2
|
598 | 7 | equemene | numpy.savez("Pi_%s_%s_%s_%s_%i_%.8i_%s" % (Alu,GpuStyle,ParaStyle,JobStart,JobEnd,Iterations,gethostname()),(ExploredJobs,average,median,stddev))
|
599 | 7 | equemene | Jobs+=1
|
600 | 7 | equemene | |
601 | 7 | equemene | FitAndPrint(ExploredJobs,median,Curves) |