root / Pi / GPU / Pi-GPU.py-20130205 @ 55
Historique | Voir | Annoter | Télécharger (15,79 ko)
1 | 7 | equemene | #!/usr/bin/env python |
---|---|---|---|
2 | 7 | equemene | # |
3 | 7 | equemene | # Pi-by-MC using PyCUDA |
4 | 7 | equemene | # |
5 | 7 | equemene | # CC BY-NC-SA 2011 : <emmanuel.quemener@ens-lyon.fr> |
6 | 7 | equemene | # |
7 | 7 | equemene | # Thanks to Andreas Klockner for PyCUDA: |
8 | 7 | equemene | # http://mathema.tician.de/software/pycuda |
9 | 7 | equemene | # |
10 | 7 | equemene | |
11 | 7 | equemene | # 2013-01-01 : problems with launch timeout |
12 | 7 | equemene | # nvidia-smi -c 1 : ko |
13 | 7 | equemene | # nvidia-smi -c 3 : ko |
14 | 7 | equemene | # nvidia-smi --gom=1 : not supported |
15 | 7 | equemene | # http://stackoverflow.com/questions/497685/how-do-you-get-around-the-maximum-cuda-run-time |
16 | 7 | equemene | # Option "Interactive" "0" in /etc/X11/xorg.conf |
17 | 7 | equemene | |
18 | 7 | equemene | # Common tools |
19 | 7 | equemene | import numpy |
20 | 7 | equemene | from numpy.random import randint as nprnd |
21 | 7 | equemene | import sys |
22 | 7 | equemene | import getopt |
23 | 7 | equemene | import time |
24 | 7 | equemene | import matplotlib.pyplot as plt |
25 | 7 | equemene | from scipy.optimize import curve_fit |
26 | 7 | equemene | from socket import gethostname |
27 | 7 | equemene | |
28 | 7 | equemene | # Predicted Amdahl Law (Reduced with s=1-p) |
29 | 7 | equemene | def AmdahlR(N, T1, p): |
30 | 7 | equemene | return (T1*(1-p+p/N)) |
31 | 7 | equemene | |
32 | 7 | equemene | # Predicted Amdahl Law |
33 | 7 | equemene | def Amdahl(N, T1, s, p): |
34 | 7 | equemene | return (T1*(s+p/N)) |
35 | 7 | equemene | |
36 | 7 | equemene | # Predicted Mylq Law with first order |
37 | 7 | equemene | def Mylq(N, T1,s,c,p): |
38 | 7 | equemene | return (T1*(s+c*N+p/N)) |
39 | 7 | equemene | |
40 | 7 | equemene | # Predicted Mylq Law with second order |
41 | 7 | equemene | def Mylq2(N, T1,s,c1,c2,p): |
42 | 7 | equemene | return (T1*(s+c1*N+c2*N*N+p/N)) |
43 | 7 | equemene | |
44 | 7 | equemene | KERNEL_CODE_CUDA=""" |
45 | 7 | equemene | |
46 | 7 | equemene | // Marsaglia RNG very simple implementation |
47 | 7 | equemene | |
48 | 7 | equemene | #define znew ((z=36969*(z&65535)+(z>>16))<<16) |
49 | 7 | equemene | #define wnew ((w=18000*(w&65535)+(w>>16))&65535) |
50 | 7 | equemene | #define MWC (znew+wnew) |
51 | 7 | equemene | #define SHR3 (jsr=(jsr=(jsr=jsr^(jsr<<17))^(jsr>>13))^(jsr<<5)) |
52 | 7 | equemene | #define CONG (jcong=69069*jcong+1234567) |
53 | 7 | equemene | #define KISS ((MWC^CONG)+SHR3) |
54 | 7 | equemene | |
55 | 7 | equemene | //#define MWCfp (MWC + 2147483648.0f) * 2.328306435454494e-10f |
56 | 7 | equemene | //#define KISSfp (KISS + 2147483648.0f) * 2.328306435454494e-10f |
57 | 7 | equemene | #define MWCfp MWC * 2.328306435454494e-10f |
58 | 7 | equemene | #define KISSfp KISS * 2.328306435454494e-10f |
59 | 7 | equemene | |
60 | 7 | equemene | __global__ void MainLoopBlocks(uint *s,uint iterations,uint seed_w,uint seed_z) |
61 | 7 | equemene | { |
62 | 7 | equemene | uint z=seed_z/(blockIdx.x+1); |
63 | 7 | equemene | uint w=seed_w/(blockIdx.x+1); |
64 | 7 | equemene | // uint jsr=123456789; |
65 | 7 | equemene | // uint jcong=380116160; |
66 | 7 | equemene | |
67 | 7 | equemene | int total=0; |
68 | 7 | equemene | |
69 | 7 | equemene | for (uint i=0;i<iterations;i++) { |
70 | 7 | equemene | |
71 | 7 | equemene | float x=MWCfp ; |
72 | 7 | equemene | float y=MWCfp ; |
73 | 7 | equemene | |
74 | 7 | equemene | // Matching test |
75 | 7 | equemene | int inside=((x*x+y*y) < 1.0f) ? 1:0; |
76 | 7 | equemene | total+=inside; |
77 | 7 | equemene | |
78 | 7 | equemene | } |
79 | 7 | equemene | |
80 | 7 | equemene | s[blockIdx.x]=total; |
81 | 7 | equemene | __syncthreads(); |
82 | 7 | equemene | |
83 | 7 | equemene | } |
84 | 7 | equemene | |
85 | 7 | equemene | __global__ void MainLoopThreads(uint *s,uint iterations,uint seed_w,uint seed_z) |
86 | 7 | equemene | { |
87 | 7 | equemene | uint z=seed_z/(threadIdx.x+1); |
88 | 7 | equemene | uint w=seed_w/(threadIdx.x+1); |
89 | 7 | equemene | // uint jsr=123456789; |
90 | 7 | equemene | // uint jcong=380116160; |
91 | 7 | equemene | |
92 | 7 | equemene | int total=0; |
93 | 7 | equemene | |
94 | 7 | equemene | for (uint i=0;i<iterations;i++) { |
95 | 7 | equemene | |
96 | 7 | equemene | float x=MWCfp ; |
97 | 7 | equemene | float y=MWCfp ; |
98 | 7 | equemene | |
99 | 7 | equemene | // Matching test |
100 | 7 | equemene | int inside=((x*x+y*y) < 1.0f) ? 1:0; |
101 | 7 | equemene | total+=inside; |
102 | 7 | equemene | |
103 | 7 | equemene | } |
104 | 7 | equemene | |
105 | 7 | equemene | s[threadIdx.x]=total; |
106 | 7 | equemene | __syncthreads(); |
107 | 7 | equemene | |
108 | 7 | equemene | } |
109 | 7 | equemene | """ |
110 | 7 | equemene | |
111 | 7 | equemene | KERNEL_CODE_OPENCL=""" |
112 | 7 | equemene | |
113 | 7 | equemene | // Marsaglia RNG very simple implementation |
114 | 7 | equemene | #define znew ((z=36969*(z&65535)+(z>>16))<<16) |
115 | 7 | equemene | #define wnew ((w=18000*(w&65535)+(w>>16))&65535) |
116 | 7 | equemene | #define MWC (znew+wnew) |
117 | 7 | equemene | #define SHR3 (jsr=(jsr=(jsr=jsr^(jsr<<17))^(jsr>>13))^(jsr<<5)) |
118 | 7 | equemene | #define CONG (jcong=69069*jcong+1234567) |
119 | 7 | equemene | #define KISS ((MWC^CONG)+SHR3) |
120 | 7 | equemene | |
121 | 7 | equemene | //#define MWCfp (MWC + 2147483648.0f) * 2.328306435454494e-10f |
122 | 7 | equemene | //#define KISSfp (KISS + 2147483648.0f) * 2.328306435454494e-10f |
123 | 7 | equemene | #define MWCfp MWC * 2.328306435454494e-10f |
124 | 7 | equemene | #define KISSfp KISS * 2.328306435454494e-10f |
125 | 7 | equemene | |
126 | 7 | equemene | __kernel void MainLoopGlobal(__global int *s,uint iterations,uint seed_w,uint seed_z) |
127 | 7 | equemene | { |
128 | 7 | equemene | uint z=seed_z/(get_global_id(0)+1); |
129 | 7 | equemene | uint w=seed_w/(get_global_id(0)+1); |
130 | 7 | equemene | // uint jsr=123456789; |
131 | 7 | equemene | // uint jcong=380116160; |
132 | 7 | equemene | |
133 | 7 | equemene | int total=0; |
134 | 7 | equemene | |
135 | 7 | equemene | for (uint i=0;i<iterations;i++) { |
136 | 7 | equemene | |
137 | 7 | equemene | float x=MWCfp ; |
138 | 7 | equemene | float y=MWCfp ; |
139 | 7 | equemene | |
140 | 7 | equemene | // Matching test |
141 | 7 | equemene | int inside=((x*x+y*y) < 1.0f) ? 1:0; |
142 | 7 | equemene | total+=inside; |
143 | 7 | equemene | } |
144 | 7 | equemene | s[get_global_id(0)]=total; |
145 | 7 | equemene | barrier(CLK_GLOBAL_MEM_FENCE); |
146 | 7 | equemene | |
147 | 7 | equemene | } |
148 | 7 | equemene | |
149 | 7 | equemene | __kernel void MainLoopLocal(__global int *s,uint iterations,uint seed_w,uint seed_z) |
150 | 7 | equemene | { |
151 | 7 | equemene | uint z=seed_z/(get_local_id(0)+1); |
152 | 7 | equemene | uint w=seed_w/(get_local_id(0)+1); |
153 | 7 | equemene | // uint jsr=123456789; |
154 | 7 | equemene | // uint jcong=380116160; |
155 | 7 | equemene | |
156 | 7 | equemene | int total=0; |
157 | 7 | equemene | |
158 | 7 | equemene | for (uint i=0;i<iterations;i++) { |
159 | 7 | equemene | |
160 | 7 | equemene | float x=MWCfp ; |
161 | 7 | equemene | float y=MWCfp ; |
162 | 7 | equemene | |
163 | 7 | equemene | // Matching test |
164 | 7 | equemene | int inside=((x*x+y*y) < 1.0f) ? 1:0; |
165 | 7 | equemene | total+=inside; |
166 | 7 | equemene | } |
167 | 7 | equemene | s[get_local_id(0)]=total; |
168 | 7 | equemene | barrier(CLK_LOCAL_MEM_FENCE); |
169 | 7 | equemene | |
170 | 7 | equemene | } |
171 | 7 | equemene | """ |
172 | 7 | equemene | |
173 | 7 | equemene | def MetropolisCuda(circle,iterations,steps,threads,ParaStyle): |
174 | 7 | equemene | |
175 | 7 | equemene | # Avec PyCUDA autoinit, rien a faire ! |
176 | 7 | equemene | |
177 | 7 | equemene | circleCU = cuda.InOut(circle) |
178 | 7 | equemene | |
179 | 7 | equemene | mod = SourceModule(KERNEL_CODE_CUDA) |
180 | 7 | equemene | |
181 | 7 | equemene | MetropolisBlocksCU=mod.get_function("MainLoopBlocks") |
182 | 7 | equemene | MetropolisThreadsCU=mod.get_function("MainLoopThreads") |
183 | 7 | equemene | |
184 | 7 | equemene | start = pycuda.driver.Event() |
185 | 7 | equemene | stop = pycuda.driver.Event() |
186 | 7 | equemene | |
187 | 7 | equemene | MyPi=numpy.zeros(steps) |
188 | 7 | equemene | MyDuration=numpy.zeros(steps) |
189 | 7 | equemene | |
190 | 7 | equemene | if iterations%threads==0: |
191 | 7 | equemene | iterationsCL=numpy.uint32(iterations/threads+1) |
192 | 7 | equemene | iterationsNew=iterationsCL*threads |
193 | 7 | equemene | else: |
194 | 7 | equemene | iterationsCL=numpy.uint32(iterations/threads) |
195 | 7 | equemene | iterationsNew=iterations |
196 | 7 | equemene | |
197 | 7 | equemene | for i in range(steps): |
198 | 7 | equemene | start.record() |
199 | 7 | equemene | start.synchronize() |
200 | 7 | equemene | if ParaStyle=='Blocks': |
201 | 7 | equemene | MetropolisBlocksCU(circleCU, |
202 | 7 | equemene | numpy.uint32(iterationsCL), |
203 | 7 | equemene | numpy.uint32(nprnd(2**32/threads)), |
204 | 7 | equemene | numpy.uint32(nprnd(2**32/threads)), |
205 | 7 | equemene | grid=(threads,1), |
206 | 7 | equemene | block=(1,1,1)) |
207 | 7 | equemene | else: |
208 | 7 | equemene | MetropolisThreadsCU(circleCU, |
209 | 7 | equemene | numpy.uint32(iterationsCL), |
210 | 7 | equemene | numpy.uint32(nprnd(2**32/threads)), |
211 | 7 | equemene | numpy.uint32(nprnd(2**32/threads)), |
212 | 7 | equemene | grid=(1,1), |
213 | 7 | equemene | block=(threads,1,1)) |
214 | 7 | equemene | print "GPU done" |
215 | 7 | equemene | stop.record() |
216 | 7 | equemene | stop.synchronize() |
217 | 7 | equemene | |
218 | 7 | equemene | #elapsed = stop.time_since(start)*1e-3 |
219 | 7 | equemene | elapsed = start.time_till(stop)*1e-3 |
220 | 7 | equemene | |
221 | 7 | equemene | #print circle,float(numpy.sum(circle)) |
222 | 7 | equemene | MyPi[i]=4.*float(numpy.sum(circle))/float(iterationsCL) |
223 | 7 | equemene | MyDuration[i]=elapsed |
224 | 7 | equemene | #print MyPi[i],MyDuration[i] |
225 | 7 | equemene | #time.sleep(1) |
226 | 7 | equemene | |
227 | 7 | equemene | print threads,numpy.mean(MyDuration),numpy.median(MyDuration),numpy.std(MyDuration) |
228 | 7 | equemene | |
229 | 7 | equemene | return(numpy.mean(MyDuration),numpy.median(MyDuration),numpy.std(MyDuration)) |
230 | 7 | equemene | |
231 | 7 | equemene | |
232 | 7 | equemene | def MetropolisOpenCL(circle,iterations,steps,threads,ParaStyle,Alu): |
233 | 7 | equemene | |
234 | 7 | equemene | # Initialisation des variables en les CASTant correctement |
235 | 7 | equemene | |
236 | 7 | equemene | # Je detecte un peripherique GPU dans la liste des peripheriques |
237 | 7 | equemene | # for platform in cl.get_platforms(): |
238 | 7 | equemene | # for device in platform.get_devices(): |
239 | 7 | equemene | # if cl.device_type.to_string(device.type)=='GPU': |
240 | 7 | equemene | # GPU=device |
241 | 7 | equemene | #print "GPU detected: ",device.name |
242 | 7 | equemene | |
243 | 7 | equemene | HasGPU=False |
244 | 7 | equemene | # Device selection based on choice (default is GPU) |
245 | 7 | equemene | for platform in cl.get_platforms(): |
246 | 7 | equemene | for device in platform.get_devices(): |
247 | 7 | equemene | if not HasGPU: |
248 | 7 | equemene | deviceType=cl.device_type.to_string(device.type) |
249 | 7 | equemene | if deviceType=="GPU" and Alu=="GPU": |
250 | 7 | equemene | GPU=device |
251 | 7 | equemene | print "GPU selected: ",device.name |
252 | 7 | equemene | HasGPU=True |
253 | 7 | equemene | if deviceType=="CPU" and Alu=="CPU": |
254 | 7 | equemene | GPU=device |
255 | 7 | equemene | print "CPU selected: ",device.name |
256 | 7 | equemene | HasGPU=True |
257 | 7 | equemene | |
258 | 7 | equemene | # Je cree le contexte et la queue pour son execution |
259 | 7 | equemene | #ctx = cl.create_some_context() |
260 | 7 | equemene | ctx = cl.Context([GPU]) |
261 | 7 | equemene | queue = cl.CommandQueue(ctx, |
262 | 7 | equemene | properties=cl.command_queue_properties.PROFILING_ENABLE) |
263 | 7 | equemene | |
264 | 7 | equemene | # Je recupere les flag possibles pour les buffers |
265 | 7 | equemene | mf = cl.mem_flags |
266 | 7 | equemene | |
267 | 7 | equemene | circleCL = cl.Buffer(ctx, mf.WRITE_ONLY|mf.COPY_HOST_PTR,hostbuf=circle) |
268 | 7 | equemene | |
269 | 7 | equemene | MetropolisCL = cl.Program(ctx,KERNEL_CODE_OPENCL).build( \ |
270 | 7 | equemene | options = "-cl-mad-enable -cl-fast-relaxed-math") |
271 | 7 | equemene | |
272 | 7 | equemene | #MetropolisCL = cl.Program(ctx,KERNEL_CODE_OPENCL).build() |
273 | 7 | equemene | |
274 | 7 | equemene | i=0 |
275 | 7 | equemene | |
276 | 7 | equemene | MyPi=numpy.zeros(steps) |
277 | 7 | equemene | MyDuration=numpy.zeros(steps) |
278 | 7 | equemene | |
279 | 7 | equemene | if iterations%threads==0: |
280 | 7 | equemene | iterationsCL=numpy.uint32(iterations/threads+1) |
281 | 7 | equemene | iterationsNew=iterationsCL*threads |
282 | 7 | equemene | else: |
283 | 7 | equemene | iterationsCL=numpy.uint32(iterations/threads) |
284 | 7 | equemene | iterationsNew=iterations |
285 | 7 | equemene | |
286 | 7 | equemene | for i in range(steps): |
287 | 7 | equemene | |
288 | 7 | equemene | if ParaStyle=='Blocks': |
289 | 7 | equemene | # Call OpenCL kernel |
290 | 7 | equemene | # (1,) is Global work size (only 1 work size) |
291 | 7 | equemene | # (1,) is local work size |
292 | 7 | equemene | # circleCL is lattice translated in CL format |
293 | 7 | equemene | # SeedZCL is lattice translated in CL format |
294 | 7 | equemene | # SeedWCL is lattice translated in CL format |
295 | 7 | equemene | # step is number of iterations |
296 | 7 | equemene | CLLaunch=MetropolisCL.MainLoopGlobal(queue,(threads,),(1,), |
297 | 7 | equemene | circleCL, |
298 | 7 | equemene | numpy.uint32(iterationsCL), |
299 | 7 | equemene | numpy.uint32(nprnd(2**32/threads)), |
300 | 7 | equemene | numpy.uint32(nprnd(2**32/threads))) |
301 | 7 | equemene | print "%s with %s done" % (Alu,ParaStyle) |
302 | 7 | equemene | else: |
303 | 7 | equemene | # en OpenCL, necessaire de mettre un Global_id identique au local_id |
304 | 7 | equemene | CLLaunch=MetropolisCL.MainLoopLocal(queue,(threads,),(threads,), |
305 | 7 | equemene | circleCL, |
306 | 7 | equemene | numpy.uint32(iterationsCL), |
307 | 7 | equemene | numpy.uint32(nprnd(2**32/threads)), |
308 | 7 | equemene | numpy.uint32(nprnd(2**32/threads))) |
309 | 7 | equemene | print "%s with %s done" % (Alu,ParaStyle) |
310 | 7 | equemene | |
311 | 7 | equemene | CLLaunch.wait() |
312 | 7 | equemene | cl.enqueue_copy(queue, circle, circleCL).wait() |
313 | 7 | equemene | |
314 | 7 | equemene | elapsed = 1e-9*(CLLaunch.profile.end - CLLaunch.profile.start) |
315 | 7 | equemene | |
316 | 7 | equemene | #print circle,float(numpy.sum(circle)) |
317 | 7 | equemene | MyPi[i]=4.*float(numpy.sum(circle))/float(iterationsNew) |
318 | 7 | equemene | MyDuration[i]=elapsed |
319 | 7 | equemene | #print MyPi[i],MyDuration[i] |
320 | 7 | equemene | |
321 | 7 | equemene | circleCL.release() |
322 | 7 | equemene | |
323 | 7 | equemene | #print threads,numpy.mean(MyPi),numpy.median(MyPi),numpy.std(MyPi) |
324 | 7 | equemene | print threads,numpy.mean(MyDuration),numpy.median(MyDuration),numpy.std(MyDuration) |
325 | 7 | equemene | |
326 | 7 | equemene | return(numpy.mean(MyDuration),numpy.median(MyDuration),numpy.std(MyDuration)) |
327 | 7 | equemene | |
328 | 7 | equemene | |
329 | 7 | equemene | def FitAndPrint(N,D,Curves): |
330 | 7 | equemene | |
331 | 7 | equemene | try: |
332 | 7 | equemene | coeffs_Amdahl, matcov_Amdahl = curve_fit(Amdahl, N, D) |
333 | 7 | equemene | |
334 | 7 | equemene | D_Amdahl=Amdahl(N,coeffs_Amdahl[0],coeffs_Amdahl[1],coeffs_Amdahl[2]) |
335 | 7 | equemene | coeffs_Amdahl[1]=coeffs_Amdahl[1]*coeffs_Amdahl[0]/D[0] |
336 | 7 | equemene | coeffs_Amdahl[2]=coeffs_Amdahl[2]*coeffs_Amdahl[0]/D[0] |
337 | 7 | equemene | coeffs_Amdahl[0]=D[0] |
338 | 7 | equemene | print "Amdahl Normalized: T=%.2f(%.5f+%.5f/N)" % \ |
339 | 7 | equemene | (coeffs_Amdahl[0],coeffs_Amdahl[1],coeffs_Amdahl[2]) |
340 | 7 | equemene | except: |
341 | 7 | equemene | print "Impossible to fit for Amdahl law : only %i elements" % len(D) |
342 | 7 | equemene | |
343 | 7 | equemene | try: |
344 | 7 | equemene | coeffs_AmdahlR, matcov_AmdahlR = curve_fit(AmdahlR, N, D) |
345 | 7 | equemene | |
346 | 7 | equemene | D_AmdahlR=AmdahlR(N,coeffs_AmdahlR[0],coeffs_AmdahlR[1]) |
347 | 7 | equemene | coeffs_AmdahlR[1]=coeffs_AmdahlR[1]*coeffs_AmdahlR[0]/D[0] |
348 | 7 | equemene | coeffs_AmdahlR[0]=D[0] |
349 | 7 | equemene | print "Amdahl Reduced Normalized: T=%.2f(%.5f+%.5f/N)" % \ |
350 | 7 | equemene | (coeffs_AmdahlR[0],1-coeffs_AmdahlR[1],coeffs_AmdahlR[1]) |
351 | 7 | equemene | |
352 | 7 | equemene | except: |
353 | 7 | equemene | print "Impossible to fit for Reduced Amdahl law : only %i elements" % len(D) |
354 | 7 | equemene | |
355 | 7 | equemene | try: |
356 | 7 | equemene | coeffs_Mylq, matcov_Mylq = curve_fit(Mylq, N, D) |
357 | 7 | equemene | |
358 | 7 | equemene | coeffs_Mylq[1]=coeffs_Mylq[1]*coeffs_Mylq[0]/D[0] |
359 | 7 | equemene | coeffs_Mylq[2]=coeffs_Mylq[2]*coeffs_Mylq[0]/D[0] |
360 | 7 | equemene | coeffs_Mylq[3]=coeffs_Mylq[3]*coeffs_Mylq[0]/D[0] |
361 | 7 | equemene | coeffs_Mylq[0]=D[0] |
362 | 7 | equemene | print "Mylq Normalized : T=%.2f(%.5f+%.5f*N+%.5f/N)" % (coeffs_Mylq[0], |
363 | 7 | equemene | coeffs_Mylq[1], |
364 | 7 | equemene | coeffs_Mylq[2], |
365 | 7 | equemene | coeffs_Mylq[3]) |
366 | 7 | equemene | D_Mylq=Mylq(N,coeffs_Mylq[0],coeffs_Mylq[1],coeffs_Mylq[2], |
367 | 7 | equemene | coeffs_Mylq[3]) |
368 | 7 | equemene | except: |
369 | 7 | equemene | print "Impossible to fit for Mylq law : only %i elements" % len(D) |
370 | 7 | equemene | |
371 | 7 | equemene | try: |
372 | 7 | equemene | coeffs_Mylq2, matcov_Mylq2 = curve_fit(Mylq2, N, D) |
373 | 7 | equemene | |
374 | 7 | equemene | coeffs_Mylq2[1]=coeffs_Mylq2[1]*coeffs_Mylq2[0]/D[0] |
375 | 7 | equemene | coeffs_Mylq2[2]=coeffs_Mylq2[2]*coeffs_Mylq2[0]/D[0] |
376 | 7 | equemene | coeffs_Mylq2[3]=coeffs_Mylq2[3]*coeffs_Mylq2[0]/D[0] |
377 | 7 | equemene | coeffs_Mylq2[4]=coeffs_Mylq2[4]*coeffs_Mylq2[0]/D[0] |
378 | 7 | equemene | coeffs_Mylq2[0]=D[0] |
379 | 7 | equemene | print "Mylq 2nd order Normalized: T=%.2f(%.5f+%.5f*N+%.5f*N^2+%.5f/N)" % \ |
380 | 7 | equemene | (coeffs_Mylq2[0],coeffs_Mylq2[1],coeffs_Mylq2[2],coeffs_Mylq2[3], |
381 | 7 | equemene | coeffs_Mylq2[4]) |
382 | 7 | equemene | |
383 | 7 | equemene | except: |
384 | 7 | equemene | print "Impossible to fit for 2nd order Mylq law : only %i elements" % len(D) |
385 | 7 | equemene | |
386 | 7 | equemene | if Curves: |
387 | 7 | equemene | plt.xlabel("Number of Threads/work Items") |
388 | 7 | equemene | plt.ylabel("Total Elapsed Time") |
389 | 7 | equemene | |
390 | 7 | equemene | Experience,=plt.plot(N,D,'ro') |
391 | 7 | equemene | try: |
392 | 7 | equemene | pAmdahl,=plt.plot(N,D_Amdahl,label="Loi de Amdahl") |
393 | 7 | equemene | pMylq,=plt.plot(N,D_Mylq,label="Loi de Mylq") |
394 | 7 | equemene | except: |
395 | 7 | equemene | print "Fit curves seem not to be available" |
396 | 7 | equemene | |
397 | 7 | equemene | plt.legend() |
398 | 7 | equemene | plt.show() |
399 | 7 | equemene | |
400 | 7 | equemene | if __name__=='__main__': |
401 | 7 | equemene | |
402 | 7 | equemene | # Set defaults values |
403 | 7 | equemene | # Alu can be CPU or GPU |
404 | 7 | equemene | Alu='CPU' |
405 | 7 | equemene | # GPU style can be Cuda (Nvidia implementation) or OpenCL |
406 | 7 | equemene | GpuStyle='OpenCL' |
407 | 7 | equemene | # Parallel distribution can be on Threads or Blocks |
408 | 7 | equemene | ParaStyle='Threads' |
409 | 7 | equemene | # Iterations is integer |
410 | 7 | equemene | Iterations=1000000000 |
411 | 7 | equemene | # ThreadStart in first number of Threads to explore |
412 | 7 | equemene | ThreadStart=1 |
413 | 7 | equemene | # ThreadEnd is last number of Threads to explore |
414 | 7 | equemene | ThreadEnd=512 |
415 | 7 | equemene | # Redo is the times to redo the test to improve metrology |
416 | 7 | equemene | Redo=1 |
417 | 7 | equemene | # OutMetrology is method for duration estimation : False is GPU inside |
418 | 7 | equemene | OutMetrology=False |
419 | 7 | equemene | # Curves is True to print the curves |
420 | 7 | equemene | Curves=False |
421 | 7 | equemene | |
422 | 7 | equemene | try: |
423 | 7 | equemene | opts, args = getopt.getopt(sys.argv[1:],"hoca:g:p:i:s:e:r:",["alu=","gpustyle=","parastyle=","iterations=","threadstart=","threadend=","redo="]) |
424 | 7 | equemene | except getopt.GetoptError: |
425 | 7 | equemene | print '%s -o -a <CPU/GPU> -g <CUDA/OpenCL> -p <ParaStyle> -i <Iterations> -s <ThreadStart> -e <ThreadEnd> -r <RedoToImproveStats>' % sys.argv[0] |
426 | 7 | equemene | sys.exit(2) |
427 | 7 | equemene | |
428 | 7 | equemene | for opt, arg in opts: |
429 | 7 | equemene | if opt == '-h': |
430 | 7 | equemene | print '%s -o (Out of Core Metrology) -c (Print Curves) -a <CPU/GPU> -g <CUDA/OpenCL> -p <Threads/Blocks> -i <Iterations> -s <ThreadStart> -e <ThreadEnd> -r <RedoToImproveStats>' % sys.argv[0] |
431 | 7 | equemene | sys.exit() |
432 | 7 | equemene | elif opt == '-o': |
433 | 7 | equemene | OutMetrology=True |
434 | 7 | equemene | elif opt == '-c': |
435 | 7 | equemene | Curves=True |
436 | 7 | equemene | elif opt in ("-a", "--alu"): |
437 | 7 | equemene | Alu = arg |
438 | 7 | equemene | elif opt in ("-g", "--gpustyle"): |
439 | 7 | equemene | GpuStyle = arg |
440 | 7 | equemene | elif opt in ("-p", "--parastyle"): |
441 | 7 | equemene | ParaStyle = arg |
442 | 7 | equemene | elif opt in ("-i", "--iterations"): |
443 | 7 | equemene | Iterations = numpy.uint32(arg) |
444 | 7 | equemene | elif opt in ("-s", "--threadstart"): |
445 | 7 | equemene | ThreadStart = int(arg) |
446 | 7 | equemene | elif opt in ("-e", "--threadend"): |
447 | 7 | equemene | ThreadEnd = int(arg) |
448 | 7 | equemene | elif opt in ("-r", "--redo"): |
449 | 7 | equemene | Redo = int(arg) |
450 | 7 | equemene | |
451 | 7 | equemene | if Alu=='CPU' and GpuStyle=='CUDA': |
452 | 7 | equemene | print "Alu can't be CPU for CUDA, set Alu to GPU" |
453 | 7 | equemene | Alu='GPU' |
454 | 7 | equemene | |
455 | 7 | equemene | if ParaStyle not in ('Blocks','Threads'): |
456 | 7 | equemene | print "%s not exists, ParaStyle set as Threads !" % ParaStyle |
457 | 7 | equemene | ParaStyle='Threads' |
458 | 7 | equemene | |
459 | 7 | equemene | print "Compute unit : %s" % Alu |
460 | 7 | equemene | print "GpuStyle used : %s" % GpuStyle |
461 | 7 | equemene | print "Parallel Style used : %s" % ParaStyle |
462 | 7 | equemene | print "Iterations : %s" % Iterations |
463 | 7 | equemene | print "Number of threads on start : %s" % ThreadStart |
464 | 7 | equemene | print "Number of threads on end : %s" % ThreadEnd |
465 | 7 | equemene | print "Number of redo : %s" % Redo |
466 | 7 | equemene | print "Metrology done out of CPU/GPU : %r" % OutMetrology |
467 | 7 | equemene | |
468 | 7 | equemene | if GpuStyle=='CUDA': |
469 | 7 | equemene | # For PyCUDA import |
470 | 7 | equemene | import pycuda.driver as cuda |
471 | 7 | equemene | import pycuda.gpuarray as gpuarray |
472 | 7 | equemene | import pycuda.autoinit |
473 | 7 | equemene | from pycuda.compiler import SourceModule |
474 | 7 | equemene | |
475 | 7 | equemene | if GpuStyle=='OpenCL': |
476 | 7 | equemene | # For PyOpenCL import |
477 | 7 | equemene | import pyopencl as cl |
478 | 7 | equemene | |
479 | 7 | equemene | average=numpy.array([]).astype(numpy.float32) |
480 | 7 | equemene | median=numpy.array([]).astype(numpy.float32) |
481 | 7 | equemene | stddev=numpy.array([]).astype(numpy.float32) |
482 | 7 | equemene | |
483 | 7 | equemene | ExploredThreads=numpy.array([]).astype(numpy.uint32) |
484 | 7 | equemene | |
485 | 7 | equemene | Threads=ThreadStart |
486 | 7 | equemene | |
487 | 7 | equemene | while Threads <= ThreadEnd: |
488 | 7 | equemene | ExploredThreads=numpy.append(ExploredThreads,Threads) |
489 | 7 | equemene | circle=numpy.zeros(Threads).astype(numpy.uint32) |
490 | 7 | equemene | |
491 | 7 | equemene | if OutMetrology: |
492 | 7 | equemene | duration=numpy.array([]).astype(numpy.float32) |
493 | 7 | equemene | for i in range(Redo): |
494 | 7 | equemene | start=time.time() |
495 | 7 | equemene | if GpuStyle=='CUDA': |
496 | 7 | equemene | MetropolisCuda(circle,Iterations,1,Threads,ParaStyle) |
497 | 7 | equemene | elif GpuStyle=='OpenCL': |
498 | 7 | equemene | MetropolisOpenCL(circle,Iterations,1,Threads,ParaStyle,Alu) |
499 | 7 | equemene | duration=numpy.append(duration,time.time()-start) |
500 | 7 | equemene | avg=numpy.mean(duration) |
501 | 7 | equemene | med=numpy.median(duration) |
502 | 7 | equemene | std=numpy.std(duration) |
503 | 7 | equemene | else: |
504 | 7 | equemene | if GpuStyle=='CUDA': |
505 | 7 | equemene | avg,med,std=MetropolisCuda(circle,Iterations,Redo,Threads,ParaStyle) |
506 | 7 | equemene | elif GpuStyle=='OpenCL': |
507 | 7 | equemene | avg,med,std=MetropolisOpenCL(circle,Iterations,Redo,Threads, |
508 | 7 | equemene | ParaStyle,Alu) |
509 | 7 | equemene | print "avg,med,std",avg,med,std |
510 | 7 | equemene | average=numpy.append(average,avg) |
511 | 7 | equemene | median=numpy.append(median,med) |
512 | 7 | equemene | stddev=numpy.append(stddev,std) |
513 | 7 | equemene | #THREADS*=2 |
514 | 7 | equemene | Threads+=1 |
515 | 7 | equemene | |
516 | 7 | equemene | numpy.savez("Pi_%s_%s_%s_%s_%i_%.8i_%s" % (Alu,GpuStyle,ParaStyle,ThreadStart,ThreadEnd,Iterations,gethostname()),(ExploredThreads,average,median,stddev)) |
517 | 7 | equemene | |
518 | 7 | equemene | FitAndPrint(ExploredThreads,median,Curves) |