root / Pi / GPU / Pi-GPU.py @ 55
Historique | Voir | Annoter | Télécharger (26,72 ko)
1 | 7 | equemene | #!/usr/bin/env python
|
---|---|---|---|
2 | 7 | equemene | |
3 | 7 | equemene | #
|
4 | 55 | equemene | # Pi-by-MonteCarlo using PyCUDA/PyOpenCL
|
5 | 7 | equemene | #
|
6 | 7 | equemene | # CC BY-NC-SA 2011 : <emmanuel.quemener@ens-lyon.fr>
|
7 | 7 | equemene | #
|
8 | 7 | equemene | # Thanks to Andreas Klockner for PyCUDA:
|
9 | 7 | equemene | # http://mathema.tician.de/software/pycuda
|
10 | 7 | equemene | #
|
11 | 7 | equemene | |
12 | 7 | equemene | # 2013-01-01 : problems with launch timeout
|
13 | 7 | equemene | # http://stackoverflow.com/questions/497685/how-do-you-get-around-the-maximum-cuda-run-time
|
14 | 7 | equemene | # Option "Interactive" "0" in /etc/X11/xorg.conf
|
15 | 7 | equemene | |
16 | 7 | equemene | # Common tools
|
17 | 7 | equemene | import numpy |
18 | 7 | equemene | from numpy.random import randint as nprnd |
19 | 7 | equemene | import sys |
20 | 7 | equemene | import getopt |
21 | 7 | equemene | import time |
22 | 7 | equemene | import math |
23 | 7 | equemene | from socket import gethostname |
24 | 7 | equemene | |
25 | 17 | equemene | # find prime factors of a number
|
26 | 17 | equemene | # Get for WWW :
|
27 | 17 | equemene | # http://pythonism.wordpress.com/2008/05/17/looking-at-factorisation-in-python/
|
28 | 17 | equemene | def PrimeFactors(x): |
29 | 17 | equemene | factorlist=numpy.array([]).astype('uint32')
|
30 | 17 | equemene | loop=2
|
31 | 17 | equemene | while loop<=x:
|
32 | 17 | equemene | if x%loop==0: |
33 | 17 | equemene | x/=loop |
34 | 17 | equemene | factorlist=numpy.append(factorlist,[loop]) |
35 | 17 | equemene | else:
|
36 | 17 | equemene | loop+=1
|
37 | 17 | equemene | return factorlist
|
38 | 17 | equemene | |
39 | 17 | equemene | # Try to find the best thread number in Hybrid approach (Blocks&Threads)
|
40 | 17 | equemene | # output is thread number
|
41 | 17 | equemene | def BestThreadsNumber(jobs): |
42 | 17 | equemene | factors=PrimeFactors(jobs) |
43 | 17 | equemene | matrix=numpy.append([factors],[factors[::-1]],axis=0) |
44 | 17 | equemene | threads=1
|
45 | 17 | equemene | for factor in matrix.transpose().ravel(): |
46 | 17 | equemene | threads=threads*factor |
47 | 17 | equemene | if threads*threads>jobs:
|
48 | 17 | equemene | break
|
49 | 17 | equemene | return(long(threads)) |
50 | 17 | equemene | |
51 | 7 | equemene | # Predicted Amdahl Law (Reduced with s=1-p)
|
52 | 7 | equemene | def AmdahlR(N, T1, p): |
53 | 7 | equemene | return (T1*(1-p+p/N)) |
54 | 7 | equemene | |
55 | 7 | equemene | # Predicted Amdahl Law
|
56 | 7 | equemene | def Amdahl(N, T1, s, p): |
57 | 7 | equemene | return (T1*(s+p/N))
|
58 | 7 | equemene | |
59 | 7 | equemene | # Predicted Mylq Law with first order
|
60 | 7 | equemene | def Mylq(N, T1,s,c,p): |
61 | 45 | equemene | return (T1*(s+p/N)+c*N)
|
62 | 7 | equemene | |
63 | 7 | equemene | # Predicted Mylq Law with second order
|
64 | 7 | equemene | def Mylq2(N, T1,s,c1,c2,p): |
65 | 45 | equemene | return (T1*(s+p/N)+c1*N+c2*N*N)
|
66 | 7 | equemene | |
67 | 7 | equemene | KERNEL_CODE_CUDA="""
|
68 | 7 | equemene |
|
69 | 7 | equemene | // Marsaglia RNG very simple implementation
|
70 | 7 | equemene |
|
71 | 7 | equemene | #define znew ((z=36969*(z&65535)+(z>>16))<<16)
|
72 | 7 | equemene | #define wnew ((w=18000*(w&65535)+(w>>16))&65535)
|
73 | 7 | equemene | #define MWC (znew+wnew)
|
74 | 7 | equemene | #define SHR3 (jsr=(jsr=(jsr=jsr^(jsr<<17))^(jsr>>13))^(jsr<<5))
|
75 | 7 | equemene | #define CONG (jcong=69069*jcong+1234567)
|
76 | 7 | equemene | #define KISS ((MWC^CONG)+SHR3)
|
77 | 7 | equemene |
|
78 | 7 | equemene | #define MWCfp MWC * 2.328306435454494e-10f
|
79 | 7 | equemene | #define KISSfp KISS * 2.328306435454494e-10f
|
80 | 7 | equemene |
|
81 | 17 | equemene | __global__ void MainLoopBlocks(ulong *s,ulong iterations,uint seed_w,uint seed_z)
|
82 | 7 | equemene | {
|
83 | 7 | equemene | uint z=seed_z/(blockIdx.x+1);
|
84 | 7 | equemene | uint w=seed_w/(blockIdx.x+1);
|
85 | 7 | equemene |
|
86 | 17 | equemene | ulong total=0;
|
87 | 7 | equemene |
|
88 | 17 | equemene | for (ulong i=0;i<iterations;i++) {
|
89 | 7 | equemene |
|
90 | 7 | equemene | float x=MWCfp ;
|
91 | 7 | equemene | float y=MWCfp ;
|
92 | 7 | equemene |
|
93 | 7 | equemene | // Matching test
|
94 | 17 | equemene | ulong inside=((x*x+y*y) < 1.0f) ? 1:0;
|
95 | 7 | equemene | total+=inside;
|
96 | 7 | equemene |
|
97 | 7 | equemene | }
|
98 | 7 | equemene |
|
99 | 7 | equemene | s[blockIdx.x]=total;
|
100 | 7 | equemene | __syncthreads();
|
101 | 7 | equemene |
|
102 | 7 | equemene | }
|
103 | 7 | equemene |
|
104 | 17 | equemene | __global__ void MainLoopThreads(ulong *s,ulong iterations,uint seed_w,uint seed_z)
|
105 | 7 | equemene | {
|
106 | 7 | equemene | uint z=seed_z/(threadIdx.x+1);
|
107 | 7 | equemene | uint w=seed_w/(threadIdx.x+1);
|
108 | 7 | equemene |
|
109 | 17 | equemene | ulong total=0;
|
110 | 7 | equemene |
|
111 | 17 | equemene | for (ulong i=0;i<iterations;i++) {
|
112 | 7 | equemene |
|
113 | 7 | equemene | float x=MWCfp ;
|
114 | 7 | equemene | float y=MWCfp ;
|
115 | 7 | equemene |
|
116 | 7 | equemene | // Matching test
|
117 | 17 | equemene | ulong inside=((x*x+y*y) < 1.0f) ? 1:0;
|
118 | 7 | equemene | total+=inside;
|
119 | 7 | equemene |
|
120 | 7 | equemene | }
|
121 | 7 | equemene |
|
122 | 7 | equemene | s[threadIdx.x]=total;
|
123 | 7 | equemene | __syncthreads();
|
124 | 7 | equemene |
|
125 | 7 | equemene | }
|
126 | 7 | equemene |
|
127 | 17 | equemene | __global__ void MainLoopHybrid(ulong *s,ulong iterations,uint seed_w,uint seed_z)
|
128 | 7 | equemene | {
|
129 | 7 | equemene | uint z=seed_z/(blockDim.x*blockIdx.x+threadIdx.x+1);
|
130 | 7 | equemene | uint w=seed_w/(blockDim.x*blockIdx.x+threadIdx.x+1);
|
131 | 7 | equemene |
|
132 | 17 | equemene | ulong total=0;
|
133 | 7 | equemene |
|
134 | 17 | equemene | for (ulong i=0;i<iterations;i++) {
|
135 | 7 | equemene |
|
136 | 7 | equemene | float x=MWCfp ;
|
137 | 7 | equemene | float y=MWCfp ;
|
138 | 7 | equemene |
|
139 | 7 | equemene | // Matching test
|
140 | 17 | equemene | ulong inside=((x*x+y*y) < 1.0f) ? 1:0;
|
141 | 7 | equemene | total+=inside;
|
142 | 7 | equemene |
|
143 | 7 | equemene | }
|
144 | 7 | equemene |
|
145 | 7 | equemene | s[blockDim.x*blockIdx.x+threadIdx.x]=total;
|
146 | 7 | equemene | __syncthreads();
|
147 | 7 | equemene |
|
148 | 7 | equemene | }
|
149 | 50 | equemene |
|
150 | 50 | equemene | __global__ void MainLoopBlocks64(ulong *s,ulong iterations,uint seed_w,uint seed_z)
|
151 | 50 | equemene | {
|
152 | 50 | equemene | uint z=seed_z/(blockIdx.x+1);
|
153 | 50 | equemene | uint w=seed_w/(blockIdx.x+1);
|
154 | 50 | equemene |
|
155 | 50 | equemene | ulong total=0;
|
156 | 50 | equemene |
|
157 | 50 | equemene | for (ulong i=0;i<iterations;i++) {
|
158 | 50 | equemene |
|
159 | 50 | equemene | double x=(double)MWCfp ;
|
160 | 50 | equemene | double y=(double)MWCfp ;
|
161 | 50 | equemene |
|
162 | 50 | equemene | // Matching test
|
163 | 50 | equemene | ulong inside=((x*x+y*y) < 1.0f) ? 1:0;
|
164 | 50 | equemene | total+=inside;
|
165 | 50 | equemene |
|
166 | 50 | equemene | }
|
167 | 50 | equemene |
|
168 | 50 | equemene | s[blockIdx.x]=total;
|
169 | 50 | equemene | __syncthreads();
|
170 | 50 | equemene |
|
171 | 50 | equemene | }
|
172 | 50 | equemene |
|
173 | 50 | equemene | __global__ void MainLoopThreads64(ulong *s,ulong iterations,uint seed_w,uint seed_z)
|
174 | 50 | equemene | {
|
175 | 50 | equemene | uint z=seed_z/(threadIdx.x+1);
|
176 | 50 | equemene | uint w=seed_w/(threadIdx.x+1);
|
177 | 50 | equemene |
|
178 | 50 | equemene | ulong total=0;
|
179 | 50 | equemene |
|
180 | 50 | equemene | for (ulong i=0;i<iterations;i++) {
|
181 | 50 | equemene |
|
182 | 50 | equemene | double x=(double)MWCfp ;
|
183 | 50 | equemene | double y=(double)MWCfp ;
|
184 | 50 | equemene |
|
185 | 50 | equemene | // Matching test
|
186 | 50 | equemene | ulong inside=((x*x+y*y) < 1.0f) ? 1:0;
|
187 | 50 | equemene | total+=inside;
|
188 | 50 | equemene |
|
189 | 50 | equemene | }
|
190 | 50 | equemene |
|
191 | 50 | equemene | s[threadIdx.x]=total;
|
192 | 50 | equemene | __syncthreads();
|
193 | 50 | equemene |
|
194 | 50 | equemene | }
|
195 | 50 | equemene |
|
196 | 50 | equemene | __global__ void MainLoopHybrid64(ulong *s,ulong iterations,uint seed_w,uint seed_z)
|
197 | 50 | equemene | {
|
198 | 50 | equemene | uint z=seed_z/(blockDim.x*blockIdx.x+threadIdx.x+1);
|
199 | 50 | equemene | uint w=seed_w/(blockDim.x*blockIdx.x+threadIdx.x+1);
|
200 | 50 | equemene |
|
201 | 50 | equemene | ulong total=0;
|
202 | 50 | equemene |
|
203 | 50 | equemene | for (ulong i=0;i<iterations;i++) {
|
204 | 50 | equemene |
|
205 | 50 | equemene | double x=(double)MWCfp ;
|
206 | 50 | equemene | double y=(double)MWCfp ;
|
207 | 50 | equemene |
|
208 | 50 | equemene | // Matching test
|
209 | 50 | equemene | ulong inside=((x*x+y*y) < 1.0f) ? 1:0;
|
210 | 50 | equemene | total+=inside;
|
211 | 50 | equemene |
|
212 | 50 | equemene | }
|
213 | 50 | equemene |
|
214 | 50 | equemene | s[blockDim.x*blockIdx.x+threadIdx.x]=total;
|
215 | 50 | equemene | __syncthreads();
|
216 | 50 | equemene |
|
217 | 50 | equemene | }
|
218 | 7 | equemene | """
|
219 | 7 | equemene | |
220 | 7 | equemene | KERNEL_CODE_OPENCL="""
|
221 | 50 | equemene | #pragma OPENCL EXTENSION cl_khr_fp64: enable
|
222 | 7 | equemene |
|
223 | 7 | equemene | // Marsaglia RNG very simple implementation
|
224 | 7 | equemene | #define znew ((z=36969*(z&65535)+(z>>16))<<16)
|
225 | 7 | equemene | #define wnew ((w=18000*(w&65535)+(w>>16))&65535)
|
226 | 7 | equemene | #define MWC (znew+wnew)
|
227 | 7 | equemene | #define SHR3 (jsr=(jsr=(jsr=jsr^(jsr<<17))^(jsr>>13))^(jsr<<5))
|
228 | 7 | equemene | #define CONG (jcong=69069*jcong+1234567)
|
229 | 7 | equemene | #define KISS ((MWC^CONG)+SHR3)
|
230 | 7 | equemene |
|
231 | 7 | equemene | #define MWCfp MWC * 2.328306435454494e-10f
|
232 | 7 | equemene | #define KISSfp KISS * 2.328306435454494e-10f
|
233 | 7 | equemene |
|
234 | 17 | equemene | __kernel void MainLoopGlobal(__global ulong *s,ulong iterations,uint seed_w,uint seed_z)
|
235 | 7 | equemene | {
|
236 | 7 | equemene | uint z=seed_z/(get_global_id(0)+1);
|
237 | 7 | equemene | uint w=seed_w/(get_global_id(0)+1);
|
238 | 7 | equemene |
|
239 | 17 | equemene | ulong total=0;
|
240 | 7 | equemene |
|
241 | 17 | equemene | for (ulong i=0;i<iterations;i++) {
|
242 | 7 | equemene |
|
243 | 7 | equemene | float x=MWCfp ;
|
244 | 7 | equemene | float y=MWCfp ;
|
245 | 7 | equemene |
|
246 | 7 | equemene | // Matching test
|
247 | 17 | equemene | ulong inside=((x*x+y*y) < 1.0f) ? 1:0;
|
248 | 7 | equemene | total+=inside;
|
249 | 7 | equemene | }
|
250 | 7 | equemene | s[get_global_id(0)]=total;
|
251 | 7 | equemene | barrier(CLK_GLOBAL_MEM_FENCE);
|
252 | 7 | equemene |
|
253 | 7 | equemene | }
|
254 | 7 | equemene |
|
255 | 17 | equemene | __kernel void MainLoopLocal(__global ulong *s,ulong iterations,uint seed_w,uint seed_z)
|
256 | 7 | equemene | {
|
257 | 7 | equemene | uint z=seed_z/(get_local_id(0)+1);
|
258 | 7 | equemene | uint w=seed_w/(get_local_id(0)+1);
|
259 | 7 | equemene |
|
260 | 17 | equemene | ulong total=0;
|
261 | 7 | equemene |
|
262 | 17 | equemene | for (ulong i=0;i<iterations;i++) {
|
263 | 7 | equemene |
|
264 | 7 | equemene | float x=MWCfp ;
|
265 | 7 | equemene | float y=MWCfp ;
|
266 | 7 | equemene |
|
267 | 7 | equemene | // Matching test
|
268 | 17 | equemene | ulong inside=((x*x+y*y) < 1.0f) ? 1:0;
|
269 | 7 | equemene | total+=inside;
|
270 | 7 | equemene | }
|
271 | 7 | equemene | s[get_local_id(0)]=total;
|
272 | 7 | equemene | barrier(CLK_LOCAL_MEM_FENCE);
|
273 | 7 | equemene |
|
274 | 7 | equemene | }
|
275 | 7 | equemene |
|
276 | 17 | equemene | __kernel void MainLoopHybrid(__global ulong *s,ulong iterations,uint seed_w,uint seed_z)
|
277 | 7 | equemene | {
|
278 | 7 | equemene | uint z=seed_z/(get_group_id(0)*get_num_groups(0)+get_local_id(0)+1);
|
279 | 7 | equemene | uint w=seed_w/(get_group_id(0)*get_num_groups(0)+get_local_id(0)+1);
|
280 | 7 | equemene |
|
281 | 17 | equemene | ulong total=0;
|
282 | 7 | equemene |
|
283 | 7 | equemene | for (uint i=0;i<iterations;i++) {
|
284 | 7 | equemene |
|
285 | 7 | equemene | float x=MWCfp ;
|
286 | 7 | equemene | float y=MWCfp ;
|
287 | 7 | equemene |
|
288 | 7 | equemene | // Matching test
|
289 | 17 | equemene | ulong inside=((x*x+y*y) < 1.0f) ? 1:0;
|
290 | 7 | equemene | total+=inside;
|
291 | 7 | equemene | }
|
292 | 7 | equemene | barrier(CLK_LOCAL_MEM_FENCE);
|
293 | 7 | equemene | s[get_group_id(0)*get_num_groups(0)+get_local_id(0)]=total;
|
294 | 7 | equemene |
|
295 | 7 | equemene | }
|
296 | 50 | equemene |
|
297 | 50 | equemene | __kernel void MainLoopGlobal64(__global ulong *s,ulong iterations,uint seed_w,uint seed_z)
|
298 | 50 | equemene | {
|
299 | 50 | equemene | uint z=seed_z/(get_global_id(0)+1);
|
300 | 50 | equemene | uint w=seed_w/(get_global_id(0)+1);
|
301 | 50 | equemene |
|
302 | 50 | equemene | ulong total=0;
|
303 | 50 | equemene |
|
304 | 50 | equemene | for (ulong i=0;i<iterations;i++) {
|
305 | 50 | equemene |
|
306 | 50 | equemene | double x=(double)MWCfp ;
|
307 | 50 | equemene | double y=(double)MWCfp ;
|
308 | 50 | equemene |
|
309 | 50 | equemene | // Matching test
|
310 | 50 | equemene | ulong inside=((x*x+y*y) < 1.0f) ? 1:0;
|
311 | 50 | equemene | total+=inside;
|
312 | 50 | equemene | }
|
313 | 50 | equemene | s[get_global_id(0)]=total;
|
314 | 50 | equemene | barrier(CLK_GLOBAL_MEM_FENCE);
|
315 | 50 | equemene |
|
316 | 50 | equemene | }
|
317 | 50 | equemene |
|
318 | 50 | equemene | __kernel void MainLoopLocal64(__global ulong *s,ulong iterations,uint seed_w,uint seed_z)
|
319 | 50 | equemene | {
|
320 | 50 | equemene | uint z=seed_z/(get_local_id(0)+1);
|
321 | 50 | equemene | uint w=seed_w/(get_local_id(0)+1);
|
322 | 50 | equemene |
|
323 | 50 | equemene | ulong total=0;
|
324 | 50 | equemene |
|
325 | 50 | equemene | for (ulong i=0;i<iterations;i++) {
|
326 | 50 | equemene |
|
327 | 50 | equemene | double x=(double)MWCfp ;
|
328 | 50 | equemene | double y=(double)MWCfp ;
|
329 | 50 | equemene |
|
330 | 50 | equemene | // Matching test
|
331 | 50 | equemene | ulong inside=((x*x+y*y) < 1.0f) ? 1:0;
|
332 | 50 | equemene | total+=inside;
|
333 | 50 | equemene | }
|
334 | 50 | equemene | s[get_local_id(0)]=total;
|
335 | 50 | equemene | barrier(CLK_LOCAL_MEM_FENCE);
|
336 | 50 | equemene |
|
337 | 50 | equemene | }
|
338 | 50 | equemene |
|
339 | 50 | equemene | __kernel void MainLoopHybrid64(__global ulong *s,ulong iterations,uint seed_w,uint seed_z)
|
340 | 50 | equemene | {
|
341 | 50 | equemene | uint z=seed_z/(get_group_id(0)*get_num_groups(0)+get_local_id(0)+1);
|
342 | 50 | equemene | uint w=seed_w/(get_group_id(0)*get_num_groups(0)+get_local_id(0)+1);
|
343 | 50 | equemene |
|
344 | 50 | equemene | ulong total=0;
|
345 | 50 | equemene |
|
346 | 50 | equemene | for (uint i=0;i<iterations;i++) {
|
347 | 50 | equemene |
|
348 | 50 | equemene | double x=(double)MWCfp ;
|
349 | 50 | equemene | double y=(double)MWCfp ;
|
350 | 50 | equemene |
|
351 | 50 | equemene | // Matching test
|
352 | 50 | equemene | ulong inside=((x*x+y*y) < 1.0f) ? 1:0;
|
353 | 50 | equemene | total+=inside;
|
354 | 50 | equemene | }
|
355 | 50 | equemene | barrier(CLK_LOCAL_MEM_FENCE);
|
356 | 50 | equemene | s[get_group_id(0)*get_num_groups(0)+get_local_id(0)]=total;
|
357 | 50 | equemene |
|
358 | 50 | equemene | }
|
359 | 7 | equemene | """
|
360 | 7 | equemene | |
361 | 50 | equemene | def MetropolisCuda(circle,iterations,steps,jobs,ParaStyle,DoublePrecision): |
362 | 7 | equemene | |
363 | 7 | equemene | # Avec PyCUDA autoinit, rien a faire !
|
364 | 7 | equemene | |
365 | 7 | equemene | circleCU = cuda.InOut(circle) |
366 | 7 | equemene | |
367 | 7 | equemene | mod = SourceModule(KERNEL_CODE_CUDA) |
368 | 7 | equemene | |
369 | 7 | equemene | MetropolisBlocksCU=mod.get_function("MainLoopBlocks")
|
370 | 7 | equemene | MetropolisJobsCU=mod.get_function("MainLoopThreads")
|
371 | 7 | equemene | MetropolisHybridCU=mod.get_function("MainLoopHybrid")
|
372 | 50 | equemene | MetropolisBlocks64CU=mod.get_function("MainLoopBlocks64")
|
373 | 50 | equemene | MetropolisJobs64CU=mod.get_function("MainLoopThreads64")
|
374 | 50 | equemene | MetropolisHybrid64CU=mod.get_function("MainLoopHybrid64")
|
375 | 7 | equemene | |
376 | 7 | equemene | start = pycuda.driver.Event() |
377 | 7 | equemene | stop = pycuda.driver.Event() |
378 | 7 | equemene | |
379 | 7 | equemene | MyPi=numpy.zeros(steps) |
380 | 7 | equemene | MyDuration=numpy.zeros(steps) |
381 | 50 | equemene | |
382 | 7 | equemene | if iterations%jobs==0: |
383 | 17 | equemene | iterationsCL=numpy.uint64(iterations/jobs) |
384 | 7 | equemene | iterationsNew=iterationsCL*jobs |
385 | 7 | equemene | else:
|
386 | 17 | equemene | iterationsCL=numpy.uint64(iterations/jobs+1)
|
387 | 7 | equemene | iterationsNew=iterations |
388 | 7 | equemene | |
389 | 7 | equemene | for i in range(steps): |
390 | 7 | equemene | start.record() |
391 | 7 | equemene | start.synchronize() |
392 | 7 | equemene | if ParaStyle=='Blocks': |
393 | 50 | equemene | if DoublePrecision:
|
394 | 50 | equemene | MetropolisBlocksCU(circleCU, |
395 | 50 | equemene | numpy.uint64(iterationsCL), |
396 | 50 | equemene | numpy.uint32(nprnd(2**30/jobs)), |
397 | 50 | equemene | numpy.uint32(nprnd(2**30/jobs)), |
398 | 50 | equemene | grid=(jobs,1),
|
399 | 50 | equemene | block=(1,1,1)) |
400 | 50 | equemene | else:
|
401 | 50 | equemene | MetropolisBlocks64CU(circleCU, |
402 | 50 | equemene | numpy.uint64(iterationsCL), |
403 | 50 | equemene | numpy.uint32(nprnd(2**30/jobs)), |
404 | 50 | equemene | numpy.uint32(nprnd(2**30/jobs)), |
405 | 50 | equemene | grid=(jobs,1),
|
406 | 50 | equemene | block=(1,1,1)) |
407 | 50 | equemene | |
408 | 17 | equemene | print "%s with (WorkItems/Threads)=(%i,%i) %s method done" % \ |
409 | 17 | equemene | (Alu,jobs,1,ParaStyle)
|
410 | 7 | equemene | elif ParaStyle=='Hybrid': |
411 | 17 | equemene | threads=BestThreadsNumber(jobs) |
412 | 50 | equemene | if DoublePrecision:
|
413 | 50 | equemene | MetropolisHybrid64CU(circleCU, |
414 | 50 | equemene | numpy.uint64(iterationsCL), |
415 | 50 | equemene | numpy.uint32(nprnd(2**30/jobs)), |
416 | 50 | equemene | numpy.uint32(nprnd(2**30/jobs)), |
417 | 50 | equemene | grid=(jobs,1),
|
418 | 50 | equemene | block=(threads,1,1)) |
419 | 50 | equemene | else:
|
420 | 50 | equemene | MetropolisHybridCU(circleCU, |
421 | 50 | equemene | numpy.uint64(iterationsCL), |
422 | 50 | equemene | numpy.uint32(nprnd(2**30/jobs)), |
423 | 50 | equemene | numpy.uint32(nprnd(2**30/jobs)), |
424 | 50 | equemene | grid=(jobs,1),
|
425 | 50 | equemene | block=(threads,1,1)) |
426 | 17 | equemene | print "%s with (WorkItems/Threads)=(%i,%i) %s method done" % \ |
427 | 17 | equemene | (Alu,jobs/threads,threads,ParaStyle) |
428 | 7 | equemene | else:
|
429 | 50 | equemene | if DoublePrecision:
|
430 | 50 | equemene | MetropolisJobs64CU(circleCU, |
431 | 50 | equemene | numpy.uint64(iterationsCL), |
432 | 50 | equemene | numpy.uint32(nprnd(2**30/jobs)), |
433 | 50 | equemene | numpy.uint32(nprnd(2**30/jobs)), |
434 | 50 | equemene | grid=(1,1), |
435 | 50 | equemene | block=(jobs,1,1)) |
436 | 50 | equemene | else:
|
437 | 50 | equemene | MetropolisJobsCU(circleCU, |
438 | 50 | equemene | numpy.uint64(iterationsCL), |
439 | 50 | equemene | numpy.uint32(nprnd(2**30/jobs)), |
440 | 50 | equemene | numpy.uint32(nprnd(2**30/jobs)), |
441 | 50 | equemene | grid=(1,1), |
442 | 50 | equemene | block=(jobs,1,1)) |
443 | 17 | equemene | print "%s with (WorkItems/Threads)=(%i,%i) %s method done" % \ |
444 | 17 | equemene | (Alu,jobs,1,ParaStyle)
|
445 | 7 | equemene | stop.record() |
446 | 7 | equemene | stop.synchronize() |
447 | 7 | equemene | |
448 | 7 | equemene | elapsed = start.time_till(stop)*1e-3
|
449 | 7 | equemene | |
450 | 7 | equemene | MyDuration[i]=elapsed |
451 | 50 | equemene | AllPi=4./numpy.float32(iterationsCL)*circle.astype(numpy.float32)
|
452 | 50 | equemene | MyPi[i]=numpy.median(AllPi) |
453 | 50 | equemene | print MyPi[i],numpy.std(AllPi),MyDuration[i]
|
454 | 7 | equemene | |
455 | 50 | equemene | |
456 | 7 | equemene | print jobs,numpy.mean(MyDuration),numpy.median(MyDuration),numpy.std(MyDuration)
|
457 | 7 | equemene | |
458 | 7 | equemene | return(numpy.mean(MyDuration),numpy.median(MyDuration),numpy.std(MyDuration))
|
459 | 7 | equemene | |
460 | 7 | equemene | |
461 | 50 | equemene | def MetropolisOpenCL(circle,iterations,steps,jobs,ParaStyle,Alu,Device, |
462 | 50 | equemene | DoublePrecision): |
463 | 7 | equemene | |
464 | 7 | equemene | # Initialisation des variables en les CASTant correctement
|
465 | 7 | equemene | |
466 | 46 | equemene | if Device==0: |
467 | 46 | equemene | print "Enter XPU selector based on ALU type: first selected" |
468 | 46 | equemene | HasXPU=False
|
469 | 46 | equemene | # Default Device selection based on ALU Type
|
470 | 46 | equemene | for platform in cl.get_platforms(): |
471 | 46 | equemene | for device in platform.get_devices(): |
472 | 46 | equemene | deviceType=cl.device_type.to_string(device.type) |
473 | 46 | equemene | if deviceType=="GPU" and Alu=="GPU" and not HasXPU: |
474 | 46 | equemene | XPU=device |
475 | 46 | equemene | print "GPU selected: ",device.name |
476 | 46 | equemene | HasXPU=True
|
477 | 46 | equemene | if deviceType=="CPU" and Alu=="CPU" and not HasXPU: |
478 | 46 | equemene | XPU=device |
479 | 46 | equemene | print "CPU selected: ",device.name |
480 | 46 | equemene | HasXPU=True
|
481 | 46 | equemene | else:
|
482 | 46 | equemene | print "Enter XPU selector based on device number & ALU type" |
483 | 46 | equemene | Id=1
|
484 | 46 | equemene | HasXPU=False
|
485 | 46 | equemene | # Primary Device selection based on Device Id
|
486 | 46 | equemene | for platform in cl.get_platforms(): |
487 | 46 | equemene | for device in platform.get_devices(): |
488 | 46 | equemene | deviceType=cl.device_type.to_string(device.type) |
489 | 46 | equemene | if Id==Device and Alu==deviceType and HasXPU==False: |
490 | 46 | equemene | XPU=device |
491 | 46 | equemene | print "CPU/GPU selected: ",device.name |
492 | 46 | equemene | HasXPU=True
|
493 | 46 | equemene | Id=Id+1
|
494 | 46 | equemene | if HasXPU==False: |
495 | 46 | equemene | print "No XPU #%i of type %s found in all of %i devices, sorry..." % \ |
496 | 46 | equemene | (Device,Alu,Id-1)
|
497 | 46 | equemene | return(0,0,0) |
498 | 7 | equemene | |
499 | 7 | equemene | # Je cree le contexte et la queue pour son execution
|
500 | 46 | equemene | ctx = cl.Context([XPU]) |
501 | 7 | equemene | queue = cl.CommandQueue(ctx, |
502 | 7 | equemene | properties=cl.command_queue_properties.PROFILING_ENABLE) |
503 | 7 | equemene | |
504 | 7 | equemene | # Je recupere les flag possibles pour les buffers
|
505 | 7 | equemene | mf = cl.mem_flags |
506 | 7 | equemene | |
507 | 7 | equemene | circleCL = cl.Buffer(ctx, mf.WRITE_ONLY|mf.COPY_HOST_PTR,hostbuf=circle) |
508 | 7 | equemene | |
509 | 7 | equemene | MetropolisCL = cl.Program(ctx,KERNEL_CODE_OPENCL).build( \ |
510 | 7 | equemene | options = "-cl-mad-enable -cl-fast-relaxed-math")
|
511 | 7 | equemene | |
512 | 7 | equemene | i=0
|
513 | 7 | equemene | |
514 | 7 | equemene | MyPi=numpy.zeros(steps) |
515 | 7 | equemene | MyDuration=numpy.zeros(steps) |
516 | 7 | equemene | |
517 | 7 | equemene | if iterations%jobs==0: |
518 | 41 | equemene | iterationsCL=numpy.uint64(iterations/jobs) |
519 | 47 | equemene | iterationsNew=numpy.uint64(iterationsCL*jobs) |
520 | 7 | equemene | else:
|
521 | 41 | equemene | iterationsCL=numpy.uint64(iterations/jobs+1)
|
522 | 47 | equemene | iterationsNew=numpy.uint64(iterations) |
523 | 7 | equemene | |
524 | 7 | equemene | for i in range(steps): |
525 | 7 | equemene | |
526 | 7 | equemene | if ParaStyle=='Blocks': |
527 | 7 | equemene | # Call OpenCL kernel
|
528 | 7 | equemene | # (1,) is Global work size (only 1 work size)
|
529 | 7 | equemene | # (1,) is local work size
|
530 | 7 | equemene | # circleCL is lattice translated in CL format
|
531 | 7 | equemene | # SeedZCL is lattice translated in CL format
|
532 | 7 | equemene | # SeedWCL is lattice translated in CL format
|
533 | 7 | equemene | # step is number of iterations
|
534 | 50 | equemene | if DoublePrecision:
|
535 | 50 | equemene | CLLaunch=MetropolisCL.MainLoopGlobal64(queue,(jobs,),None,
|
536 | 50 | equemene | circleCL, |
537 | 50 | equemene | numpy.uint64(iterationsCL), |
538 | 50 | equemene | numpy.uint32(nprnd(2**30/jobs)), |
539 | 50 | equemene | numpy.uint32(nprnd(2**30/jobs))) |
540 | 50 | equemene | else:
|
541 | 50 | equemene | CLLaunch=MetropolisCL.MainLoopGlobal(queue,(jobs,),None,
|
542 | 50 | equemene | circleCL, |
543 | 50 | equemene | numpy.uint64(iterationsCL), |
544 | 50 | equemene | numpy.uint32(nprnd(2**30/jobs)), |
545 | 50 | equemene | numpy.uint32(nprnd(2**30/jobs))) |
546 | 17 | equemene | print "%s with (WorkItems/Threads)=(%i,%i) %s method done" % \ |
547 | 17 | equemene | (Alu,jobs,1,ParaStyle)
|
548 | 7 | equemene | elif ParaStyle=='Hybrid': |
549 | 17 | equemene | threads=BestThreadsNumber(jobs) |
550 | 7 | equemene | # en OpenCL, necessaire de mettre un Global_id identique au local_id
|
551 | 50 | equemene | if DoublePrecision:
|
552 | 50 | equemene | CLLaunch=MetropolisCL.MainLoopHybrid64(queue,(jobs,),(threads,), |
553 | 50 | equemene | circleCL, |
554 | 50 | equemene | numpy.uint64(iterationsCL), |
555 | 50 | equemene | numpy.uint32(nprnd(2**30/jobs)), |
556 | 50 | equemene | numpy.uint32(nprnd(2**30/jobs))) |
557 | 50 | equemene | else:
|
558 | 50 | equemene | CLLaunch=MetropolisCL.MainLoopHybrid(queue,(jobs,),(threads,), |
559 | 50 | equemene | circleCL, |
560 | 50 | equemene | numpy.uint64(iterationsCL), |
561 | 50 | equemene | numpy.uint32(nprnd(2**30/jobs)), |
562 | 50 | equemene | numpy.uint32(nprnd(2**30/jobs))) |
563 | 50 | equemene | |
564 | 17 | equemene | print "%s with (WorkItems/Threads)=(%i,%i) %s method done" % \ |
565 | 17 | equemene | (Alu,jobs/threads,threads,ParaStyle) |
566 | 7 | equemene | else:
|
567 | 7 | equemene | # en OpenCL, necessaire de mettre un Global_id identique au local_id
|
568 | 50 | equemene | if DoublePrecision:
|
569 | 50 | equemene | CLLaunch=MetropolisCL.MainLoopLocal64(queue,(jobs,),(jobs,), |
570 | 50 | equemene | circleCL, |
571 | 50 | equemene | numpy.uint64(iterationsCL), |
572 | 50 | equemene | numpy.uint32(nprnd(2**30/jobs)), |
573 | 50 | equemene | numpy.uint32(nprnd(2**30/jobs))) |
574 | 50 | equemene | else:
|
575 | 50 | equemene | CLLaunch=MetropolisCL.MainLoopLocal(queue,(jobs,),(jobs,), |
576 | 50 | equemene | circleCL, |
577 | 50 | equemene | numpy.uint64(iterationsCL), |
578 | 50 | equemene | numpy.uint32(nprnd(2**30/jobs)), |
579 | 50 | equemene | numpy.uint32(nprnd(2**30/jobs))) |
580 | 7 | equemene | print "%s with %i %s done" % (Alu,jobs,ParaStyle) |
581 | 7 | equemene | |
582 | 7 | equemene | CLLaunch.wait() |
583 | 7 | equemene | cl.enqueue_copy(queue, circle, circleCL).wait() |
584 | 7 | equemene | |
585 | 7 | equemene | elapsed = 1e-9*(CLLaunch.profile.end - CLLaunch.profile.start)
|
586 | 7 | equemene | |
587 | 7 | equemene | MyDuration[i]=elapsed |
588 | 49 | equemene | AllPi=4./numpy.float32(iterationsCL)*circle.astype(numpy.float32)
|
589 | 49 | equemene | MyPi[i]=numpy.median(AllPi) |
590 | 49 | equemene | print MyPi[i],numpy.std(AllPi),MyDuration[i]
|
591 | 7 | equemene | |
592 | 7 | equemene | circleCL.release() |
593 | 7 | equemene | |
594 | 7 | equemene | print jobs,numpy.mean(MyDuration),numpy.median(MyDuration),numpy.std(MyDuration)
|
595 | 7 | equemene | |
596 | 7 | equemene | return(numpy.mean(MyDuration),numpy.median(MyDuration),numpy.std(MyDuration))
|
597 | 7 | equemene | |
598 | 7 | equemene | |
599 | 7 | equemene | def FitAndPrint(N,D,Curves): |
600 | 7 | equemene | |
601 | 55 | equemene | from scipy.optimize import curve_fit |
602 | 55 | equemene | import matplotlib.pyplot as plt |
603 | 55 | equemene | |
604 | 7 | equemene | try:
|
605 | 7 | equemene | coeffs_Amdahl, matcov_Amdahl = curve_fit(Amdahl, N, D) |
606 | 7 | equemene | |
607 | 7 | equemene | D_Amdahl=Amdahl(N,coeffs_Amdahl[0],coeffs_Amdahl[1],coeffs_Amdahl[2]) |
608 | 7 | equemene | coeffs_Amdahl[1]=coeffs_Amdahl[1]*coeffs_Amdahl[0]/D[0] |
609 | 7 | equemene | coeffs_Amdahl[2]=coeffs_Amdahl[2]*coeffs_Amdahl[0]/D[0] |
610 | 7 | equemene | coeffs_Amdahl[0]=D[0] |
611 | 7 | equemene | print "Amdahl Normalized: T=%.2f(%.6f+%.6f/N)" % \ |
612 | 7 | equemene | (coeffs_Amdahl[0],coeffs_Amdahl[1],coeffs_Amdahl[2]) |
613 | 7 | equemene | except:
|
614 | 7 | equemene | print "Impossible to fit for Amdahl law : only %i elements" % len(D) |
615 | 7 | equemene | |
616 | 7 | equemene | try:
|
617 | 7 | equemene | coeffs_AmdahlR, matcov_AmdahlR = curve_fit(AmdahlR, N, D) |
618 | 7 | equemene | |
619 | 7 | equemene | D_AmdahlR=AmdahlR(N,coeffs_AmdahlR[0],coeffs_AmdahlR[1]) |
620 | 7 | equemene | coeffs_AmdahlR[1]=coeffs_AmdahlR[1]*coeffs_AmdahlR[0]/D[0] |
621 | 7 | equemene | coeffs_AmdahlR[0]=D[0] |
622 | 7 | equemene | print "Amdahl Reduced Normalized: T=%.2f(%.6f+%.6f/N)" % \ |
623 | 7 | equemene | (coeffs_AmdahlR[0],1-coeffs_AmdahlR[1],coeffs_AmdahlR[1]) |
624 | 7 | equemene | |
625 | 7 | equemene | except:
|
626 | 7 | equemene | print "Impossible to fit for Reduced Amdahl law : only %i elements" % len(D) |
627 | 7 | equemene | |
628 | 7 | equemene | try:
|
629 | 7 | equemene | coeffs_Mylq, matcov_Mylq = curve_fit(Mylq, N, D) |
630 | 7 | equemene | |
631 | 7 | equemene | coeffs_Mylq[1]=coeffs_Mylq[1]*coeffs_Mylq[0]/D[0] |
632 | 45 | equemene | # coeffs_Mylq[2]=coeffs_Mylq[2]*coeffs_Mylq[0]/D[0]
|
633 | 7 | equemene | coeffs_Mylq[3]=coeffs_Mylq[3]*coeffs_Mylq[0]/D[0] |
634 | 7 | equemene | coeffs_Mylq[0]=D[0] |
635 | 45 | equemene | print "Mylq Normalized : T=%.2f(%.6f+%.6f/N)+%.6f*N" % (coeffs_Mylq[0], |
636 | 7 | equemene | coeffs_Mylq[1],
|
637 | 45 | equemene | coeffs_Mylq[3],
|
638 | 45 | equemene | coeffs_Mylq[2])
|
639 | 7 | equemene | D_Mylq=Mylq(N,coeffs_Mylq[0],coeffs_Mylq[1],coeffs_Mylq[2], |
640 | 7 | equemene | coeffs_Mylq[3])
|
641 | 7 | equemene | except:
|
642 | 7 | equemene | print "Impossible to fit for Mylq law : only %i elements" % len(D) |
643 | 7 | equemene | |
644 | 7 | equemene | try:
|
645 | 7 | equemene | coeffs_Mylq2, matcov_Mylq2 = curve_fit(Mylq2, N, D) |
646 | 7 | equemene | |
647 | 7 | equemene | coeffs_Mylq2[1]=coeffs_Mylq2[1]*coeffs_Mylq2[0]/D[0] |
648 | 45 | equemene | # coeffs_Mylq2[2]=coeffs_Mylq2[2]*coeffs_Mylq2[0]/D[0]
|
649 | 45 | equemene | # coeffs_Mylq2[3]=coeffs_Mylq2[3]*coeffs_Mylq2[0]/D[0]
|
650 | 7 | equemene | coeffs_Mylq2[4]=coeffs_Mylq2[4]*coeffs_Mylq2[0]/D[0] |
651 | 7 | equemene | coeffs_Mylq2[0]=D[0] |
652 | 45 | equemene | print "Mylq 2nd order Normalized: T=%.2f(%.6f+%.6f/N)+%.6f*N+%.6f*N^2" % \ |
653 | 45 | equemene | (coeffs_Mylq2[0],coeffs_Mylq2[1], |
654 | 45 | equemene | coeffs_Mylq2[4],coeffs_Mylq2[2],coeffs_Mylq2[3]) |
655 | 7 | equemene | |
656 | 7 | equemene | except:
|
657 | 7 | equemene | print "Impossible to fit for 2nd order Mylq law : only %i elements" % len(D) |
658 | 7 | equemene | |
659 | 7 | equemene | if Curves:
|
660 | 7 | equemene | plt.xlabel("Number of Threads/work Items")
|
661 | 7 | equemene | plt.ylabel("Total Elapsed Time")
|
662 | 7 | equemene | |
663 | 7 | equemene | Experience,=plt.plot(N,D,'ro')
|
664 | 7 | equemene | try:
|
665 | 7 | equemene | pAmdahl,=plt.plot(N,D_Amdahl,label="Loi de Amdahl")
|
666 | 7 | equemene | pMylq,=plt.plot(N,D_Mylq,label="Loi de Mylq")
|
667 | 7 | equemene | except:
|
668 | 7 | equemene | print "Fit curves seem not to be available" |
669 | 7 | equemene | |
670 | 7 | equemene | plt.legend() |
671 | 7 | equemene | plt.show() |
672 | 7 | equemene | |
673 | 7 | equemene | if __name__=='__main__': |
674 | 7 | equemene | |
675 | 7 | equemene | # Set defaults values
|
676 | 55 | equemene | |
677 | 55 | equemene | # Alu can be CPU, GPU or ACCELERATOR
|
678 | 7 | equemene | Alu='CPU'
|
679 | 46 | equemene | # Id of GPU : 1 is for first find !
|
680 | 17 | equemene | Device=0
|
681 | 7 | equemene | # GPU style can be Cuda (Nvidia implementation) or OpenCL
|
682 | 7 | equemene | GpuStyle='OpenCL'
|
683 | 7 | equemene | # Parallel distribution can be on Threads or Blocks
|
684 | 7 | equemene | ParaStyle='Blocks'
|
685 | 7 | equemene | # Iterations is integer
|
686 | 7 | equemene | Iterations=100000000
|
687 | 7 | equemene | # JobStart in first number of Jobs to explore
|
688 | 7 | equemene | JobStart=1
|
689 | 7 | equemene | # JobEnd is last number of Jobs to explore
|
690 | 7 | equemene | JobEnd=16
|
691 | 47 | equemene | # JobStep is the step of Jobs to explore
|
692 | 47 | equemene | JobStep=1
|
693 | 7 | equemene | # Redo is the times to redo the test to improve metrology
|
694 | 7 | equemene | Redo=1
|
695 | 7 | equemene | # OutMetrology is method for duration estimation : False is GPU inside
|
696 | 7 | equemene | OutMetrology=False
|
697 | 45 | equemene | Metrology='InMetro'
|
698 | 7 | equemene | # Curves is True to print the curves
|
699 | 7 | equemene | Curves=False
|
700 | 55 | equemene | # Fit is True to print the curves
|
701 | 55 | equemene | Fit=False
|
702 | 50 | equemene | # DoublePrecision on FP calculus
|
703 | 50 | equemene | DoublePrecision=False
|
704 | 7 | equemene | |
705 | 7 | equemene | try:
|
706 | 55 | equemene | opts, args = getopt.getopt(sys.argv[1:],"hoclfa:g:p:i:s:e:t:r:d:",["alu=","gpustyle=","parastyle=","iterations=","jobstart=","jobend=","jobstep=","redo=","device="]) |
707 | 7 | equemene | except getopt.GetoptError:
|
708 | 55 | equemene | print '%s -o (Out of Core Metrology) -c (Print Curves) -l (Double Precision) -f (Fit to Amdahl Law) -a <CPU/GPU/ACCELERATOR> -d <DeviceId> -g <CUDA/OpenCL> -p <Threads/Hybrid/Blocks> -i <Iterations> -s <JobStart> -e <JobEnd> -t <JobStep> -r <RedoToImproveStats> ' % sys.argv[0] |
709 | 7 | equemene | sys.exit(2)
|
710 | 7 | equemene | |
711 | 7 | equemene | for opt, arg in opts: |
712 | 7 | equemene | if opt == '-h': |
713 | 55 | equemene | print '%s -o (Out of Core Metrology) -c (Print Curves) -l (Double Precision) -f (Fit to Amdahl Law) -a <CPU/GPU/ACCELERATOR> -d <DeviceId> -g <CUDA/OpenCL> -p <Threads/Hybrid/Blocks> -i <Iterations> -s <JobStart> -e <JobEnd> -t <JobStep> -r <RedoToImproveStats>' % sys.argv[0] |
714 | 46 | equemene | |
715 | 46 | equemene | print "\nInformations about devices detected under OpenCL:" |
716 | 46 | equemene | # For PyOpenCL import
|
717 | 55 | equemene | try:
|
718 | 55 | equemene | import pyopencl as cl |
719 | 55 | equemene | Id=1
|
720 | 55 | equemene | for platform in cl.get_platforms(): |
721 | 55 | equemene | for device in platform.get_devices(): |
722 | 55 | equemene | deviceType=cl.device_type.to_string(device.type) |
723 | 55 | equemene | print "Device #%i of type %s : %s" % (Id,deviceType,device.name) |
724 | 55 | equemene | Id=Id+1
|
725 | 46 | equemene | |
726 | 55 | equemene | print
|
727 | 55 | equemene | sys.exit() |
728 | 55 | equemene | except ImportError: |
729 | 55 | equemene | print "Your platform does not seem to support OpenCL" |
730 | 55 | equemene | |
731 | 7 | equemene | elif opt == '-o': |
732 | 7 | equemene | OutMetrology=True
|
733 | 45 | equemene | Metrology='OutMetro'
|
734 | 50 | equemene | elif opt == '-l': |
735 | 50 | equemene | DoublePrecision=True
|
736 | 7 | equemene | elif opt == '-c': |
737 | 7 | equemene | Curves=True
|
738 | 55 | equemene | elif opt == '-f': |
739 | 55 | equemene | Fit=True
|
740 | 7 | equemene | elif opt in ("-a", "--alu"): |
741 | 7 | equemene | Alu = arg |
742 | 7 | equemene | elif opt in ("-d", "--device"): |
743 | 7 | equemene | Device = int(arg)
|
744 | 7 | equemene | elif opt in ("-g", "--gpustyle"): |
745 | 7 | equemene | GpuStyle = arg |
746 | 7 | equemene | elif opt in ("-p", "--parastyle"): |
747 | 7 | equemene | ParaStyle = arg |
748 | 7 | equemene | elif opt in ("-i", "--iterations"): |
749 | 40 | equemene | Iterations = numpy.uint64(arg) |
750 | 7 | equemene | elif opt in ("-s", "--jobstart"): |
751 | 7 | equemene | JobStart = int(arg)
|
752 | 7 | equemene | elif opt in ("-e", "--jobend"): |
753 | 7 | equemene | JobEnd = int(arg)
|
754 | 47 | equemene | elif opt in ("-t", "--jobstep"): |
755 | 47 | equemene | JobStep = int(arg)
|
756 | 7 | equemene | elif opt in ("-r", "--redo"): |
757 | 7 | equemene | Redo = int(arg)
|
758 | 7 | equemene | |
759 | 7 | equemene | if Alu=='CPU' and GpuStyle=='CUDA': |
760 | 7 | equemene | print "Alu can't be CPU for CUDA, set Alu to GPU" |
761 | 7 | equemene | Alu='GPU'
|
762 | 7 | equemene | |
763 | 7 | equemene | if ParaStyle not in ('Blocks','Threads','Hybrid'): |
764 | 7 | equemene | print "%s not exists, ParaStyle set as Threads !" % ParaStyle |
765 | 7 | equemene | ParaStyle='Threads'
|
766 | 7 | equemene | |
767 | 7 | equemene | print "Compute unit : %s" % Alu |
768 | 7 | equemene | print "Device Identification : %s" % Device |
769 | 7 | equemene | print "GpuStyle used : %s" % GpuStyle |
770 | 7 | equemene | print "Parallel Style used : %s" % ParaStyle |
771 | 7 | equemene | print "Iterations : %s" % Iterations |
772 | 7 | equemene | print "Number of threads on start : %s" % JobStart |
773 | 7 | equemene | print "Number of threads on end : %s" % JobEnd |
774 | 7 | equemene | print "Number of redo : %s" % Redo |
775 | 7 | equemene | print "Metrology done out of CPU/GPU : %r" % OutMetrology |
776 | 50 | equemene | print "Double Precision in Kernels : %r" % DoublePrecision |
777 | 7 | equemene | |
778 | 7 | equemene | if GpuStyle=='CUDA': |
779 | 55 | equemene | try:
|
780 | 55 | equemene | # For PyCUDA import
|
781 | 55 | equemene | import pycuda.driver as cuda |
782 | 55 | equemene | import pycuda.gpuarray as gpuarray |
783 | 55 | equemene | import pycuda.autoinit |
784 | 55 | equemene | from pycuda.compiler import SourceModule |
785 | 55 | equemene | except ImportError: |
786 | 55 | equemene | print "Platform does not seem to support CUDA" |
787 | 7 | equemene | |
788 | 7 | equemene | if GpuStyle=='OpenCL': |
789 | 55 | equemene | try:
|
790 | 55 | equemene | # For PyOpenCL import
|
791 | 55 | equemene | import pyopencl as cl |
792 | 55 | equemene | Id=1
|
793 | 55 | equemene | for platform in cl.get_platforms(): |
794 | 55 | equemene | for device in platform.get_devices(): |
795 | 55 | equemene | deviceType=cl.device_type.to_string(device.type) |
796 | 55 | equemene | print "Device #%i of type %s : %s" % (Id,deviceType,device.name) |
797 | 55 | equemene | if Id == Device:
|
798 | 55 | equemene | # Set the Alu as detected Device Type
|
799 | 55 | equemene | Alu=deviceType |
800 | 55 | equemene | Id=Id+1
|
801 | 55 | equemene | except ImportError: |
802 | 55 | equemene | print "Platform does not seem to support CUDA" |
803 | 55 | equemene | |
804 | 7 | equemene | average=numpy.array([]).astype(numpy.float32) |
805 | 7 | equemene | median=numpy.array([]).astype(numpy.float32) |
806 | 7 | equemene | stddev=numpy.array([]).astype(numpy.float32) |
807 | 7 | equemene | |
808 | 7 | equemene | ExploredJobs=numpy.array([]).astype(numpy.uint32) |
809 | 7 | equemene | |
810 | 7 | equemene | Jobs=JobStart |
811 | 7 | equemene | |
812 | 7 | equemene | while Jobs <= JobEnd:
|
813 | 7 | equemene | avg,med,std=0,0,0 |
814 | 7 | equemene | ExploredJobs=numpy.append(ExploredJobs,Jobs) |
815 | 17 | equemene | circle=numpy.zeros(Jobs).astype(numpy.uint64) |
816 | 7 | equemene | |
817 | 7 | equemene | if OutMetrology:
|
818 | 7 | equemene | duration=numpy.array([]).astype(numpy.float32) |
819 | 7 | equemene | for i in range(Redo): |
820 | 7 | equemene | start=time.time() |
821 | 7 | equemene | if GpuStyle=='CUDA': |
822 | 7 | equemene | try:
|
823 | 50 | equemene | a,m,s=MetropolisCuda(circle,Iterations,1,Jobs,ParaStyle,
|
824 | 50 | equemene | DoublePrecision) |
825 | 7 | equemene | except:
|
826 | 7 | equemene | print "Problem with %i // computations on Cuda" % Jobs |
827 | 7 | equemene | elif GpuStyle=='OpenCL': |
828 | 7 | equemene | try:
|
829 | 50 | equemene | a,m,s=MetropolisOpenCL(circle,Iterations,1,Jobs,ParaStyle,
|
830 | 50 | equemene | Alu,Device,DoublePrecision) |
831 | 7 | equemene | except:
|
832 | 7 | equemene | print "Problem with %i // computations on OpenCL" % Jobs |
833 | 7 | equemene | duration=numpy.append(duration,time.time()-start) |
834 | 46 | equemene | if (a,m,s) != (0,0,0): |
835 | 46 | equemene | avg=numpy.mean(duration) |
836 | 46 | equemene | med=numpy.median(duration) |
837 | 46 | equemene | std=numpy.std(duration) |
838 | 46 | equemene | else:
|
839 | 46 | equemene | print "Values seem to be wrong..." |
840 | 7 | equemene | else:
|
841 | 7 | equemene | if GpuStyle=='CUDA': |
842 | 7 | equemene | try:
|
843 | 50 | equemene | avg,med,std=MetropolisCuda(circle,Iterations,Redo,Jobs,ParaStyle, |
844 | 50 | equemene | DoublePrecision) |
845 | 7 | equemene | except:
|
846 | 7 | equemene | print "Problem with %i // computations on Cuda" % Jobs |
847 | 7 | equemene | elif GpuStyle=='OpenCL': |
848 | 55 | equemene | try:
|
849 | 55 | equemene | avg,med,std=MetropolisOpenCL(circle,Iterations,Redo,Jobs,ParaStyle,Alu,Device,DoublePrecision) |
850 | 55 | equemene | except:
|
851 | 55 | equemene | print "Problem with %i // computations on OpenCL" % Jobs |
852 | 7 | equemene | |
853 | 7 | equemene | if (avg,med,std) != (0,0,0): |
854 | 15 | equemene | print "jobs,avg,med,std",Jobs,avg,med,std |
855 | 7 | equemene | average=numpy.append(average,avg) |
856 | 7 | equemene | median=numpy.append(median,med) |
857 | 7 | equemene | stddev=numpy.append(stddev,std) |
858 | 7 | equemene | else:
|
859 | 7 | equemene | print "Values seem to be wrong..." |
860 | 7 | equemene | #THREADS*=2
|
861 | 50 | equemene | if DoublePrecision:
|
862 | 50 | equemene | Precision='DP'
|
863 | 50 | equemene | else:
|
864 | 50 | equemene | Precision='SP'
|
865 | 46 | equemene | if len(average)!=0: |
866 | 50 | equemene | numpy.savez("Pi%s_%s_%s_%s_%s_%i_%.8i_Device%i_%s_%s" % (Precision,Alu,GpuStyle,ParaStyle,JobStart,JobEnd,Iterations,Device,Metrology,gethostname()),(ExploredJobs,average,median,stddev))
|
867 | 50 | equemene | ToSave=[ ExploredJobs,average,median,stddev ] |
868 | 50 | equemene | numpy.savetxt("Pi%s_%s_%s_%s_%s_%i_%.8i_Device%i_%s_%s" % (Precision,Alu,GpuStyle,ParaStyle,JobStart,JobEnd,Iterations,Device,Metrology,gethostname()),numpy.transpose(ToSave))
|
869 | 47 | equemene | Jobs+=JobStep |
870 | 7 | equemene | |
871 | 55 | equemene | if Fit:
|
872 | 55 | equemene | FitAndPrint(ExploredJobs,median,Curves) |