root / Pi / GPU / Pi-GPU.py @ 50
Historique | Voir | Annoter | Télécharger (26,31 ko)
1 |
#!/usr/bin/env python
|
---|---|
2 |
|
3 |
#
|
4 |
# Pi-by-MC using PyCUDA/PyOpenCL
|
5 |
#
|
6 |
# CC BY-NC-SA 2011 : <emmanuel.quemener@ens-lyon.fr>
|
7 |
#
|
8 |
# Thanks to Andreas Klockner for PyCUDA:
|
9 |
# http://mathema.tician.de/software/pycuda
|
10 |
#
|
11 |
|
12 |
# 2013-01-01 : problems with launch timeout
|
13 |
# http://stackoverflow.com/questions/497685/how-do-you-get-around-the-maximum-cuda-run-time
|
14 |
# Option "Interactive" "0" in /etc/X11/xorg.conf
|
15 |
|
16 |
# Common tools
|
17 |
import numpy |
18 |
from numpy.random import randint as nprnd |
19 |
import sys |
20 |
import getopt |
21 |
import time |
22 |
import matplotlib.pyplot as plt |
23 |
import math |
24 |
from scipy.optimize import curve_fit |
25 |
from socket import gethostname |
26 |
|
27 |
# find prime factors of a number
|
28 |
# Get for WWW :
|
29 |
# http://pythonism.wordpress.com/2008/05/17/looking-at-factorisation-in-python/
|
30 |
def PrimeFactors(x): |
31 |
factorlist=numpy.array([]).astype('uint32')
|
32 |
loop=2
|
33 |
while loop<=x:
|
34 |
if x%loop==0: |
35 |
x/=loop |
36 |
factorlist=numpy.append(factorlist,[loop]) |
37 |
else:
|
38 |
loop+=1
|
39 |
return factorlist
|
40 |
|
41 |
# Try to find the best thread number in Hybrid approach (Blocks&Threads)
|
42 |
# output is thread number
|
43 |
def BestThreadsNumber(jobs): |
44 |
factors=PrimeFactors(jobs) |
45 |
matrix=numpy.append([factors],[factors[::-1]],axis=0) |
46 |
threads=1
|
47 |
for factor in matrix.transpose().ravel(): |
48 |
threads=threads*factor |
49 |
if threads*threads>jobs:
|
50 |
break
|
51 |
return(long(threads)) |
52 |
|
53 |
# Predicted Amdahl Law (Reduced with s=1-p)
|
54 |
def AmdahlR(N, T1, p): |
55 |
return (T1*(1-p+p/N)) |
56 |
|
57 |
# Predicted Amdahl Law
|
58 |
def Amdahl(N, T1, s, p): |
59 |
return (T1*(s+p/N))
|
60 |
|
61 |
# Predicted Mylq Law with first order
|
62 |
def Mylq(N, T1,s,c,p): |
63 |
return (T1*(s+p/N)+c*N)
|
64 |
|
65 |
# Predicted Mylq Law with second order
|
66 |
def Mylq2(N, T1,s,c1,c2,p): |
67 |
return (T1*(s+p/N)+c1*N+c2*N*N)
|
68 |
|
69 |
KERNEL_CODE_CUDA="""
|
70 |
|
71 |
// Marsaglia RNG very simple implementation
|
72 |
|
73 |
#define znew ((z=36969*(z&65535)+(z>>16))<<16)
|
74 |
#define wnew ((w=18000*(w&65535)+(w>>16))&65535)
|
75 |
#define MWC (znew+wnew)
|
76 |
#define SHR3 (jsr=(jsr=(jsr=jsr^(jsr<<17))^(jsr>>13))^(jsr<<5))
|
77 |
#define CONG (jcong=69069*jcong+1234567)
|
78 |
#define KISS ((MWC^CONG)+SHR3)
|
79 |
|
80 |
#define MWCfp MWC * 2.328306435454494e-10f
|
81 |
#define KISSfp KISS * 2.328306435454494e-10f
|
82 |
|
83 |
__global__ void MainLoopBlocks(ulong *s,ulong iterations,uint seed_w,uint seed_z)
|
84 |
{
|
85 |
uint z=seed_z/(blockIdx.x+1);
|
86 |
uint w=seed_w/(blockIdx.x+1);
|
87 |
|
88 |
ulong total=0;
|
89 |
|
90 |
for (ulong i=0;i<iterations;i++) {
|
91 |
|
92 |
float x=MWCfp ;
|
93 |
float y=MWCfp ;
|
94 |
|
95 |
// Matching test
|
96 |
ulong inside=((x*x+y*y) < 1.0f) ? 1:0;
|
97 |
total+=inside;
|
98 |
|
99 |
}
|
100 |
|
101 |
s[blockIdx.x]=total;
|
102 |
__syncthreads();
|
103 |
|
104 |
}
|
105 |
|
106 |
__global__ void MainLoopThreads(ulong *s,ulong iterations,uint seed_w,uint seed_z)
|
107 |
{
|
108 |
uint z=seed_z/(threadIdx.x+1);
|
109 |
uint w=seed_w/(threadIdx.x+1);
|
110 |
|
111 |
ulong total=0;
|
112 |
|
113 |
for (ulong i=0;i<iterations;i++) {
|
114 |
|
115 |
float x=MWCfp ;
|
116 |
float y=MWCfp ;
|
117 |
|
118 |
// Matching test
|
119 |
ulong inside=((x*x+y*y) < 1.0f) ? 1:0;
|
120 |
total+=inside;
|
121 |
|
122 |
}
|
123 |
|
124 |
s[threadIdx.x]=total;
|
125 |
__syncthreads();
|
126 |
|
127 |
}
|
128 |
|
129 |
__global__ void MainLoopHybrid(ulong *s,ulong iterations,uint seed_w,uint seed_z)
|
130 |
{
|
131 |
uint z=seed_z/(blockDim.x*blockIdx.x+threadIdx.x+1);
|
132 |
uint w=seed_w/(blockDim.x*blockIdx.x+threadIdx.x+1);
|
133 |
|
134 |
ulong total=0;
|
135 |
|
136 |
for (ulong i=0;i<iterations;i++) {
|
137 |
|
138 |
float x=MWCfp ;
|
139 |
float y=MWCfp ;
|
140 |
|
141 |
// Matching test
|
142 |
ulong inside=((x*x+y*y) < 1.0f) ? 1:0;
|
143 |
total+=inside;
|
144 |
|
145 |
}
|
146 |
|
147 |
s[blockDim.x*blockIdx.x+threadIdx.x]=total;
|
148 |
__syncthreads();
|
149 |
|
150 |
}
|
151 |
|
152 |
__global__ void MainLoopBlocks64(ulong *s,ulong iterations,uint seed_w,uint seed_z)
|
153 |
{
|
154 |
uint z=seed_z/(blockIdx.x+1);
|
155 |
uint w=seed_w/(blockIdx.x+1);
|
156 |
|
157 |
ulong total=0;
|
158 |
|
159 |
for (ulong i=0;i<iterations;i++) {
|
160 |
|
161 |
double x=(double)MWCfp ;
|
162 |
double y=(double)MWCfp ;
|
163 |
|
164 |
// Matching test
|
165 |
ulong inside=((x*x+y*y) < 1.0f) ? 1:0;
|
166 |
total+=inside;
|
167 |
|
168 |
}
|
169 |
|
170 |
s[blockIdx.x]=total;
|
171 |
__syncthreads();
|
172 |
|
173 |
}
|
174 |
|
175 |
__global__ void MainLoopThreads64(ulong *s,ulong iterations,uint seed_w,uint seed_z)
|
176 |
{
|
177 |
uint z=seed_z/(threadIdx.x+1);
|
178 |
uint w=seed_w/(threadIdx.x+1);
|
179 |
|
180 |
ulong total=0;
|
181 |
|
182 |
for (ulong i=0;i<iterations;i++) {
|
183 |
|
184 |
double x=(double)MWCfp ;
|
185 |
double y=(double)MWCfp ;
|
186 |
|
187 |
// Matching test
|
188 |
ulong inside=((x*x+y*y) < 1.0f) ? 1:0;
|
189 |
total+=inside;
|
190 |
|
191 |
}
|
192 |
|
193 |
s[threadIdx.x]=total;
|
194 |
__syncthreads();
|
195 |
|
196 |
}
|
197 |
|
198 |
__global__ void MainLoopHybrid64(ulong *s,ulong iterations,uint seed_w,uint seed_z)
|
199 |
{
|
200 |
uint z=seed_z/(blockDim.x*blockIdx.x+threadIdx.x+1);
|
201 |
uint w=seed_w/(blockDim.x*blockIdx.x+threadIdx.x+1);
|
202 |
|
203 |
ulong total=0;
|
204 |
|
205 |
for (ulong i=0;i<iterations;i++) {
|
206 |
|
207 |
double x=(double)MWCfp ;
|
208 |
double y=(double)MWCfp ;
|
209 |
|
210 |
// Matching test
|
211 |
ulong inside=((x*x+y*y) < 1.0f) ? 1:0;
|
212 |
total+=inside;
|
213 |
|
214 |
}
|
215 |
|
216 |
s[blockDim.x*blockIdx.x+threadIdx.x]=total;
|
217 |
__syncthreads();
|
218 |
|
219 |
}
|
220 |
"""
|
221 |
|
222 |
KERNEL_CODE_OPENCL="""
|
223 |
#pragma OPENCL EXTENSION cl_khr_fp64: enable
|
224 |
|
225 |
// Marsaglia RNG very simple implementation
|
226 |
#define znew ((z=36969*(z&65535)+(z>>16))<<16)
|
227 |
#define wnew ((w=18000*(w&65535)+(w>>16))&65535)
|
228 |
#define MWC (znew+wnew)
|
229 |
#define SHR3 (jsr=(jsr=(jsr=jsr^(jsr<<17))^(jsr>>13))^(jsr<<5))
|
230 |
#define CONG (jcong=69069*jcong+1234567)
|
231 |
#define KISS ((MWC^CONG)+SHR3)
|
232 |
|
233 |
#define MWCfp MWC * 2.328306435454494e-10f
|
234 |
#define KISSfp KISS * 2.328306435454494e-10f
|
235 |
|
236 |
__kernel void MainLoopGlobal(__global ulong *s,ulong iterations,uint seed_w,uint seed_z)
|
237 |
{
|
238 |
uint z=seed_z/(get_global_id(0)+1);
|
239 |
uint w=seed_w/(get_global_id(0)+1);
|
240 |
|
241 |
ulong total=0;
|
242 |
|
243 |
for (ulong i=0;i<iterations;i++) {
|
244 |
|
245 |
float x=MWCfp ;
|
246 |
float y=MWCfp ;
|
247 |
|
248 |
// Matching test
|
249 |
ulong inside=((x*x+y*y) < 1.0f) ? 1:0;
|
250 |
total+=inside;
|
251 |
}
|
252 |
s[get_global_id(0)]=total;
|
253 |
barrier(CLK_GLOBAL_MEM_FENCE);
|
254 |
|
255 |
}
|
256 |
|
257 |
__kernel void MainLoopLocal(__global ulong *s,ulong iterations,uint seed_w,uint seed_z)
|
258 |
{
|
259 |
uint z=seed_z/(get_local_id(0)+1);
|
260 |
uint w=seed_w/(get_local_id(0)+1);
|
261 |
|
262 |
ulong total=0;
|
263 |
|
264 |
for (ulong i=0;i<iterations;i++) {
|
265 |
|
266 |
float x=MWCfp ;
|
267 |
float y=MWCfp ;
|
268 |
|
269 |
// Matching test
|
270 |
ulong inside=((x*x+y*y) < 1.0f) ? 1:0;
|
271 |
total+=inside;
|
272 |
}
|
273 |
s[get_local_id(0)]=total;
|
274 |
barrier(CLK_LOCAL_MEM_FENCE);
|
275 |
|
276 |
}
|
277 |
|
278 |
__kernel void MainLoopHybrid(__global ulong *s,ulong iterations,uint seed_w,uint seed_z)
|
279 |
{
|
280 |
uint z=seed_z/(get_group_id(0)*get_num_groups(0)+get_local_id(0)+1);
|
281 |
uint w=seed_w/(get_group_id(0)*get_num_groups(0)+get_local_id(0)+1);
|
282 |
|
283 |
ulong total=0;
|
284 |
|
285 |
for (uint i=0;i<iterations;i++) {
|
286 |
|
287 |
float x=MWCfp ;
|
288 |
float y=MWCfp ;
|
289 |
|
290 |
// Matching test
|
291 |
ulong inside=((x*x+y*y) < 1.0f) ? 1:0;
|
292 |
total+=inside;
|
293 |
}
|
294 |
barrier(CLK_LOCAL_MEM_FENCE);
|
295 |
s[get_group_id(0)*get_num_groups(0)+get_local_id(0)]=total;
|
296 |
|
297 |
}
|
298 |
|
299 |
__kernel void MainLoopGlobal64(__global ulong *s,ulong iterations,uint seed_w,uint seed_z)
|
300 |
{
|
301 |
uint z=seed_z/(get_global_id(0)+1);
|
302 |
uint w=seed_w/(get_global_id(0)+1);
|
303 |
|
304 |
ulong total=0;
|
305 |
|
306 |
for (ulong i=0;i<iterations;i++) {
|
307 |
|
308 |
double x=(double)MWCfp ;
|
309 |
double y=(double)MWCfp ;
|
310 |
|
311 |
// Matching test
|
312 |
ulong inside=((x*x+y*y) < 1.0f) ? 1:0;
|
313 |
total+=inside;
|
314 |
}
|
315 |
s[get_global_id(0)]=total;
|
316 |
barrier(CLK_GLOBAL_MEM_FENCE);
|
317 |
|
318 |
}
|
319 |
|
320 |
__kernel void MainLoopLocal64(__global ulong *s,ulong iterations,uint seed_w,uint seed_z)
|
321 |
{
|
322 |
uint z=seed_z/(get_local_id(0)+1);
|
323 |
uint w=seed_w/(get_local_id(0)+1);
|
324 |
|
325 |
ulong total=0;
|
326 |
|
327 |
for (ulong i=0;i<iterations;i++) {
|
328 |
|
329 |
double x=(double)MWCfp ;
|
330 |
double y=(double)MWCfp ;
|
331 |
|
332 |
// Matching test
|
333 |
ulong inside=((x*x+y*y) < 1.0f) ? 1:0;
|
334 |
total+=inside;
|
335 |
}
|
336 |
s[get_local_id(0)]=total;
|
337 |
barrier(CLK_LOCAL_MEM_FENCE);
|
338 |
|
339 |
}
|
340 |
|
341 |
__kernel void MainLoopHybrid64(__global ulong *s,ulong iterations,uint seed_w,uint seed_z)
|
342 |
{
|
343 |
uint z=seed_z/(get_group_id(0)*get_num_groups(0)+get_local_id(0)+1);
|
344 |
uint w=seed_w/(get_group_id(0)*get_num_groups(0)+get_local_id(0)+1);
|
345 |
|
346 |
ulong total=0;
|
347 |
|
348 |
for (uint i=0;i<iterations;i++) {
|
349 |
|
350 |
double x=(double)MWCfp ;
|
351 |
double y=(double)MWCfp ;
|
352 |
|
353 |
// Matching test
|
354 |
ulong inside=((x*x+y*y) < 1.0f) ? 1:0;
|
355 |
total+=inside;
|
356 |
}
|
357 |
barrier(CLK_LOCAL_MEM_FENCE);
|
358 |
s[get_group_id(0)*get_num_groups(0)+get_local_id(0)]=total;
|
359 |
|
360 |
}
|
361 |
"""
|
362 |
|
363 |
def MetropolisCuda(circle,iterations,steps,jobs,ParaStyle,DoublePrecision): |
364 |
|
365 |
# Avec PyCUDA autoinit, rien a faire !
|
366 |
|
367 |
circleCU = cuda.InOut(circle) |
368 |
|
369 |
mod = SourceModule(KERNEL_CODE_CUDA) |
370 |
|
371 |
MetropolisBlocksCU=mod.get_function("MainLoopBlocks")
|
372 |
MetropolisJobsCU=mod.get_function("MainLoopThreads")
|
373 |
MetropolisHybridCU=mod.get_function("MainLoopHybrid")
|
374 |
MetropolisBlocks64CU=mod.get_function("MainLoopBlocks64")
|
375 |
MetropolisJobs64CU=mod.get_function("MainLoopThreads64")
|
376 |
MetropolisHybrid64CU=mod.get_function("MainLoopHybrid64")
|
377 |
|
378 |
start = pycuda.driver.Event() |
379 |
stop = pycuda.driver.Event() |
380 |
|
381 |
MyPi=numpy.zeros(steps) |
382 |
MyDuration=numpy.zeros(steps) |
383 |
|
384 |
if iterations%jobs==0: |
385 |
iterationsCL=numpy.uint64(iterations/jobs) |
386 |
iterationsNew=iterationsCL*jobs |
387 |
else:
|
388 |
iterationsCL=numpy.uint64(iterations/jobs+1)
|
389 |
iterationsNew=iterations |
390 |
|
391 |
for i in range(steps): |
392 |
start.record() |
393 |
start.synchronize() |
394 |
if ParaStyle=='Blocks': |
395 |
if DoublePrecision:
|
396 |
MetropolisBlocksCU(circleCU, |
397 |
numpy.uint64(iterationsCL), |
398 |
numpy.uint32(nprnd(2**30/jobs)), |
399 |
numpy.uint32(nprnd(2**30/jobs)), |
400 |
grid=(jobs,1),
|
401 |
block=(1,1,1)) |
402 |
else:
|
403 |
MetropolisBlocks64CU(circleCU, |
404 |
numpy.uint64(iterationsCL), |
405 |
numpy.uint32(nprnd(2**30/jobs)), |
406 |
numpy.uint32(nprnd(2**30/jobs)), |
407 |
grid=(jobs,1),
|
408 |
block=(1,1,1)) |
409 |
|
410 |
print "%s with (WorkItems/Threads)=(%i,%i) %s method done" % \ |
411 |
(Alu,jobs,1,ParaStyle)
|
412 |
elif ParaStyle=='Hybrid': |
413 |
threads=BestThreadsNumber(jobs) |
414 |
if DoublePrecision:
|
415 |
MetropolisHybrid64CU(circleCU, |
416 |
numpy.uint64(iterationsCL), |
417 |
numpy.uint32(nprnd(2**30/jobs)), |
418 |
numpy.uint32(nprnd(2**30/jobs)), |
419 |
grid=(jobs,1),
|
420 |
block=(threads,1,1)) |
421 |
else:
|
422 |
MetropolisHybridCU(circleCU, |
423 |
numpy.uint64(iterationsCL), |
424 |
numpy.uint32(nprnd(2**30/jobs)), |
425 |
numpy.uint32(nprnd(2**30/jobs)), |
426 |
grid=(jobs,1),
|
427 |
block=(threads,1,1)) |
428 |
print "%s with (WorkItems/Threads)=(%i,%i) %s method done" % \ |
429 |
(Alu,jobs/threads,threads,ParaStyle) |
430 |
else:
|
431 |
if DoublePrecision:
|
432 |
MetropolisJobs64CU(circleCU, |
433 |
numpy.uint64(iterationsCL), |
434 |
numpy.uint32(nprnd(2**30/jobs)), |
435 |
numpy.uint32(nprnd(2**30/jobs)), |
436 |
grid=(1,1), |
437 |
block=(jobs,1,1)) |
438 |
else:
|
439 |
MetropolisJobsCU(circleCU, |
440 |
numpy.uint64(iterationsCL), |
441 |
numpy.uint32(nprnd(2**30/jobs)), |
442 |
numpy.uint32(nprnd(2**30/jobs)), |
443 |
grid=(1,1), |
444 |
block=(jobs,1,1)) |
445 |
print "%s with (WorkItems/Threads)=(%i,%i) %s method done" % \ |
446 |
(Alu,jobs,1,ParaStyle)
|
447 |
stop.record() |
448 |
stop.synchronize() |
449 |
|
450 |
elapsed = start.time_till(stop)*1e-3
|
451 |
|
452 |
MyDuration[i]=elapsed |
453 |
AllPi=4./numpy.float32(iterationsCL)*circle.astype(numpy.float32)
|
454 |
MyPi[i]=numpy.median(AllPi) |
455 |
print MyPi[i],numpy.std(AllPi),MyDuration[i]
|
456 |
|
457 |
|
458 |
print jobs,numpy.mean(MyDuration),numpy.median(MyDuration),numpy.std(MyDuration)
|
459 |
|
460 |
return(numpy.mean(MyDuration),numpy.median(MyDuration),numpy.std(MyDuration))
|
461 |
|
462 |
|
463 |
def MetropolisOpenCL(circle,iterations,steps,jobs,ParaStyle,Alu,Device, |
464 |
DoublePrecision): |
465 |
|
466 |
# Initialisation des variables en les CASTant correctement
|
467 |
|
468 |
if Device==0: |
469 |
print "Enter XPU selector based on ALU type: first selected" |
470 |
HasXPU=False
|
471 |
# Default Device selection based on ALU Type
|
472 |
for platform in cl.get_platforms(): |
473 |
for device in platform.get_devices(): |
474 |
deviceType=cl.device_type.to_string(device.type) |
475 |
if deviceType=="GPU" and Alu=="GPU" and not HasXPU: |
476 |
XPU=device |
477 |
print "GPU selected: ",device.name |
478 |
HasXPU=True
|
479 |
if deviceType=="CPU" and Alu=="CPU" and not HasXPU: |
480 |
XPU=device |
481 |
print "CPU selected: ",device.name |
482 |
HasXPU=True
|
483 |
else:
|
484 |
print "Enter XPU selector based on device number & ALU type" |
485 |
Id=1
|
486 |
HasXPU=False
|
487 |
# Primary Device selection based on Device Id
|
488 |
for platform in cl.get_platforms(): |
489 |
for device in platform.get_devices(): |
490 |
deviceType=cl.device_type.to_string(device.type) |
491 |
if Id==Device and Alu==deviceType and HasXPU==False: |
492 |
XPU=device |
493 |
print "CPU/GPU selected: ",device.name |
494 |
HasXPU=True
|
495 |
Id=Id+1
|
496 |
if HasXPU==False: |
497 |
print "No XPU #%i of type %s found in all of %i devices, sorry..." % \ |
498 |
(Device,Alu,Id-1)
|
499 |
return(0,0,0) |
500 |
|
501 |
# Je cree le contexte et la queue pour son execution
|
502 |
ctx = cl.Context([XPU]) |
503 |
queue = cl.CommandQueue(ctx, |
504 |
properties=cl.command_queue_properties.PROFILING_ENABLE) |
505 |
|
506 |
# Je recupere les flag possibles pour les buffers
|
507 |
mf = cl.mem_flags |
508 |
|
509 |
circleCL = cl.Buffer(ctx, mf.WRITE_ONLY|mf.COPY_HOST_PTR,hostbuf=circle) |
510 |
|
511 |
MetropolisCL = cl.Program(ctx,KERNEL_CODE_OPENCL).build( \ |
512 |
options = "-cl-mad-enable -cl-fast-relaxed-math")
|
513 |
|
514 |
i=0
|
515 |
|
516 |
MyPi=numpy.zeros(steps) |
517 |
MyDuration=numpy.zeros(steps) |
518 |
|
519 |
if iterations%jobs==0: |
520 |
iterationsCL=numpy.uint64(iterations/jobs) |
521 |
iterationsNew=numpy.uint64(iterationsCL*jobs) |
522 |
else:
|
523 |
iterationsCL=numpy.uint64(iterations/jobs+1)
|
524 |
iterationsNew=numpy.uint64(iterations) |
525 |
|
526 |
for i in range(steps): |
527 |
|
528 |
if ParaStyle=='Blocks': |
529 |
# Call OpenCL kernel
|
530 |
# (1,) is Global work size (only 1 work size)
|
531 |
# (1,) is local work size
|
532 |
# circleCL is lattice translated in CL format
|
533 |
# SeedZCL is lattice translated in CL format
|
534 |
# SeedWCL is lattice translated in CL format
|
535 |
# step is number of iterations
|
536 |
if DoublePrecision:
|
537 |
CLLaunch=MetropolisCL.MainLoopGlobal64(queue,(jobs,),None,
|
538 |
circleCL, |
539 |
numpy.uint64(iterationsCL), |
540 |
numpy.uint32(nprnd(2**30/jobs)), |
541 |
numpy.uint32(nprnd(2**30/jobs))) |
542 |
else:
|
543 |
CLLaunch=MetropolisCL.MainLoopGlobal(queue,(jobs,),None,
|
544 |
circleCL, |
545 |
numpy.uint64(iterationsCL), |
546 |
numpy.uint32(nprnd(2**30/jobs)), |
547 |
numpy.uint32(nprnd(2**30/jobs))) |
548 |
print "%s with (WorkItems/Threads)=(%i,%i) %s method done" % \ |
549 |
(Alu,jobs,1,ParaStyle)
|
550 |
elif ParaStyle=='Hybrid': |
551 |
threads=BestThreadsNumber(jobs) |
552 |
# en OpenCL, necessaire de mettre un Global_id identique au local_id
|
553 |
if DoublePrecision:
|
554 |
CLLaunch=MetropolisCL.MainLoopHybrid64(queue,(jobs,),(threads,), |
555 |
circleCL, |
556 |
numpy.uint64(iterationsCL), |
557 |
numpy.uint32(nprnd(2**30/jobs)), |
558 |
numpy.uint32(nprnd(2**30/jobs))) |
559 |
else:
|
560 |
CLLaunch=MetropolisCL.MainLoopHybrid(queue,(jobs,),(threads,), |
561 |
circleCL, |
562 |
numpy.uint64(iterationsCL), |
563 |
numpy.uint32(nprnd(2**30/jobs)), |
564 |
numpy.uint32(nprnd(2**30/jobs))) |
565 |
|
566 |
print "%s with (WorkItems/Threads)=(%i,%i) %s method done" % \ |
567 |
(Alu,jobs/threads,threads,ParaStyle) |
568 |
else:
|
569 |
# en OpenCL, necessaire de mettre un Global_id identique au local_id
|
570 |
if DoublePrecision:
|
571 |
CLLaunch=MetropolisCL.MainLoopLocal64(queue,(jobs,),(jobs,), |
572 |
circleCL, |
573 |
numpy.uint64(iterationsCL), |
574 |
numpy.uint32(nprnd(2**30/jobs)), |
575 |
numpy.uint32(nprnd(2**30/jobs))) |
576 |
else:
|
577 |
CLLaunch=MetropolisCL.MainLoopLocal(queue,(jobs,),(jobs,), |
578 |
circleCL, |
579 |
numpy.uint64(iterationsCL), |
580 |
numpy.uint32(nprnd(2**30/jobs)), |
581 |
numpy.uint32(nprnd(2**30/jobs))) |
582 |
print "%s with %i %s done" % (Alu,jobs,ParaStyle) |
583 |
|
584 |
CLLaunch.wait() |
585 |
cl.enqueue_copy(queue, circle, circleCL).wait() |
586 |
|
587 |
elapsed = 1e-9*(CLLaunch.profile.end - CLLaunch.profile.start)
|
588 |
|
589 |
MyDuration[i]=elapsed |
590 |
AllPi=4./numpy.float32(iterationsCL)*circle.astype(numpy.float32)
|
591 |
MyPi[i]=numpy.median(AllPi) |
592 |
print MyPi[i],numpy.std(AllPi),MyDuration[i]
|
593 |
|
594 |
circleCL.release() |
595 |
|
596 |
print jobs,numpy.mean(MyDuration),numpy.median(MyDuration),numpy.std(MyDuration)
|
597 |
|
598 |
return(numpy.mean(MyDuration),numpy.median(MyDuration),numpy.std(MyDuration))
|
599 |
|
600 |
|
601 |
def FitAndPrint(N,D,Curves): |
602 |
|
603 |
try:
|
604 |
coeffs_Amdahl, matcov_Amdahl = curve_fit(Amdahl, N, D) |
605 |
|
606 |
D_Amdahl=Amdahl(N,coeffs_Amdahl[0],coeffs_Amdahl[1],coeffs_Amdahl[2]) |
607 |
coeffs_Amdahl[1]=coeffs_Amdahl[1]*coeffs_Amdahl[0]/D[0] |
608 |
coeffs_Amdahl[2]=coeffs_Amdahl[2]*coeffs_Amdahl[0]/D[0] |
609 |
coeffs_Amdahl[0]=D[0] |
610 |
print "Amdahl Normalized: T=%.2f(%.6f+%.6f/N)" % \ |
611 |
(coeffs_Amdahl[0],coeffs_Amdahl[1],coeffs_Amdahl[2]) |
612 |
except:
|
613 |
print "Impossible to fit for Amdahl law : only %i elements" % len(D) |
614 |
|
615 |
try:
|
616 |
coeffs_AmdahlR, matcov_AmdahlR = curve_fit(AmdahlR, N, D) |
617 |
|
618 |
D_AmdahlR=AmdahlR(N,coeffs_AmdahlR[0],coeffs_AmdahlR[1]) |
619 |
coeffs_AmdahlR[1]=coeffs_AmdahlR[1]*coeffs_AmdahlR[0]/D[0] |
620 |
coeffs_AmdahlR[0]=D[0] |
621 |
print "Amdahl Reduced Normalized: T=%.2f(%.6f+%.6f/N)" % \ |
622 |
(coeffs_AmdahlR[0],1-coeffs_AmdahlR[1],coeffs_AmdahlR[1]) |
623 |
|
624 |
except:
|
625 |
print "Impossible to fit for Reduced Amdahl law : only %i elements" % len(D) |
626 |
|
627 |
try:
|
628 |
coeffs_Mylq, matcov_Mylq = curve_fit(Mylq, N, D) |
629 |
|
630 |
coeffs_Mylq[1]=coeffs_Mylq[1]*coeffs_Mylq[0]/D[0] |
631 |
# coeffs_Mylq[2]=coeffs_Mylq[2]*coeffs_Mylq[0]/D[0]
|
632 |
coeffs_Mylq[3]=coeffs_Mylq[3]*coeffs_Mylq[0]/D[0] |
633 |
coeffs_Mylq[0]=D[0] |
634 |
print "Mylq Normalized : T=%.2f(%.6f+%.6f/N)+%.6f*N" % (coeffs_Mylq[0], |
635 |
coeffs_Mylq[1],
|
636 |
coeffs_Mylq[3],
|
637 |
coeffs_Mylq[2])
|
638 |
D_Mylq=Mylq(N,coeffs_Mylq[0],coeffs_Mylq[1],coeffs_Mylq[2], |
639 |
coeffs_Mylq[3])
|
640 |
except:
|
641 |
print "Impossible to fit for Mylq law : only %i elements" % len(D) |
642 |
|
643 |
try:
|
644 |
coeffs_Mylq2, matcov_Mylq2 = curve_fit(Mylq2, N, D) |
645 |
|
646 |
coeffs_Mylq2[1]=coeffs_Mylq2[1]*coeffs_Mylq2[0]/D[0] |
647 |
# coeffs_Mylq2[2]=coeffs_Mylq2[2]*coeffs_Mylq2[0]/D[0]
|
648 |
# coeffs_Mylq2[3]=coeffs_Mylq2[3]*coeffs_Mylq2[0]/D[0]
|
649 |
coeffs_Mylq2[4]=coeffs_Mylq2[4]*coeffs_Mylq2[0]/D[0] |
650 |
coeffs_Mylq2[0]=D[0] |
651 |
print "Mylq 2nd order Normalized: T=%.2f(%.6f+%.6f/N)+%.6f*N+%.6f*N^2" % \ |
652 |
(coeffs_Mylq2[0],coeffs_Mylq2[1], |
653 |
coeffs_Mylq2[4],coeffs_Mylq2[2],coeffs_Mylq2[3]) |
654 |
|
655 |
except:
|
656 |
print "Impossible to fit for 2nd order Mylq law : only %i elements" % len(D) |
657 |
|
658 |
if Curves:
|
659 |
plt.xlabel("Number of Threads/work Items")
|
660 |
plt.ylabel("Total Elapsed Time")
|
661 |
|
662 |
Experience,=plt.plot(N,D,'ro')
|
663 |
try:
|
664 |
pAmdahl,=plt.plot(N,D_Amdahl,label="Loi de Amdahl")
|
665 |
pMylq,=plt.plot(N,D_Mylq,label="Loi de Mylq")
|
666 |
except:
|
667 |
print "Fit curves seem not to be available" |
668 |
|
669 |
plt.legend() |
670 |
plt.show() |
671 |
|
672 |
if __name__=='__main__': |
673 |
|
674 |
# Set defaults values
|
675 |
# Alu can be CPU or GPU
|
676 |
Alu='CPU'
|
677 |
# Id of GPU : 1 is for first find !
|
678 |
Device=0
|
679 |
# GPU style can be Cuda (Nvidia implementation) or OpenCL
|
680 |
GpuStyle='OpenCL'
|
681 |
# Parallel distribution can be on Threads or Blocks
|
682 |
ParaStyle='Blocks'
|
683 |
# Iterations is integer
|
684 |
Iterations=100000000
|
685 |
# JobStart in first number of Jobs to explore
|
686 |
JobStart=1
|
687 |
# JobEnd is last number of Jobs to explore
|
688 |
JobEnd=16
|
689 |
# JobStep is the step of Jobs to explore
|
690 |
JobStep=1
|
691 |
# Redo is the times to redo the test to improve metrology
|
692 |
Redo=1
|
693 |
# OutMetrology is method for duration estimation : False is GPU inside
|
694 |
OutMetrology=False
|
695 |
Metrology='InMetro'
|
696 |
# Curves is True to print the curves
|
697 |
Curves=False
|
698 |
# DoublePrecision on FP calculus
|
699 |
DoublePrecision=False
|
700 |
|
701 |
try:
|
702 |
opts, args = getopt.getopt(sys.argv[1:],"hocla:g:p:i:s:e:t:r:d:",["alu=","gpustyle=","parastyle=","iterations=","jobstart=","jobend=","jobstep=","redo=","device="]) |
703 |
except getopt.GetoptError:
|
704 |
print '%s -o (Out of Core Metrology) -c (Print Curves) -l (Double Precision) -a <CPU/GPU/ACCELERATOR> -d <DeviceId> -g <CUDA/OpenCL> -p <Threads/Hybrid/Blocks> -i <Iterations> -s <JobStart> -e <JobEnd> -t <JobStep> -r <RedoToImproveStats> ' % sys.argv[0] |
705 |
sys.exit(2)
|
706 |
|
707 |
for opt, arg in opts: |
708 |
if opt == '-h': |
709 |
print '%s -o (Out of Core Metrology) -c (Print Curves) -l (Double Precision) -a <CPU/GPU/ACCELERATOR> -d <DeviceId> -g <CUDA/OpenCL> -p <Threads/Hybrid/Blocks> -i <Iterations> -s <JobStart> -e <JobEnd> -t <JobStep> -r <RedoToImproveStats>' % sys.argv[0] |
710 |
|
711 |
print "\nInformations about devices detected under OpenCL:" |
712 |
# For PyOpenCL import
|
713 |
import pyopencl as cl |
714 |
Id=1
|
715 |
for platform in cl.get_platforms(): |
716 |
for device in platform.get_devices(): |
717 |
deviceType=cl.device_type.to_string(device.type) |
718 |
print "Device #%i of type %s : %s" % (Id,deviceType,device.name) |
719 |
Id=Id+1
|
720 |
|
721 |
sys.exit() |
722 |
elif opt == '-o': |
723 |
OutMetrology=True
|
724 |
Metrology='OutMetro'
|
725 |
elif opt == '-l': |
726 |
DoublePrecision=True
|
727 |
elif opt == '-c': |
728 |
Curves=True
|
729 |
elif opt in ("-a", "--alu"): |
730 |
Alu = arg |
731 |
elif opt in ("-d", "--device"): |
732 |
Device = int(arg)
|
733 |
elif opt in ("-g", "--gpustyle"): |
734 |
GpuStyle = arg |
735 |
elif opt in ("-p", "--parastyle"): |
736 |
ParaStyle = arg |
737 |
elif opt in ("-i", "--iterations"): |
738 |
Iterations = numpy.uint64(arg) |
739 |
elif opt in ("-s", "--jobstart"): |
740 |
JobStart = int(arg)
|
741 |
elif opt in ("-e", "--jobend"): |
742 |
JobEnd = int(arg)
|
743 |
elif opt in ("-t", "--jobstep"): |
744 |
JobStep = int(arg)
|
745 |
elif opt in ("-r", "--redo"): |
746 |
Redo = int(arg)
|
747 |
|
748 |
if Alu=='CPU' and GpuStyle=='CUDA': |
749 |
print "Alu can't be CPU for CUDA, set Alu to GPU" |
750 |
Alu='GPU'
|
751 |
|
752 |
if ParaStyle not in ('Blocks','Threads','Hybrid'): |
753 |
print "%s not exists, ParaStyle set as Threads !" % ParaStyle |
754 |
ParaStyle='Threads'
|
755 |
|
756 |
print "Compute unit : %s" % Alu |
757 |
print "Device Identification : %s" % Device |
758 |
print "GpuStyle used : %s" % GpuStyle |
759 |
print "Parallel Style used : %s" % ParaStyle |
760 |
print "Iterations : %s" % Iterations |
761 |
print "Number of threads on start : %s" % JobStart |
762 |
print "Number of threads on end : %s" % JobEnd |
763 |
print "Number of redo : %s" % Redo |
764 |
print "Metrology done out of CPU/GPU : %r" % OutMetrology |
765 |
print "Double Precision in Kernels : %r" % DoublePrecision |
766 |
|
767 |
if GpuStyle=='CUDA': |
768 |
# For PyCUDA import
|
769 |
import pycuda.driver as cuda |
770 |
import pycuda.gpuarray as gpuarray |
771 |
import pycuda.autoinit |
772 |
from pycuda.compiler import SourceModule |
773 |
|
774 |
if GpuStyle=='OpenCL': |
775 |
# For PyOpenCL import
|
776 |
import pyopencl as cl |
777 |
Id=1
|
778 |
for platform in cl.get_platforms(): |
779 |
for device in platform.get_devices(): |
780 |
deviceType=cl.device_type.to_string(device.type) |
781 |
print "Device #%i of type %s : %s" % (Id,deviceType,device.name) |
782 |
if Id == Device:
|
783 |
# Set the Alu as detected Device Type
|
784 |
Alu=deviceType |
785 |
Id=Id+1
|
786 |
|
787 |
average=numpy.array([]).astype(numpy.float32) |
788 |
median=numpy.array([]).astype(numpy.float32) |
789 |
stddev=numpy.array([]).astype(numpy.float32) |
790 |
|
791 |
ExploredJobs=numpy.array([]).astype(numpy.uint32) |
792 |
|
793 |
Jobs=JobStart |
794 |
|
795 |
while Jobs <= JobEnd:
|
796 |
avg,med,std=0,0,0 |
797 |
ExploredJobs=numpy.append(ExploredJobs,Jobs) |
798 |
circle=numpy.zeros(Jobs).astype(numpy.uint64) |
799 |
|
800 |
if OutMetrology:
|
801 |
duration=numpy.array([]).astype(numpy.float32) |
802 |
for i in range(Redo): |
803 |
start=time.time() |
804 |
if GpuStyle=='CUDA': |
805 |
try:
|
806 |
a,m,s=MetropolisCuda(circle,Iterations,1,Jobs,ParaStyle,
|
807 |
DoublePrecision) |
808 |
except:
|
809 |
print "Problem with %i // computations on Cuda" % Jobs |
810 |
elif GpuStyle=='OpenCL': |
811 |
try:
|
812 |
a,m,s=MetropolisOpenCL(circle,Iterations,1,Jobs,ParaStyle,
|
813 |
Alu,Device,DoublePrecision) |
814 |
except:
|
815 |
print "Problem with %i // computations on OpenCL" % Jobs |
816 |
duration=numpy.append(duration,time.time()-start) |
817 |
if (a,m,s) != (0,0,0): |
818 |
avg=numpy.mean(duration) |
819 |
med=numpy.median(duration) |
820 |
std=numpy.std(duration) |
821 |
else:
|
822 |
print "Values seem to be wrong..." |
823 |
else:
|
824 |
if GpuStyle=='CUDA': |
825 |
try:
|
826 |
avg,med,std=MetropolisCuda(circle,Iterations,Redo,Jobs,ParaStyle, |
827 |
DoublePrecision) |
828 |
except:
|
829 |
print "Problem with %i // computations on Cuda" % Jobs |
830 |
elif GpuStyle=='OpenCL': |
831 |
# try:
|
832 |
# avg,med,std=MetropolisOpenCL(circle,Iterations,Redo,Jobs,ParaStyle,Alu,Device)
|
833 |
# except:
|
834 |
# print "Problem with %i // computations on OpenCL" % Jobs
|
835 |
avg,med,std=MetropolisOpenCL(circle,Iterations,Redo,Jobs,ParaStyle,Alu,Device,DoublePrecision) |
836 |
|
837 |
if (avg,med,std) != (0,0,0): |
838 |
print "jobs,avg,med,std",Jobs,avg,med,std |
839 |
average=numpy.append(average,avg) |
840 |
median=numpy.append(median,med) |
841 |
stddev=numpy.append(stddev,std) |
842 |
else:
|
843 |
print "Values seem to be wrong..." |
844 |
#THREADS*=2
|
845 |
if DoublePrecision:
|
846 |
Precision='DP'
|
847 |
else:
|
848 |
Precision='SP'
|
849 |
if len(average)!=0: |
850 |
numpy.savez("Pi%s_%s_%s_%s_%s_%i_%.8i_Device%i_%s_%s" % (Precision,Alu,GpuStyle,ParaStyle,JobStart,JobEnd,Iterations,Device,Metrology,gethostname()),(ExploredJobs,average,median,stddev))
|
851 |
ToSave=[ ExploredJobs,average,median,stddev ] |
852 |
numpy.savetxt("Pi%s_%s_%s_%s_%s_%i_%.8i_Device%i_%s_%s" % (Precision,Alu,GpuStyle,ParaStyle,JobStart,JobEnd,Iterations,Device,Metrology,gethostname()),numpy.transpose(ToSave))
|
853 |
Jobs+=JobStep |
854 |
|
855 |
FitAndPrint(ExploredJobs,median,Curves) |
856 |
|