root / Pi / GPU / Pi-GPU.py @ 34
Historique | Voir | Annoter | Télécharger (19,56 ko)
1 | 7 | equemene | #!/usr/bin/env python
|
---|---|---|---|
2 | 7 | equemene | |
3 | 7 | equemene | #
|
4 | 7 | equemene | # Pi-by-MC using PyCUDA/PyOpenCL
|
5 | 7 | equemene | #
|
6 | 7 | equemene | # CC BY-NC-SA 2011 : <emmanuel.quemener@ens-lyon.fr>
|
7 | 7 | equemene | #
|
8 | 7 | equemene | # Thanks to Andreas Klockner for PyCUDA:
|
9 | 7 | equemene | # http://mathema.tician.de/software/pycuda
|
10 | 7 | equemene | #
|
11 | 7 | equemene | |
12 | 7 | equemene | # 2013-01-01 : problems with launch timeout
|
13 | 7 | equemene | # http://stackoverflow.com/questions/497685/how-do-you-get-around-the-maximum-cuda-run-time
|
14 | 7 | equemene | # Option "Interactive" "0" in /etc/X11/xorg.conf
|
15 | 7 | equemene | |
16 | 7 | equemene | # Common tools
|
17 | 7 | equemene | import numpy |
18 | 7 | equemene | from numpy.random import randint as nprnd |
19 | 7 | equemene | import sys |
20 | 7 | equemene | import getopt |
21 | 7 | equemene | import time |
22 | 7 | equemene | import matplotlib.pyplot as plt |
23 | 7 | equemene | import math |
24 | 7 | equemene | from scipy.optimize import curve_fit |
25 | 7 | equemene | from socket import gethostname |
26 | 7 | equemene | |
27 | 17 | equemene | # find prime factors of a number
|
28 | 17 | equemene | # Get for WWW :
|
29 | 17 | equemene | # http://pythonism.wordpress.com/2008/05/17/looking-at-factorisation-in-python/
|
30 | 17 | equemene | def PrimeFactors(x): |
31 | 17 | equemene | factorlist=numpy.array([]).astype('uint32')
|
32 | 17 | equemene | loop=2
|
33 | 17 | equemene | while loop<=x:
|
34 | 17 | equemene | if x%loop==0: |
35 | 17 | equemene | x/=loop |
36 | 17 | equemene | factorlist=numpy.append(factorlist,[loop]) |
37 | 17 | equemene | else:
|
38 | 17 | equemene | loop+=1
|
39 | 17 | equemene | return factorlist
|
40 | 17 | equemene | |
41 | 17 | equemene | # Try to find the best thread number in Hybrid approach (Blocks&Threads)
|
42 | 17 | equemene | # output is thread number
|
43 | 17 | equemene | def BestThreadsNumber(jobs): |
44 | 17 | equemene | factors=PrimeFactors(jobs) |
45 | 17 | equemene | matrix=numpy.append([factors],[factors[::-1]],axis=0) |
46 | 17 | equemene | threads=1
|
47 | 17 | equemene | for factor in matrix.transpose().ravel(): |
48 | 17 | equemene | threads=threads*factor |
49 | 17 | equemene | if threads*threads>jobs:
|
50 | 17 | equemene | break
|
51 | 17 | equemene | return(long(threads)) |
52 | 17 | equemene | |
53 | 7 | equemene | # Predicted Amdahl Law (Reduced with s=1-p)
|
54 | 7 | equemene | def AmdahlR(N, T1, p): |
55 | 7 | equemene | return (T1*(1-p+p/N)) |
56 | 7 | equemene | |
57 | 7 | equemene | # Predicted Amdahl Law
|
58 | 7 | equemene | def Amdahl(N, T1, s, p): |
59 | 7 | equemene | return (T1*(s+p/N))
|
60 | 7 | equemene | |
61 | 7 | equemene | # Predicted Mylq Law with first order
|
62 | 7 | equemene | def Mylq(N, T1,s,c,p): |
63 | 7 | equemene | return (T1*(s+c*N+p/N))
|
64 | 7 | equemene | |
65 | 7 | equemene | # Predicted Mylq Law with second order
|
66 | 7 | equemene | def Mylq2(N, T1,s,c1,c2,p): |
67 | 7 | equemene | return (T1*(s+c1*N+c2*N*N+p/N))
|
68 | 7 | equemene | |
69 | 7 | equemene | KERNEL_CODE_CUDA="""
|
70 | 7 | equemene |
|
71 | 7 | equemene | // Marsaglia RNG very simple implementation
|
72 | 7 | equemene |
|
73 | 7 | equemene | #define znew ((z=36969*(z&65535)+(z>>16))<<16)
|
74 | 7 | equemene | #define wnew ((w=18000*(w&65535)+(w>>16))&65535)
|
75 | 7 | equemene | #define MWC (znew+wnew)
|
76 | 7 | equemene | #define SHR3 (jsr=(jsr=(jsr=jsr^(jsr<<17))^(jsr>>13))^(jsr<<5))
|
77 | 7 | equemene | #define CONG (jcong=69069*jcong+1234567)
|
78 | 7 | equemene | #define KISS ((MWC^CONG)+SHR3)
|
79 | 7 | equemene |
|
80 | 7 | equemene | #define MWCfp MWC * 2.328306435454494e-10f
|
81 | 7 | equemene | #define KISSfp KISS * 2.328306435454494e-10f
|
82 | 7 | equemene |
|
83 | 17 | equemene | __global__ void MainLoopBlocks(ulong *s,ulong iterations,uint seed_w,uint seed_z)
|
84 | 7 | equemene | {
|
85 | 7 | equemene | uint z=seed_z/(blockIdx.x+1);
|
86 | 7 | equemene | uint w=seed_w/(blockIdx.x+1);
|
87 | 7 | equemene |
|
88 | 17 | equemene | ulong total=0;
|
89 | 7 | equemene |
|
90 | 17 | equemene | for (ulong i=0;i<iterations;i++) {
|
91 | 7 | equemene |
|
92 | 7 | equemene | float x=MWCfp ;
|
93 | 7 | equemene | float y=MWCfp ;
|
94 | 7 | equemene |
|
95 | 7 | equemene | // Matching test
|
96 | 17 | equemene | ulong inside=((x*x+y*y) < 1.0f) ? 1:0;
|
97 | 7 | equemene | total+=inside;
|
98 | 7 | equemene |
|
99 | 7 | equemene | }
|
100 | 7 | equemene |
|
101 | 7 | equemene | s[blockIdx.x]=total;
|
102 | 7 | equemene | __syncthreads();
|
103 | 7 | equemene |
|
104 | 7 | equemene | }
|
105 | 7 | equemene |
|
106 | 17 | equemene | __global__ void MainLoopThreads(ulong *s,ulong iterations,uint seed_w,uint seed_z)
|
107 | 7 | equemene | {
|
108 | 7 | equemene | uint z=seed_z/(threadIdx.x+1);
|
109 | 7 | equemene | uint w=seed_w/(threadIdx.x+1);
|
110 | 7 | equemene |
|
111 | 17 | equemene | ulong total=0;
|
112 | 7 | equemene |
|
113 | 17 | equemene | for (ulong i=0;i<iterations;i++) {
|
114 | 7 | equemene |
|
115 | 7 | equemene | float x=MWCfp ;
|
116 | 7 | equemene | float y=MWCfp ;
|
117 | 7 | equemene |
|
118 | 7 | equemene | // Matching test
|
119 | 17 | equemene | ulong inside=((x*x+y*y) < 1.0f) ? 1:0;
|
120 | 7 | equemene | total+=inside;
|
121 | 7 | equemene |
|
122 | 7 | equemene | }
|
123 | 7 | equemene |
|
124 | 7 | equemene | s[threadIdx.x]=total;
|
125 | 7 | equemene | __syncthreads();
|
126 | 7 | equemene |
|
127 | 7 | equemene | }
|
128 | 7 | equemene |
|
129 | 17 | equemene | __global__ void MainLoopHybrid(ulong *s,ulong iterations,uint seed_w,uint seed_z)
|
130 | 7 | equemene | {
|
131 | 7 | equemene | uint z=seed_z/(blockDim.x*blockIdx.x+threadIdx.x+1);
|
132 | 7 | equemene | uint w=seed_w/(blockDim.x*blockIdx.x+threadIdx.x+1);
|
133 | 7 | equemene |
|
134 | 17 | equemene | ulong total=0;
|
135 | 7 | equemene |
|
136 | 17 | equemene | for (ulong i=0;i<iterations;i++) {
|
137 | 7 | equemene |
|
138 | 7 | equemene | float x=MWCfp ;
|
139 | 7 | equemene | float y=MWCfp ;
|
140 | 7 | equemene |
|
141 | 7 | equemene | // Matching test
|
142 | 17 | equemene | ulong inside=((x*x+y*y) < 1.0f) ? 1:0;
|
143 | 7 | equemene | total+=inside;
|
144 | 7 | equemene |
|
145 | 7 | equemene | }
|
146 | 7 | equemene |
|
147 | 7 | equemene | s[blockDim.x*blockIdx.x+threadIdx.x]=total;
|
148 | 7 | equemene | __syncthreads();
|
149 | 7 | equemene |
|
150 | 7 | equemene | }
|
151 | 7 | equemene | """
|
152 | 7 | equemene | |
153 | 7 | equemene | KERNEL_CODE_OPENCL="""
|
154 | 7 | equemene |
|
155 | 7 | equemene | // Marsaglia RNG very simple implementation
|
156 | 7 | equemene | #define znew ((z=36969*(z&65535)+(z>>16))<<16)
|
157 | 7 | equemene | #define wnew ((w=18000*(w&65535)+(w>>16))&65535)
|
158 | 7 | equemene | #define MWC (znew+wnew)
|
159 | 7 | equemene | #define SHR3 (jsr=(jsr=(jsr=jsr^(jsr<<17))^(jsr>>13))^(jsr<<5))
|
160 | 7 | equemene | #define CONG (jcong=69069*jcong+1234567)
|
161 | 7 | equemene | #define KISS ((MWC^CONG)+SHR3)
|
162 | 7 | equemene |
|
163 | 7 | equemene | #define MWCfp MWC * 2.328306435454494e-10f
|
164 | 7 | equemene | #define KISSfp KISS * 2.328306435454494e-10f
|
165 | 7 | equemene |
|
166 | 17 | equemene | __kernel void MainLoopGlobal(__global ulong *s,ulong iterations,uint seed_w,uint seed_z)
|
167 | 7 | equemene | {
|
168 | 7 | equemene | uint z=seed_z/(get_global_id(0)+1);
|
169 | 7 | equemene | uint w=seed_w/(get_global_id(0)+1);
|
170 | 7 | equemene |
|
171 | 17 | equemene | ulong total=0;
|
172 | 7 | equemene |
|
173 | 17 | equemene | for (ulong i=0;i<iterations;i++) {
|
174 | 7 | equemene |
|
175 | 7 | equemene | float x=MWCfp ;
|
176 | 7 | equemene | float y=MWCfp ;
|
177 | 7 | equemene |
|
178 | 7 | equemene | // Matching test
|
179 | 17 | equemene | ulong inside=((x*x+y*y) < 1.0f) ? 1:0;
|
180 | 7 | equemene | total+=inside;
|
181 | 7 | equemene | }
|
182 | 7 | equemene | s[get_global_id(0)]=total;
|
183 | 7 | equemene | barrier(CLK_GLOBAL_MEM_FENCE);
|
184 | 7 | equemene |
|
185 | 7 | equemene | }
|
186 | 7 | equemene |
|
187 | 17 | equemene | __kernel void MainLoopLocal(__global ulong *s,ulong iterations,uint seed_w,uint seed_z)
|
188 | 7 | equemene | {
|
189 | 7 | equemene | uint z=seed_z/(get_local_id(0)+1);
|
190 | 7 | equemene | uint w=seed_w/(get_local_id(0)+1);
|
191 | 7 | equemene |
|
192 | 17 | equemene | ulong total=0;
|
193 | 7 | equemene |
|
194 | 17 | equemene | for (ulong i=0;i<iterations;i++) {
|
195 | 7 | equemene |
|
196 | 7 | equemene | float x=MWCfp ;
|
197 | 7 | equemene | float y=MWCfp ;
|
198 | 7 | equemene |
|
199 | 7 | equemene | // Matching test
|
200 | 17 | equemene | ulong inside=((x*x+y*y) < 1.0f) ? 1:0;
|
201 | 7 | equemene | total+=inside;
|
202 | 7 | equemene | }
|
203 | 7 | equemene | s[get_local_id(0)]=total;
|
204 | 7 | equemene | barrier(CLK_LOCAL_MEM_FENCE);
|
205 | 7 | equemene |
|
206 | 7 | equemene | }
|
207 | 7 | equemene |
|
208 | 17 | equemene | __kernel void MainLoopHybrid(__global ulong *s,ulong iterations,uint seed_w,uint seed_z)
|
209 | 7 | equemene | {
|
210 | 7 | equemene | uint z=seed_z/(get_group_id(0)*get_num_groups(0)+get_local_id(0)+1);
|
211 | 7 | equemene | uint w=seed_w/(get_group_id(0)*get_num_groups(0)+get_local_id(0)+1);
|
212 | 7 | equemene |
|
213 | 17 | equemene | ulong total=0;
|
214 | 7 | equemene |
|
215 | 7 | equemene | for (uint i=0;i<iterations;i++) {
|
216 | 7 | equemene |
|
217 | 7 | equemene | float x=MWCfp ;
|
218 | 7 | equemene | float y=MWCfp ;
|
219 | 7 | equemene |
|
220 | 7 | equemene | // Matching test
|
221 | 17 | equemene | ulong inside=((x*x+y*y) < 1.0f) ? 1:0;
|
222 | 7 | equemene | total+=inside;
|
223 | 7 | equemene | }
|
224 | 7 | equemene | barrier(CLK_LOCAL_MEM_FENCE);
|
225 | 7 | equemene | s[get_group_id(0)*get_num_groups(0)+get_local_id(0)]=total;
|
226 | 7 | equemene |
|
227 | 7 | equemene | }
|
228 | 7 | equemene | """
|
229 | 7 | equemene | |
230 | 7 | equemene | def MetropolisCuda(circle,iterations,steps,jobs,ParaStyle): |
231 | 7 | equemene | |
232 | 7 | equemene | # Avec PyCUDA autoinit, rien a faire !
|
233 | 7 | equemene | |
234 | 7 | equemene | circleCU = cuda.InOut(circle) |
235 | 7 | equemene | |
236 | 7 | equemene | mod = SourceModule(KERNEL_CODE_CUDA) |
237 | 7 | equemene | |
238 | 7 | equemene | MetropolisBlocksCU=mod.get_function("MainLoopBlocks")
|
239 | 7 | equemene | MetropolisJobsCU=mod.get_function("MainLoopThreads")
|
240 | 7 | equemene | MetropolisHybridCU=mod.get_function("MainLoopHybrid")
|
241 | 7 | equemene | |
242 | 7 | equemene | start = pycuda.driver.Event() |
243 | 7 | equemene | stop = pycuda.driver.Event() |
244 | 7 | equemene | |
245 | 7 | equemene | MyPi=numpy.zeros(steps) |
246 | 7 | equemene | MyDuration=numpy.zeros(steps) |
247 | 7 | equemene | |
248 | 7 | equemene | if iterations%jobs==0: |
249 | 17 | equemene | iterationsCL=numpy.uint64(iterations/jobs) |
250 | 7 | equemene | iterationsNew=iterationsCL*jobs |
251 | 7 | equemene | else:
|
252 | 17 | equemene | iterationsCL=numpy.uint64(iterations/jobs+1)
|
253 | 7 | equemene | iterationsNew=iterations |
254 | 7 | equemene | |
255 | 7 | equemene | for i in range(steps): |
256 | 7 | equemene | start.record() |
257 | 7 | equemene | start.synchronize() |
258 | 7 | equemene | if ParaStyle=='Blocks': |
259 | 7 | equemene | MetropolisBlocksCU(circleCU, |
260 | 17 | equemene | numpy.uint64(iterationsCL), |
261 | 16 | equemene | numpy.uint32(nprnd(2**30/jobs)), |
262 | 16 | equemene | numpy.uint32(nprnd(2**30/jobs)), |
263 | 7 | equemene | grid=(jobs,1),
|
264 | 7 | equemene | block=(1,1,1)) |
265 | 17 | equemene | print "%s with (WorkItems/Threads)=(%i,%i) %s method done" % \ |
266 | 17 | equemene | (Alu,jobs,1,ParaStyle)
|
267 | 7 | equemene | elif ParaStyle=='Hybrid': |
268 | 17 | equemene | threads=BestThreadsNumber(jobs) |
269 | 7 | equemene | MetropolisHybridCU(circleCU, |
270 | 17 | equemene | numpy.uint64(iterationsCL), |
271 | 16 | equemene | numpy.uint32(nprnd(2**30/jobs)), |
272 | 16 | equemene | numpy.uint32(nprnd(2**30/jobs)), |
273 | 17 | equemene | grid=(jobs,1),
|
274 | 17 | equemene | block=(threads,1,1)) |
275 | 17 | equemene | print "%s with (WorkItems/Threads)=(%i,%i) %s method done" % \ |
276 | 17 | equemene | (Alu,jobs/threads,threads,ParaStyle) |
277 | 7 | equemene | else:
|
278 | 7 | equemene | MetropolisJobsCU(circleCU, |
279 | 17 | equemene | numpy.uint64(iterationsCL), |
280 | 16 | equemene | numpy.uint32(nprnd(2**30/jobs)), |
281 | 16 | equemene | numpy.uint32(nprnd(2**30/jobs)), |
282 | 7 | equemene | grid=(1,1), |
283 | 7 | equemene | block=(jobs,1,1)) |
284 | 17 | equemene | print "%s with (WorkItems/Threads)=(%i,%i) %s method done" % \ |
285 | 17 | equemene | (Alu,jobs,1,ParaStyle)
|
286 | 7 | equemene | stop.record() |
287 | 7 | equemene | stop.synchronize() |
288 | 7 | equemene | |
289 | 7 | equemene | #elapsed = stop.time_since(start)*1e-3
|
290 | 7 | equemene | elapsed = start.time_till(stop)*1e-3
|
291 | 7 | equemene | |
292 | 7 | equemene | #print circle,float(numpy.sum(circle))
|
293 | 7 | equemene | MyPi[i]=4.*float(numpy.sum(circle))/float(iterationsCL) |
294 | 7 | equemene | MyDuration[i]=elapsed |
295 | 7 | equemene | #print MyPi[i],MyDuration[i]
|
296 | 7 | equemene | #time.sleep(1)
|
297 | 7 | equemene | |
298 | 7 | equemene | print jobs,numpy.mean(MyDuration),numpy.median(MyDuration),numpy.std(MyDuration)
|
299 | 7 | equemene | |
300 | 7 | equemene | return(numpy.mean(MyDuration),numpy.median(MyDuration),numpy.std(MyDuration))
|
301 | 7 | equemene | |
302 | 7 | equemene | |
303 | 7 | equemene | def MetropolisOpenCL(circle,iterations,steps,jobs,ParaStyle,Alu,Device): |
304 | 7 | equemene | |
305 | 7 | equemene | # Initialisation des variables en les CASTant correctement
|
306 | 7 | equemene | |
307 | 7 | equemene | # Je detecte un peripherique GPU dans la liste des peripheriques
|
308 | 7 | equemene | # for platform in cl.get_platforms():
|
309 | 7 | equemene | # for device in platform.get_devices():
|
310 | 7 | equemene | # if cl.device_type.to_string(device.type)=='GPU':
|
311 | 7 | equemene | # GPU=device
|
312 | 7 | equemene | #print "GPU detected: ",device.name
|
313 | 7 | equemene | |
314 | 7 | equemene | HasGPU=False
|
315 | 7 | equemene | Id=1
|
316 | 17 | equemene | # Primary Device selection based on Device Id
|
317 | 7 | equemene | for platform in cl.get_platforms(): |
318 | 7 | equemene | for device in platform.get_devices(): |
319 | 17 | equemene | deviceType=cl.device_type.to_string(device.type) |
320 | 17 | equemene | if Id==Device and not HasGPU: |
321 | 17 | equemene | GPU=device |
322 | 17 | equemene | print "CPU/GPU selected: ",device.name |
323 | 17 | equemene | HasGPU=True
|
324 | 7 | equemene | Id=Id+1
|
325 | 17 | equemene | # Default Device selection based on ALU Type
|
326 | 17 | equemene | for platform in cl.get_platforms(): |
327 | 17 | equemene | for device in platform.get_devices(): |
328 | 17 | equemene | deviceType=cl.device_type.to_string(device.type) |
329 | 17 | equemene | if deviceType=="GPU" and Alu=="GPU" and not HasGPU: |
330 | 17 | equemene | GPU=device |
331 | 17 | equemene | print "GPU selected: ",device.name |
332 | 17 | equemene | HasGPU=True
|
333 | 17 | equemene | if deviceType=="CPU" and Alu=="CPU" and not HasGPU: |
334 | 17 | equemene | GPU=device |
335 | 17 | equemene | print "CPU selected: ",device.name |
336 | 17 | equemene | HasGPU=True
|
337 | 7 | equemene | |
338 | 7 | equemene | # Je cree le contexte et la queue pour son execution
|
339 | 7 | equemene | #ctx = cl.create_some_context()
|
340 | 7 | equemene | ctx = cl.Context([GPU]) |
341 | 7 | equemene | queue = cl.CommandQueue(ctx, |
342 | 7 | equemene | properties=cl.command_queue_properties.PROFILING_ENABLE) |
343 | 7 | equemene | |
344 | 7 | equemene | # Je recupere les flag possibles pour les buffers
|
345 | 7 | equemene | mf = cl.mem_flags |
346 | 7 | equemene | |
347 | 7 | equemene | circleCL = cl.Buffer(ctx, mf.WRITE_ONLY|mf.COPY_HOST_PTR,hostbuf=circle) |
348 | 7 | equemene | |
349 | 7 | equemene | MetropolisCL = cl.Program(ctx,KERNEL_CODE_OPENCL).build( \ |
350 | 7 | equemene | options = "-cl-mad-enable -cl-fast-relaxed-math")
|
351 | 7 | equemene | |
352 | 7 | equemene | #MetropolisCL = cl.Program(ctx,KERNEL_CODE_OPENCL).build()
|
353 | 7 | equemene | |
354 | 7 | equemene | i=0
|
355 | 7 | equemene | |
356 | 7 | equemene | MyPi=numpy.zeros(steps) |
357 | 7 | equemene | MyDuration=numpy.zeros(steps) |
358 | 7 | equemene | |
359 | 7 | equemene | if iterations%jobs==0: |
360 | 7 | equemene | iterationsCL=numpy.uint32(iterations/jobs) |
361 | 7 | equemene | iterationsNew=iterationsCL*jobs |
362 | 7 | equemene | else:
|
363 | 7 | equemene | iterationsCL=numpy.uint32(iterations/jobs+1)
|
364 | 7 | equemene | iterationsNew=iterations |
365 | 7 | equemene | |
366 | 7 | equemene | for i in range(steps): |
367 | 7 | equemene | |
368 | 7 | equemene | if ParaStyle=='Blocks': |
369 | 7 | equemene | # Call OpenCL kernel
|
370 | 7 | equemene | # (1,) is Global work size (only 1 work size)
|
371 | 7 | equemene | # (1,) is local work size
|
372 | 7 | equemene | # circleCL is lattice translated in CL format
|
373 | 7 | equemene | # SeedZCL is lattice translated in CL format
|
374 | 7 | equemene | # SeedWCL is lattice translated in CL format
|
375 | 7 | equemene | # step is number of iterations
|
376 | 7 | equemene | CLLaunch=MetropolisCL.MainLoopGlobal(queue,(jobs,),None,
|
377 | 7 | equemene | circleCL, |
378 | 17 | equemene | numpy.uint64(iterationsCL), |
379 | 16 | equemene | numpy.uint32(nprnd(2**30/jobs)), |
380 | 16 | equemene | numpy.uint32(nprnd(2**30/jobs))) |
381 | 17 | equemene | print "%s with (WorkItems/Threads)=(%i,%i) %s method done" % \ |
382 | 17 | equemene | (Alu,jobs,1,ParaStyle)
|
383 | 7 | equemene | elif ParaStyle=='Hybrid': |
384 | 17 | equemene | threads=BestThreadsNumber(jobs) |
385 | 7 | equemene | # en OpenCL, necessaire de mettre un Global_id identique au local_id
|
386 | 17 | equemene | CLLaunch=MetropolisCL.MainLoopHybrid(queue,(jobs,),(threads,), |
387 | 7 | equemene | circleCL, |
388 | 17 | equemene | numpy.uint64(iterationsCL), |
389 | 16 | equemene | numpy.uint32(nprnd(2**30/jobs)), |
390 | 16 | equemene | numpy.uint32(nprnd(2**30/jobs))) |
391 | 17 | equemene | print "%s with (WorkItems/Threads)=(%i,%i) %s method done" % \ |
392 | 17 | equemene | (Alu,jobs/threads,threads,ParaStyle) |
393 | 7 | equemene | else:
|
394 | 7 | equemene | # en OpenCL, necessaire de mettre un Global_id identique au local_id
|
395 | 7 | equemene | CLLaunch=MetropolisCL.MainLoopLocal(queue,(jobs,),(jobs,), |
396 | 7 | equemene | circleCL, |
397 | 17 | equemene | numpy.uint64(iterationsCL), |
398 | 16 | equemene | numpy.uint32(nprnd(2**30/jobs)), |
399 | 16 | equemene | numpy.uint32(nprnd(2**30/jobs))) |
400 | 7 | equemene | print "%s with %i %s done" % (Alu,jobs,ParaStyle) |
401 | 7 | equemene | |
402 | 7 | equemene | CLLaunch.wait() |
403 | 7 | equemene | cl.enqueue_copy(queue, circle, circleCL).wait() |
404 | 7 | equemene | |
405 | 7 | equemene | elapsed = 1e-9*(CLLaunch.profile.end - CLLaunch.profile.start)
|
406 | 7 | equemene | |
407 | 7 | equemene | #print circle,float(numpy.sum(circle))
|
408 | 7 | equemene | MyPi[i]=4.*float(numpy.sum(circle))/float(iterationsNew) |
409 | 7 | equemene | MyDuration[i]=elapsed |
410 | 7 | equemene | #print MyPi[i],MyDuration[i]
|
411 | 7 | equemene | |
412 | 7 | equemene | circleCL.release() |
413 | 7 | equemene | |
414 | 7 | equemene | #print jobs,numpy.mean(MyPi),numpy.median(MyPi),numpy.std(MyPi)
|
415 | 7 | equemene | print jobs,numpy.mean(MyDuration),numpy.median(MyDuration),numpy.std(MyDuration)
|
416 | 7 | equemene | |
417 | 7 | equemene | return(numpy.mean(MyDuration),numpy.median(MyDuration),numpy.std(MyDuration))
|
418 | 7 | equemene | |
419 | 7 | equemene | |
420 | 7 | equemene | def FitAndPrint(N,D,Curves): |
421 | 7 | equemene | |
422 | 7 | equemene | try:
|
423 | 7 | equemene | coeffs_Amdahl, matcov_Amdahl = curve_fit(Amdahl, N, D) |
424 | 7 | equemene | |
425 | 7 | equemene | D_Amdahl=Amdahl(N,coeffs_Amdahl[0],coeffs_Amdahl[1],coeffs_Amdahl[2]) |
426 | 7 | equemene | coeffs_Amdahl[1]=coeffs_Amdahl[1]*coeffs_Amdahl[0]/D[0] |
427 | 7 | equemene | coeffs_Amdahl[2]=coeffs_Amdahl[2]*coeffs_Amdahl[0]/D[0] |
428 | 7 | equemene | coeffs_Amdahl[0]=D[0] |
429 | 7 | equemene | print "Amdahl Normalized: T=%.2f(%.6f+%.6f/N)" % \ |
430 | 7 | equemene | (coeffs_Amdahl[0],coeffs_Amdahl[1],coeffs_Amdahl[2]) |
431 | 7 | equemene | except:
|
432 | 7 | equemene | print "Impossible to fit for Amdahl law : only %i elements" % len(D) |
433 | 7 | equemene | |
434 | 7 | equemene | try:
|
435 | 7 | equemene | coeffs_AmdahlR, matcov_AmdahlR = curve_fit(AmdahlR, N, D) |
436 | 7 | equemene | |
437 | 7 | equemene | D_AmdahlR=AmdahlR(N,coeffs_AmdahlR[0],coeffs_AmdahlR[1]) |
438 | 7 | equemene | coeffs_AmdahlR[1]=coeffs_AmdahlR[1]*coeffs_AmdahlR[0]/D[0] |
439 | 7 | equemene | coeffs_AmdahlR[0]=D[0] |
440 | 7 | equemene | print "Amdahl Reduced Normalized: T=%.2f(%.6f+%.6f/N)" % \ |
441 | 7 | equemene | (coeffs_AmdahlR[0],1-coeffs_AmdahlR[1],coeffs_AmdahlR[1]) |
442 | 7 | equemene | |
443 | 7 | equemene | except:
|
444 | 7 | equemene | print "Impossible to fit for Reduced Amdahl law : only %i elements" % len(D) |
445 | 7 | equemene | |
446 | 7 | equemene | try:
|
447 | 7 | equemene | coeffs_Mylq, matcov_Mylq = curve_fit(Mylq, N, D) |
448 | 7 | equemene | |
449 | 7 | equemene | coeffs_Mylq[1]=coeffs_Mylq[1]*coeffs_Mylq[0]/D[0] |
450 | 7 | equemene | coeffs_Mylq[2]=coeffs_Mylq[2]*coeffs_Mylq[0]/D[0] |
451 | 7 | equemene | coeffs_Mylq[3]=coeffs_Mylq[3]*coeffs_Mylq[0]/D[0] |
452 | 7 | equemene | coeffs_Mylq[0]=D[0] |
453 | 7 | equemene | print "Mylq Normalized : T=%.2f(%.6f+%.6f*N+%.6f/N)" % (coeffs_Mylq[0], |
454 | 7 | equemene | coeffs_Mylq[1],
|
455 | 7 | equemene | coeffs_Mylq[2],
|
456 | 7 | equemene | coeffs_Mylq[3])
|
457 | 7 | equemene | D_Mylq=Mylq(N,coeffs_Mylq[0],coeffs_Mylq[1],coeffs_Mylq[2], |
458 | 7 | equemene | coeffs_Mylq[3])
|
459 | 7 | equemene | except:
|
460 | 7 | equemene | print "Impossible to fit for Mylq law : only %i elements" % len(D) |
461 | 7 | equemene | |
462 | 7 | equemene | try:
|
463 | 7 | equemene | coeffs_Mylq2, matcov_Mylq2 = curve_fit(Mylq2, N, D) |
464 | 7 | equemene | |
465 | 7 | equemene | coeffs_Mylq2[1]=coeffs_Mylq2[1]*coeffs_Mylq2[0]/D[0] |
466 | 7 | equemene | coeffs_Mylq2[2]=coeffs_Mylq2[2]*coeffs_Mylq2[0]/D[0] |
467 | 7 | equemene | coeffs_Mylq2[3]=coeffs_Mylq2[3]*coeffs_Mylq2[0]/D[0] |
468 | 7 | equemene | coeffs_Mylq2[4]=coeffs_Mylq2[4]*coeffs_Mylq2[0]/D[0] |
469 | 7 | equemene | coeffs_Mylq2[0]=D[0] |
470 | 7 | equemene | print "Mylq 2nd order Normalized: T=%.2f(%.6f+%.6f*N+%.6f*N^2+%.6f/N)" % \ |
471 | 7 | equemene | (coeffs_Mylq2[0],coeffs_Mylq2[1],coeffs_Mylq2[2],coeffs_Mylq2[3], |
472 | 7 | equemene | coeffs_Mylq2[4])
|
473 | 7 | equemene | |
474 | 7 | equemene | except:
|
475 | 7 | equemene | print "Impossible to fit for 2nd order Mylq law : only %i elements" % len(D) |
476 | 7 | equemene | |
477 | 7 | equemene | if Curves:
|
478 | 7 | equemene | plt.xlabel("Number of Threads/work Items")
|
479 | 7 | equemene | plt.ylabel("Total Elapsed Time")
|
480 | 7 | equemene | |
481 | 7 | equemene | Experience,=plt.plot(N,D,'ro')
|
482 | 7 | equemene | try:
|
483 | 7 | equemene | pAmdahl,=plt.plot(N,D_Amdahl,label="Loi de Amdahl")
|
484 | 7 | equemene | pMylq,=plt.plot(N,D_Mylq,label="Loi de Mylq")
|
485 | 7 | equemene | except:
|
486 | 7 | equemene | print "Fit curves seem not to be available" |
487 | 7 | equemene | |
488 | 7 | equemene | plt.legend() |
489 | 7 | equemene | plt.show() |
490 | 7 | equemene | |
491 | 7 | equemene | if __name__=='__main__': |
492 | 7 | equemene | |
493 | 7 | equemene | # Set defaults values
|
494 | 7 | equemene | # Alu can be CPU or GPU
|
495 | 7 | equemene | Alu='CPU'
|
496 | 17 | equemene | # Id of GPU : 0 is for first find !
|
497 | 17 | equemene | Device=0
|
498 | 7 | equemene | # GPU style can be Cuda (Nvidia implementation) or OpenCL
|
499 | 7 | equemene | GpuStyle='OpenCL'
|
500 | 7 | equemene | # Parallel distribution can be on Threads or Blocks
|
501 | 7 | equemene | ParaStyle='Blocks'
|
502 | 7 | equemene | # Iterations is integer
|
503 | 7 | equemene | Iterations=100000000
|
504 | 7 | equemene | # JobStart in first number of Jobs to explore
|
505 | 7 | equemene | JobStart=1
|
506 | 7 | equemene | # JobEnd is last number of Jobs to explore
|
507 | 7 | equemene | JobEnd=16
|
508 | 7 | equemene | # Redo is the times to redo the test to improve metrology
|
509 | 7 | equemene | Redo=1
|
510 | 7 | equemene | # OutMetrology is method for duration estimation : False is GPU inside
|
511 | 7 | equemene | OutMetrology=False
|
512 | 7 | equemene | # Curves is True to print the curves
|
513 | 7 | equemene | Curves=False
|
514 | 7 | equemene | |
515 | 7 | equemene | try:
|
516 | 7 | equemene | opts, args = getopt.getopt(sys.argv[1:],"hoca:g:p:i:s:e:r:d:",["alu=","gpustyle=","parastyle=","iterations=","jobstart=","jobend=","redo=","device="]) |
517 | 7 | equemene | except getopt.GetoptError:
|
518 | 7 | equemene | print '%s -o (Out of Core Metrology) -c (Print Curves) -a <CPU/GPU> -d <DeviceId> -g <CUDA/OpenCL> -p <Threads/Hybrid/Blocks> -i <Iterations> -s <JobStart> -e <JobEnd> -r <RedoToImproveStats>' % sys.argv[0] |
519 | 7 | equemene | sys.exit(2)
|
520 | 7 | equemene | |
521 | 7 | equemene | for opt, arg in opts: |
522 | 7 | equemene | if opt == '-h': |
523 | 7 | equemene | print '%s -o (Out of Core Metrology) -c (Print Curves) -a <CPU/GPU> -d <DeviceId> -g <CUDA/OpenCL> -p <Threads/Hybrid/Blocks> -i <Iterations> -s <JobStart> -e <JobEnd> -r <RedoToImproveStats>' % sys.argv[0] |
524 | 7 | equemene | sys.exit() |
525 | 7 | equemene | elif opt == '-o': |
526 | 7 | equemene | OutMetrology=True
|
527 | 7 | equemene | elif opt == '-c': |
528 | 7 | equemene | Curves=True
|
529 | 7 | equemene | elif opt in ("-a", "--alu"): |
530 | 7 | equemene | Alu = arg |
531 | 7 | equemene | elif opt in ("-d", "--device"): |
532 | 7 | equemene | Device = int(arg)
|
533 | 7 | equemene | elif opt in ("-g", "--gpustyle"): |
534 | 7 | equemene | GpuStyle = arg |
535 | 7 | equemene | elif opt in ("-p", "--parastyle"): |
536 | 7 | equemene | ParaStyle = arg |
537 | 7 | equemene | elif opt in ("-i", "--iterations"): |
538 | 7 | equemene | Iterations = numpy.uint32(arg) |
539 | 7 | equemene | elif opt in ("-s", "--jobstart"): |
540 | 7 | equemene | JobStart = int(arg)
|
541 | 7 | equemene | elif opt in ("-e", "--jobend"): |
542 | 7 | equemene | JobEnd = int(arg)
|
543 | 7 | equemene | elif opt in ("-r", "--redo"): |
544 | 7 | equemene | Redo = int(arg)
|
545 | 7 | equemene | |
546 | 7 | equemene | if Alu=='CPU' and GpuStyle=='CUDA': |
547 | 7 | equemene | print "Alu can't be CPU for CUDA, set Alu to GPU" |
548 | 7 | equemene | Alu='GPU'
|
549 | 7 | equemene | |
550 | 7 | equemene | if ParaStyle not in ('Blocks','Threads','Hybrid'): |
551 | 7 | equemene | print "%s not exists, ParaStyle set as Threads !" % ParaStyle |
552 | 7 | equemene | ParaStyle='Threads'
|
553 | 7 | equemene | |
554 | 7 | equemene | print "Compute unit : %s" % Alu |
555 | 7 | equemene | print "Device Identification : %s" % Device |
556 | 7 | equemene | print "GpuStyle used : %s" % GpuStyle |
557 | 7 | equemene | print "Parallel Style used : %s" % ParaStyle |
558 | 7 | equemene | print "Iterations : %s" % Iterations |
559 | 7 | equemene | print "Number of threads on start : %s" % JobStart |
560 | 7 | equemene | print "Number of threads on end : %s" % JobEnd |
561 | 7 | equemene | print "Number of redo : %s" % Redo |
562 | 7 | equemene | print "Metrology done out of CPU/GPU : %r" % OutMetrology |
563 | 7 | equemene | |
564 | 7 | equemene | if GpuStyle=='CUDA': |
565 | 7 | equemene | # For PyCUDA import
|
566 | 7 | equemene | import pycuda.driver as cuda |
567 | 7 | equemene | import pycuda.gpuarray as gpuarray |
568 | 7 | equemene | import pycuda.autoinit |
569 | 7 | equemene | from pycuda.compiler import SourceModule |
570 | 7 | equemene | |
571 | 7 | equemene | if GpuStyle=='OpenCL': |
572 | 7 | equemene | # For PyOpenCL import
|
573 | 7 | equemene | import pyopencl as cl |
574 | 7 | equemene | Id=1
|
575 | 7 | equemene | for platform in cl.get_platforms(): |
576 | 7 | equemene | for device in platform.get_devices(): |
577 | 7 | equemene | deviceType=cl.device_type.to_string(device.type) |
578 | 7 | equemene | print "Device #%i of type %s : %s" % (Id,deviceType,device.name) |
579 | 7 | equemene | Id=Id+1
|
580 | 7 | equemene | |
581 | 7 | equemene | average=numpy.array([]).astype(numpy.float32) |
582 | 7 | equemene | median=numpy.array([]).astype(numpy.float32) |
583 | 7 | equemene | stddev=numpy.array([]).astype(numpy.float32) |
584 | 7 | equemene | |
585 | 7 | equemene | ExploredJobs=numpy.array([]).astype(numpy.uint32) |
586 | 7 | equemene | |
587 | 7 | equemene | Jobs=JobStart |
588 | 7 | equemene | |
589 | 7 | equemene | while Jobs <= JobEnd:
|
590 | 7 | equemene | avg,med,std=0,0,0 |
591 | 7 | equemene | ExploredJobs=numpy.append(ExploredJobs,Jobs) |
592 | 17 | equemene | circle=numpy.zeros(Jobs).astype(numpy.uint64) |
593 | 7 | equemene | |
594 | 7 | equemene | if OutMetrology:
|
595 | 7 | equemene | duration=numpy.array([]).astype(numpy.float32) |
596 | 7 | equemene | for i in range(Redo): |
597 | 7 | equemene | start=time.time() |
598 | 7 | equemene | if GpuStyle=='CUDA': |
599 | 7 | equemene | try:
|
600 | 7 | equemene | MetropolisCuda(circle,Iterations,1,Jobs,ParaStyle)
|
601 | 7 | equemene | except:
|
602 | 7 | equemene | print "Problem with %i // computations on Cuda" % Jobs |
603 | 7 | equemene | elif GpuStyle=='OpenCL': |
604 | 7 | equemene | try:
|
605 | 7 | equemene | MetropolisOpenCL(circle,Iterations,1,Jobs,ParaStyle,Alu,Device)
|
606 | 7 | equemene | except:
|
607 | 7 | equemene | print "Problem with %i // computations on OpenCL" % Jobs |
608 | 7 | equemene | duration=numpy.append(duration,time.time()-start) |
609 | 7 | equemene | avg=numpy.mean(duration) |
610 | 7 | equemene | med=numpy.median(duration) |
611 | 7 | equemene | std=numpy.std(duration) |
612 | 7 | equemene | else:
|
613 | 7 | equemene | if GpuStyle=='CUDA': |
614 | 7 | equemene | try:
|
615 | 7 | equemene | avg,med,std=MetropolisCuda(circle,Iterations,Redo,Jobs,ParaStyle) |
616 | 7 | equemene | except:
|
617 | 7 | equemene | print "Problem with %i // computations on Cuda" % Jobs |
618 | 7 | equemene | elif GpuStyle=='OpenCL': |
619 | 16 | equemene | # try:
|
620 | 16 | equemene | # avg,med,std=MetropolisOpenCL(circle,Iterations,Redo,Jobs,ParaStyle,Alu,Device)
|
621 | 16 | equemene | # except:
|
622 | 16 | equemene | # print "Problem with %i // computations on OpenCL" % Jobs
|
623 | 16 | equemene | avg,med,std=MetropolisOpenCL(circle,Iterations,Redo,Jobs,ParaStyle,Alu,Device) |
624 | 7 | equemene | |
625 | 7 | equemene | if (avg,med,std) != (0,0,0): |
626 | 15 | equemene | print "jobs,avg,med,std",Jobs,avg,med,std |
627 | 7 | equemene | average=numpy.append(average,avg) |
628 | 7 | equemene | median=numpy.append(median,med) |
629 | 7 | equemene | stddev=numpy.append(stddev,std) |
630 | 7 | equemene | else:
|
631 | 7 | equemene | print "Values seem to be wrong..." |
632 | 7 | equemene | #THREADS*=2
|
633 | 7 | equemene | numpy.savez("Pi_%s_%s_%s_%s_%i_%.8i_%s" % (Alu,GpuStyle,ParaStyle,JobStart,JobEnd,Iterations,gethostname()),(ExploredJobs,average,median,stddev))
|
634 | 7 | equemene | Jobs+=1
|
635 | 7 | equemene | |
636 | 7 | equemene | FitAndPrint(ExploredJobs,median,Curves) |