root / TrouNoir / TrouNoir.py @ 308
Historique | Voir | Annoter | Télécharger (53,99 ko)
1 | 242 | equemene | #!/usr/bin/env python3
|
---|---|---|---|
2 | 199 | equemene | #
|
3 | 242 | equemene | # TrouNoir model using PyOpenCL or PyCUDA
|
4 | 199 | equemene | #
|
5 | 234 | equemene | # CC BY-NC-SA 2019 : <emmanuel.quemener@ens-lyon.fr>
|
6 | 199 | equemene | #
|
7 | 261 | equemene | # Part of matrix programs from: https://forge.cbp.ens-lyon.fr/svn/bench4gpu/
|
8 | 261 | equemene | #
|
9 | 242 | equemene | # Thanks to Andreas Klockner for PyOpenCL and PyCUDA:
|
10 | 199 | equemene | # http://mathema.tician.de/software/pyopencl
|
11 | 234 | equemene | #
|
12 | 204 | equemene | # Original code programmed in Fortran 77 in mars 1994
|
13 | 204 | equemene | # for Practical Work of Numerical Simulation
|
14 | 204 | equemene | # DEA (old Master2) in astrophysics and spatial techniques in Meudon
|
15 | 204 | equemene | # by Herve Aussel & Emmanuel Quemener
|
16 | 204 | equemene | #
|
17 | 204 | equemene | # Conversion in C done by Emmanuel Quemener in august 1997
|
18 | 204 | equemene | # GPUfication in OpenCL under Python in july 2019
|
19 | 221 | equemene | # GPUfication in CUDA under Python in august 2019
|
20 | 204 | equemene | #
|
21 | 204 | equemene | # Thanks to :
|
22 | 234 | equemene | #
|
23 | 204 | equemene | # - Herve Aussel for his part of code of black body spectrum
|
24 | 204 | equemene | # - Didier Pelat for his help to perform this work
|
25 | 204 | equemene | # - Jean-Pierre Luminet for his article published in 1979
|
26 | 204 | equemene | # - Numerical Recipies for Runge Kutta recipies
|
27 | 204 | equemene | # - Luc Blanchet for his disponibility about my questions in General Relativity
|
28 | 204 | equemene | # - Pierre Lena for his passion about science and vulgarisation
|
29 | 199 | equemene | |
30 | 229 | equemene | # If crash on OpenCL Intel implementation, add following options and force
|
31 | 229 | equemene | #export PYOPENCL_COMPILER_OUTPUT=1
|
32 | 229 | equemene | #export CL_CONFIG_USE_VECTORIZER=True
|
33 | 229 | equemene | #export CL_CONFIG_CPU_VECTORIZER_MODE=16
|
34 | 226 | equemene | |
35 | 199 | equemene | import pyopencl as cl |
36 | 199 | equemene | import numpy |
37 | 199 | equemene | import time,string |
38 | 199 | equemene | from numpy.random import randint as nprnd |
39 | 199 | equemene | import sys |
40 | 199 | equemene | import getopt |
41 | 199 | equemene | import matplotlib.pyplot as plt |
42 | 211 | equemene | from socket import gethostname |
43 | 199 | equemene | |
44 | 211 | equemene | def DictionariesAPI(): |
45 | 211 | equemene | PhysicsList={'Einstein':0,'Newton':1} |
46 | 211 | equemene | return(PhysicsList)
|
47 | 204 | equemene | |
48 | 226 | equemene | #
|
49 | 226 | equemene | # Blank space below to simplify debugging on OpenCL code
|
50 | 226 | equemene | #
|
51 | 226 | equemene | |
52 | 226 | equemene | |
53 | 226 | equemene | |
54 | 226 | equemene | |
55 | 226 | equemene | |
56 | 226 | equemene | |
57 | 226 | equemene | |
58 | 226 | equemene | |
59 | 226 | equemene | |
60 | 226 | equemene | |
61 | 226 | equemene | |
62 | 226 | equemene | |
63 | 226 | equemene | |
64 | 226 | equemene | |
65 | 226 | equemene | |
66 | 226 | equemene | |
67 | 226 | equemene | |
68 | 226 | equemene | |
69 | 226 | equemene | |
70 | 226 | equemene | |
71 | 226 | equemene | |
72 | 226 | equemene | |
73 | 226 | equemene | |
74 | 226 | equemene | |
75 | 226 | equemene | |
76 | 226 | equemene | |
77 | 226 | equemene | |
78 | 226 | equemene | |
79 | 226 | equemene | |
80 | 226 | equemene | |
81 | 226 | equemene | |
82 | 226 | equemene | |
83 | 226 | equemene | |
84 | 226 | equemene | |
85 | 226 | equemene | |
86 | 226 | equemene | |
87 | 226 | equemene | |
88 | 226 | equemene | |
89 | 226 | equemene | |
90 | 226 | equemene | |
91 | 226 | equemene | |
92 | 226 | equemene | |
93 | 226 | equemene | |
94 | 226 | equemene | |
95 | 226 | equemene | |
96 | 226 | equemene | |
97 | 226 | equemene | |
98 | 226 | equemene | |
99 | 226 | equemene | |
100 | 226 | equemene | |
101 | 226 | equemene | |
102 | 226 | equemene | |
103 | 226 | equemene | |
104 | 226 | equemene | |
105 | 211 | equemene | BlobOpenCL= """
|
106 | 204 | equemene |
|
107 | 234 | equemene | #define PI (float)3.14159265359e0f
|
108 | 209 | equemene | #define nbr 256
|
109 | 199 | equemene |
|
110 | 211 | equemene | #define EINSTEIN 0
|
111 | 211 | equemene | #define NEWTON 1
|
112 | 211 | equemene |
|
113 | 224 | equemene | #ifdef SETTRACKPOINTS
|
114 | 224 | equemene | #define TRACKPOINTS SETTRACKPOINTS
|
115 | 224 | equemene | #else
|
116 | 217 | equemene | #define TRACKPOINTS 2048
|
117 | 224 | equemene | #endif
|
118 | 217 | equemene |
|
119 | 199 | equemene | float atanp(float x,float y)
|
120 | 199 | equemene | {
|
121 | 199 | equemene | float angle;
|
122 | 199 | equemene |
|
123 | 199 | equemene | angle=atan2(y,x);
|
124 | 199 | equemene |
|
125 | 204 | equemene | if (angle<0.e0f)
|
126 | 199 | equemene | {
|
127 | 199 | equemene | angle+=(float)2.e0f*PI;
|
128 | 199 | equemene | }
|
129 | 199 | equemene |
|
130 | 199 | equemene | return angle;
|
131 | 199 | equemene | }
|
132 | 199 | equemene |
|
133 | 199 | equemene | float f(float v)
|
134 | 199 | equemene | {
|
135 | 199 | equemene | return v;
|
136 | 199 | equemene | }
|
137 | 199 | equemene |
|
138 | 211 | equemene | #if PHYSICS == NEWTON
|
139 | 199 | equemene | float g(float u,float m,float b)
|
140 | 199 | equemene | {
|
141 | 211 | equemene | return (-u);
|
142 | 211 | equemene | }
|
143 | 211 | equemene | #else
|
144 | 211 | equemene | float g(float u,float m,float b)
|
145 | 211 | equemene | {
|
146 | 204 | equemene | return (3.e0f*m/b*pow(u,2)-u);
|
147 | 199 | equemene | }
|
148 | 211 | equemene | #endif
|
149 | 199 | equemene |
|
150 | 199 | equemene | void calcul(float *us,float *vs,float up,float vp,
|
151 | 234 | equemene | float h,float m,float b)
|
152 | 199 | equemene | {
|
153 | 199 | equemene | float c0,c1,c2,c3,d0,d1,d2,d3;
|
154 | 199 | equemene |
|
155 | 199 | equemene | c0=h*f(vp);
|
156 | 234 | equemene | c1=h*f(vp+c0/2.e0f);
|
157 | 234 | equemene | c2=h*f(vp+c1/2.e0f);
|
158 | 199 | equemene | c3=h*f(vp+c2);
|
159 | 199 | equemene | d0=h*g(up,m,b);
|
160 | 234 | equemene | d1=h*g(up+d0/2.e0f,m,b);
|
161 | 234 | equemene | d2=h*g(up+d1/2.e0f,m,b);
|
162 | 199 | equemene | d3=h*g(up+d2,m,b);
|
163 | 199 | equemene |
|
164 | 234 | equemene | *us=up+(c0+2.e0f*c1+2.e0f*c2+c3)/6.e0f;
|
165 | 234 | equemene | *vs=vp+(d0+2.e0f*d1+2.e0f*d2+d3)/6.e0f;
|
166 | 199 | equemene | }
|
167 | 199 | equemene |
|
168 | 199 | equemene | void rungekutta(float *ps,float *us,float *vs,
|
169 | 234 | equemene | float pp,float up,float vp,
|
170 | 234 | equemene | float h,float m,float b)
|
171 | 199 | equemene | {
|
172 | 199 | equemene | calcul(us,vs,up,vp,h,m,b);
|
173 | 199 | equemene | *ps=pp+h;
|
174 | 199 | equemene | }
|
175 | 199 | equemene |
|
176 | 199 | equemene | float decalage_spectral(float r,float b,float phi,
|
177 | 234 | equemene | float tho,float m)
|
178 | 199 | equemene | {
|
179 | 199 | equemene | return (sqrt(1-3*m/r)/(1+sqrt(m/pow(r,3))*b*sin(tho)*sin(phi)));
|
180 | 199 | equemene | }
|
181 | 199 | equemene |
|
182 | 199 | equemene | float spectre(float rf,int q,float b,float db,
|
183 | 234 | equemene | float h,float r,float m,float bss)
|
184 | 199 | equemene | {
|
185 | 199 | equemene | float flx;
|
186 | 199 | equemene |
|
187 | 221 | equemene | // flx=exp(q*log(r/m))*pow(rf,4)*b*db*h;
|
188 | 234 | equemene | flx=exp(q*log(r/m)+4.e0f*log(rf))*b*db*h;
|
189 | 199 | equemene | return(flx);
|
190 | 199 | equemene | }
|
191 | 199 | equemene |
|
192 | 209 | equemene | float spectre_cn(float rf32,float b32,float db32,
|
193 | 234 | equemene | float h32,float r32,float m32,float bss32)
|
194 | 199 | equemene | {
|
195 | 234 | equemene |
|
196 | 213 | equemene | #define MYFLOAT float
|
197 | 209 | equemene |
|
198 | 209 | equemene | MYFLOAT rf=(MYFLOAT)(rf32);
|
199 | 209 | equemene | MYFLOAT b=(MYFLOAT)(b32);
|
200 | 209 | equemene | MYFLOAT db=(MYFLOAT)(db32);
|
201 | 209 | equemene | MYFLOAT h=(MYFLOAT)(h32);
|
202 | 209 | equemene | MYFLOAT r=(MYFLOAT)(r32);
|
203 | 209 | equemene | MYFLOAT m=(MYFLOAT)(m32);
|
204 | 209 | equemene | MYFLOAT bss=(MYFLOAT)(bss32);
|
205 | 209 | equemene |
|
206 | 209 | equemene | MYFLOAT flx;
|
207 | 209 | equemene | MYFLOAT nu_rec,nu_em,qu,temp_em,flux_int;
|
208 | 199 | equemene | int fi,posfreq;
|
209 | 199 | equemene |
|
210 | 234 | equemene | #define planck 6.62e-34f
|
211 | 234 | equemene | #define k 1.38e-23f
|
212 | 234 | equemene | #define c2 9.e16f
|
213 | 234 | equemene | #define temp 3.e7f
|
214 | 234 | equemene | #define m_point 1.e0f
|
215 | 199 | equemene |
|
216 | 234 | equemene | #define lplanck (log(6.62e0f)-34.e0f*log(10.e0f))
|
217 | 234 | equemene | #define lk (log(1.38e0f)-23.e0f*log(10.e0f))
|
218 | 234 | equemene | #define lc2 (log(9.e0f)+16.e0f*log(10.e0f))
|
219 | 199 | equemene |
|
220 | 234 | equemene | MYFLOAT v=1.e0f-3.e0f/r;
|
221 | 199 | equemene |
|
222 | 234 | equemene | qu=1.e0f/sqrt((1.e0f-3.e0f/r)*r)*(sqrt(r)-sqrt(6.e0f)+sqrt(3.e0f)/2.e0f*log((sqrt(r)+sqrt(3.e0f))/(sqrt(r)-sqrt(3.e0f))* 0.17157287525380988e0f ));
|
223 | 199 | equemene |
|
224 | 234 | equemene | temp_em=temp*sqrt(m)*exp(0.25e0f*log(m_point)-0.75e0f*log(r)-0.125e0f*log(v)+0.25e0f*log(fabs(qu)));
|
225 | 209 | equemene |
|
226 | 234 | equemene | flux_int=0.e0f;
|
227 | 234 | equemene | flx=0.e0f;
|
228 | 209 | equemene |
|
229 | 201 | equemene | for (fi=0;fi<nbr;fi++)
|
230 | 199 | equemene | {
|
231 | 209 | equemene | nu_em=bss*(MYFLOAT)fi/(MYFLOAT)nbr;
|
232 | 209 | equemene | nu_rec=nu_em*rf;
|
233 | 209 | equemene | posfreq=(int)(nu_rec*(MYFLOAT)nbr/bss);
|
234 | 199 | equemene | if ((posfreq>0)&&(posfreq<nbr))
|
235 | 234 | equemene | {
|
236 | 209 | equemene | // Initial version
|
237 | 234 | equemene | // flux_int=2.*planck/c2*pow(nu_em,3)/(exp(planck*nu_em/(k*temp_em))-1.);
|
238 | 209 | equemene | // Version with log used
|
239 | 234 | equemene | //flux_int=2.*exp(lplanck-lc2+3.*log(nu_em))/(exp(exp(lplanck-lk+log(nu_em/temp_em)))-1.);
|
240 | 234 | equemene | // flux_int*=pow(rf,3)*b*db*h;
|
241 | 234 | equemene | //flux_int*=exp(3.e0f*log(rf))*b*db*h;
|
242 | 234 | equemene | flux_int=2.e0f*exp(lplanck-lc2+3.e0f*log(nu_em))/(exp(exp(lplanck-lk+log(nu_em/temp_em)))-1.e0f)*exp(3.e0f*log(rf))*b*db*h;
|
243 | 211 | equemene |
|
244 | 234 | equemene | flx+=flux_int;
|
245 | 234 | equemene | }
|
246 | 199 | equemene | }
|
247 | 209 | equemene |
|
248 | 209 | equemene | return((float)(flx));
|
249 | 199 | equemene | }
|
250 | 199 | equemene |
|
251 | 199 | equemene | void impact(float phi,float r,float b,float tho,float m,
|
252 | 234 | equemene | float *zp,float *fp,
|
253 | 234 | equemene | int q,float db,
|
254 | 234 | equemene | float h,int raie)
|
255 | 199 | equemene | {
|
256 | 204 | equemene | float flx,rf,bss;
|
257 | 199 | equemene |
|
258 | 199 | equemene | rf=decalage_spectral(r,b,phi,tho,m);
|
259 | 199 | equemene |
|
260 | 199 | equemene | if (raie==0)
|
261 | 199 | equemene | {
|
262 | 234 | equemene | bss=1.e19f;
|
263 | 209 | equemene | flx=spectre_cn(rf,b,db,h,r,m,bss);
|
264 | 209 | equemene | }
|
265 | 209 | equemene | else
|
266 | 234 | equemene | {
|
267 | 234 | equemene | bss=2.e0f;
|
268 | 199 | equemene | flx=spectre(rf,q,b,db,h,r,m,bss);
|
269 | 199 | equemene | }
|
270 | 234 | equemene |
|
271 | 234 | equemene | *zp=1.e0f/rf;
|
272 | 199 | equemene | *fp=flx;
|
273 | 199 | equemene |
|
274 | 199 | equemene | }
|
275 | 199 | equemene |
|
276 | 204 | equemene | __kernel void EachPixel(__global float *zImage,__global float *fImage,
|
277 | 204 | equemene | float Mass,float InternalRadius,
|
278 | 204 | equemene | float ExternalRadius,float Angle,
|
279 | 209 | equemene | int Line)
|
280 | 199 | equemene | {
|
281 | 199 | equemene | uint xi=(uint)get_global_id(0);
|
282 | 199 | equemene | uint yi=(uint)get_global_id(1);
|
283 | 199 | equemene | uint sizex=(uint)get_global_size(0);
|
284 | 199 | equemene | uint sizey=(uint)get_global_size(1);
|
285 | 199 | equemene |
|
286 | 204 | equemene | // Perform trajectory for each pixel, exit on hit
|
287 | 199 | equemene |
|
288 | 226 | equemene | float m,rs,ri,re,tho;
|
289 | 226 | equemene | int q,raie;
|
290 | 199 | equemene |
|
291 | 204 | equemene | m=Mass;
|
292 | 228 | equemene | rs=2.e0f*m;
|
293 | 204 | equemene | ri=InternalRadius;
|
294 | 204 | equemene | re=ExternalRadius;
|
295 | 204 | equemene | tho=Angle;
|
296 | 204 | equemene | q=-2;
|
297 | 209 | equemene | raie=Line;
|
298 | 204 | equemene |
|
299 | 226 | equemene | float bmx,db,b,h;
|
300 | 234 | equemene | float rp0,rps;
|
301 | 226 | equemene | float phi,phd;
|
302 | 228 | equemene | uint nh=0;
|
303 | 228 | equemene | float zp=0.e0f,fp=0.e0f;
|
304 | 199 | equemene |
|
305 | 199 | equemene | // Autosize for image
|
306 | 228 | equemene | bmx=1.25e0f*re;
|
307 | 199 | equemene |
|
308 | 217 | equemene | h=4.e0f*PI/(float)TRACKPOINTS;
|
309 | 201 | equemene |
|
310 | 199 | equemene | // set origin as center of image
|
311 | 228 | equemene | float x=(float)xi-(float)(sizex/2)+(float)5.e-1f;
|
312 | 228 | equemene | float y=(float)yi-(float)(sizey/2)+(float)5.e-1f;
|
313 | 199 | equemene | // angle extracted from cylindric symmetry
|
314 | 199 | equemene | phi=atanp(x,y);
|
315 | 199 | equemene | phd=atanp(cos(phi)*sin(tho),cos(tho));
|
316 | 199 | equemene |
|
317 | 228 | equemene |
|
318 | 204 | equemene | float up,vp,pp,us,vs,ps;
|
319 | 204 | equemene |
|
320 | 204 | equemene | // impact parameter
|
321 | 204 | equemene | b=sqrt(x*x+y*y)*(float)2.e0f/(float)sizex*bmx;
|
322 | 204 | equemene | // step of impact parameter;
|
323 | 209 | equemene | db=bmx/(float)(sizex);
|
324 | 204 | equemene |
|
325 | 228 | equemene | up=0.e0f;
|
326 | 228 | equemene | vp=1.e0f;
|
327 | 228 | equemene | pp=0.e0f;
|
328 | 199 | equemene |
|
329 | 199 | equemene | rungekutta(&ps,&us,&vs,pp,up,vp,h,m,b);
|
330 | 226 | equemene |
|
331 | 218 | equemene | rps=fabs(b/us);
|
332 | 218 | equemene | rp0=rps;
|
333 | 199 | equemene |
|
334 | 204 | equemene | int ExitOnImpact=0;
|
335 | 199 | equemene |
|
336 | 199 | equemene | do
|
337 | 199 | equemene | {
|
338 | 199 | equemene | nh++;
|
339 | 199 | equemene | pp=ps;
|
340 | 199 | equemene | up=us;
|
341 | 199 | equemene | vp=vs;
|
342 | 227 | equemene | rungekutta(&ps,&us,&vs,pp,up,vp,h,m,b);
|
343 | 218 | equemene | rps=fabs(b/us);
|
344 | 226 | equemene | ExitOnImpact = ((fmod(pp,PI)<fmod(phd,PI))&&(fmod(ps,PI)>fmod(phd,PI)))&&(rps>=ri)&&(rps<=re)?1:0;
|
345 | 199 | equemene |
|
346 | 228 | equemene | } while ((rps>=rs)&&(rps<=rp0)&&(ExitOnImpact==0)&&(nh<TRACKPOINTS));
|
347 | 199 | equemene |
|
348 | 228 | equemene |
|
349 | 199 | equemene | if (ExitOnImpact==1) {
|
350 | 228 | equemene | impact(phi,rps,b,tho,m,&zp,&fp,q,db,h,raie);
|
351 | 199 | equemene | }
|
352 | 199 | equemene | else
|
353 | 199 | equemene | {
|
354 | 228 | equemene | zp=0.e0f;
|
355 | 228 | equemene | fp=0.e0f;
|
356 | 199 | equemene | }
|
357 | 199 | equemene |
|
358 | 204 | equemene | barrier(CLK_GLOBAL_MEM_FENCE);
|
359 | 204 | equemene |
|
360 | 201 | equemene | zImage[yi+sizex*xi]=(float)zp;
|
361 | 234 | equemene | fImage[yi+sizex*xi]=(float)fp;
|
362 | 204 | equemene | }
|
363 | 199 | equemene |
|
364 | 204 | equemene | __kernel void Pixel(__global float *zImage,__global float *fImage,
|
365 | 204 | equemene | __global float *Trajectories,__global int *IdLast,
|
366 | 224 | equemene | uint ImpactParameter,
|
367 | 204 | equemene | float Mass,float InternalRadius,
|
368 | 204 | equemene | float ExternalRadius,float Angle,
|
369 | 209 | equemene | int Line)
|
370 | 204 | equemene | {
|
371 | 204 | equemene | uint xi=(uint)get_global_id(0);
|
372 | 204 | equemene | uint yi=(uint)get_global_id(1);
|
373 | 204 | equemene | uint sizex=(uint)get_global_size(0);
|
374 | 204 | equemene | uint sizey=(uint)get_global_size(1);
|
375 | 204 | equemene |
|
376 | 204 | equemene | // Perform trajectory for each pixel
|
377 | 204 | equemene |
|
378 | 226 | equemene | float m,ri,re,tho;
|
379 | 209 | equemene | int q,raie;
|
380 | 204 | equemene |
|
381 | 204 | equemene | m=Mass;
|
382 | 204 | equemene | ri=InternalRadius;
|
383 | 204 | equemene | re=ExternalRadius;
|
384 | 204 | equemene | tho=Angle;
|
385 | 204 | equemene | q=-2;
|
386 | 209 | equemene | raie=Line;
|
387 | 204 | equemene |
|
388 | 226 | equemene | float bmx,db,b,h;
|
389 | 226 | equemene | float phi,phd,php,nr,r;
|
390 | 234 | equemene | float zp=0.e0f,fp=0.e0f;
|
391 | 204 | equemene |
|
392 | 209 | equemene | // Autosize for image, 25% greater than external radius
|
393 | 234 | equemene | bmx=1.25e0f*re;
|
394 | 204 | equemene |
|
395 | 204 | equemene | // Angular step of integration
|
396 | 224 | equemene | h=4.e0f*PI/(float)TRACKPOINTS;
|
397 | 204 | equemene |
|
398 | 204 | equemene | // Step of Impact Parameter
|
399 | 234 | equemene | db=bmx/(2.e0f*(float)ImpactParameter);
|
400 | 204 | equemene |
|
401 | 204 | equemene | // set origin as center of image
|
402 | 234 | equemene | float x=(float)xi-(float)(sizex/2)+(float)5.e-1f;
|
403 | 234 | equemene | float y=(float)yi-(float)(sizey/2)+(float)5.e-1f;
|
404 | 204 | equemene |
|
405 | 204 | equemene | // angle extracted from cylindric symmetry
|
406 | 204 | equemene | phi=atanp(x,y);
|
407 | 204 | equemene | phd=atanp(cos(phi)*sin(tho),cos(tho));
|
408 | 204 | equemene |
|
409 | 204 | equemene | // Real Impact Parameter
|
410 | 204 | equemene | b=sqrt(x*x+y*y)*bmx/(float)ImpactParameter;
|
411 | 204 | equemene |
|
412 | 204 | equemene | // Integer Impact Parameter
|
413 | 204 | equemene | uint bi=(uint)sqrt(x*x+y*y);
|
414 | 204 | equemene |
|
415 | 204 | equemene | int HalfLap=0,ExitOnImpact=0,ni;
|
416 | 204 | equemene |
|
417 | 204 | equemene | if (bi<ImpactParameter)
|
418 | 204 | equemene | {
|
419 | 204 | equemene | do
|
420 | 204 | equemene | {
|
421 | 204 | equemene | php=phd+(float)HalfLap*PI;
|
422 | 204 | equemene | nr=php/h;
|
423 | 204 | equemene | ni=(int)nr;
|
424 | 204 | equemene |
|
425 | 204 | equemene | if (ni<IdLast[bi])
|
426 | 204 | equemene | {
|
427 | 234 | equemene | r=(Trajectories[bi*TRACKPOINTS+ni+1]-Trajectories[bi*TRACKPOINTS+ni])*(nr-ni*1.e0f)+Trajectories[bi*TRACKPOINTS+ni];
|
428 | 204 | equemene | }
|
429 | 204 | equemene | else
|
430 | 204 | equemene | {
|
431 | 224 | equemene | r=Trajectories[bi*TRACKPOINTS+ni];
|
432 | 204 | equemene | }
|
433 | 234 | equemene |
|
434 | 204 | equemene | if ((r<=re)&&(r>=ri))
|
435 | 204 | equemene | {
|
436 | 204 | equemene | ExitOnImpact=1;
|
437 | 204 | equemene | impact(phi,r,b,tho,m,&zp,&fp,q,db,h,raie);
|
438 | 204 | equemene | }
|
439 | 234 | equemene |
|
440 | 204 | equemene | HalfLap++;
|
441 | 204 | equemene | } while ((HalfLap<=2)&&(ExitOnImpact==0));
|
442 | 204 | equemene |
|
443 | 204 | equemene | }
|
444 | 204 | equemene |
|
445 | 201 | equemene | barrier(CLK_GLOBAL_MEM_FENCE);
|
446 | 204 | equemene |
|
447 | 204 | equemene | zImage[yi+sizex*xi]=zp;
|
448 | 204 | equemene | fImage[yi+sizex*xi]=fp;
|
449 | 204 | equemene | }
|
450 | 204 | equemene |
|
451 | 204 | equemene | __kernel void Circle(__global float *Trajectories,__global int *IdLast,
|
452 | 204 | equemene | __global float *zImage,__global float *fImage,
|
453 | 204 | equemene | float Mass,float InternalRadius,
|
454 | 204 | equemene | float ExternalRadius,float Angle,
|
455 | 209 | equemene | int Line)
|
456 | 204 | equemene | {
|
457 | 234 | equemene | // Integer Impact Parameter ID
|
458 | 204 | equemene | int bi=get_global_id(0);
|
459 | 204 | equemene | // Integer points on circle
|
460 | 204 | equemene | int i=get_global_id(1);
|
461 | 204 | equemene | // Integer Impact Parameter Size (half of image)
|
462 | 204 | equemene | int bmaxi=get_global_size(0);
|
463 | 204 | equemene | // Integer Points on circle
|
464 | 204 | equemene | int imx=get_global_size(1);
|
465 | 204 | equemene |
|
466 | 204 | equemene | // Perform trajectory for each pixel
|
467 | 204 | equemene |
|
468 | 226 | equemene | float m,ri,re,tho;
|
469 | 209 | equemene | int q,raie;
|
470 | 204 | equemene |
|
471 | 204 | equemene | m=Mass;
|
472 | 204 | equemene | ri=InternalRadius;
|
473 | 204 | equemene | re=ExternalRadius;
|
474 | 204 | equemene | tho=Angle;
|
475 | 209 | equemene | raie=Line;
|
476 | 204 | equemene |
|
477 | 204 | equemene | float bmx,db,b,h;
|
478 | 226 | equemene | float phi,phd;
|
479 | 234 | equemene | float zp=0.e0f,fp=0.e0f;
|
480 | 204 | equemene |
|
481 | 204 | equemene | // Autosize for image
|
482 | 234 | equemene | bmx=1.25e0f*re;
|
483 | 204 | equemene |
|
484 | 204 | equemene | // Angular step of integration
|
485 | 224 | equemene | h=4.e0f*PI/(float)TRACKPOINTS;
|
486 | 204 | equemene |
|
487 | 204 | equemene | // impact parameter
|
488 | 204 | equemene | b=(float)bi/(float)bmaxi*bmx;
|
489 | 224 | equemene | db=bmx/(2.e0f*(float)bmaxi);
|
490 | 204 | equemene |
|
491 | 234 | equemene | phi=2.e0f*PI/(float)imx*(float)i;
|
492 | 204 | equemene | phd=atanp(cos(phi)*sin(tho),cos(tho));
|
493 | 204 | equemene | int yi=(int)((float)bi*sin(phi))+bmaxi;
|
494 | 204 | equemene | int xi=(int)((float)bi*cos(phi))+bmaxi;
|
495 | 204 | equemene |
|
496 | 204 | equemene | int HalfLap=0,ExitOnImpact=0,ni;
|
497 | 204 | equemene | float php,nr,r;
|
498 | 204 | equemene |
|
499 | 204 | equemene | do
|
500 | 204 | equemene | {
|
501 | 204 | equemene | php=phd+(float)HalfLap*PI;
|
502 | 204 | equemene | nr=php/h;
|
503 | 204 | equemene | ni=(int)nr;
|
504 | 204 | equemene |
|
505 | 204 | equemene | if (ni<IdLast[bi])
|
506 | 204 | equemene | {
|
507 | 234 | equemene | r=(Trajectories[bi*TRACKPOINTS+ni+1]-Trajectories[bi*TRACKPOINTS+ni])*(nr-ni*1.e0f)+Trajectories[bi*TRACKPOINTS+ni];
|
508 | 204 | equemene | }
|
509 | 204 | equemene | else
|
510 | 204 | equemene | {
|
511 | 234 | equemene | r=Trajectories[bi*TRACKPOINTS+ni];
|
512 | 204 | equemene | }
|
513 | 234 | equemene |
|
514 | 204 | equemene | if ((r<=re)&&(r>=ri))
|
515 | 204 | equemene | {
|
516 | 234 | equemene | ExitOnImpact=1;
|
517 | 234 | equemene | impact(phi,r,b,tho,m,&zp,&fp,q,db,h,raie);
|
518 | 204 | equemene | }
|
519 | 234 | equemene |
|
520 | 204 | equemene | HalfLap++;
|
521 | 204 | equemene | } while ((HalfLap<=2)&&(ExitOnImpact==0));
|
522 | 234 | equemene |
|
523 | 204 | equemene | zImage[yi+2*bmaxi*xi]=zp;
|
524 | 234 | equemene | fImage[yi+2*bmaxi*xi]=fp;
|
525 | 204 | equemene |
|
526 | 204 | equemene | barrier(CLK_GLOBAL_MEM_FENCE);
|
527 | 204 | equemene |
|
528 | 204 | equemene | }
|
529 | 204 | equemene |
|
530 | 224 | equemene | __kernel void Trajectory(__global float *Trajectories,__global int *IdLast,
|
531 | 204 | equemene | float Mass,float InternalRadius,
|
532 | 204 | equemene | float ExternalRadius,float Angle,
|
533 | 209 | equemene | int Line)
|
534 | 204 | equemene | {
|
535 | 234 | equemene | // Integer Impact Parameter ID
|
536 | 204 | equemene | int bi=get_global_id(0);
|
537 | 204 | equemene | // Integer Impact Parameter Size (half of image)
|
538 | 204 | equemene | int bmaxi=get_global_size(0);
|
539 | 204 | equemene |
|
540 | 204 | equemene | // Perform trajectory for each pixel
|
541 | 204 | equemene |
|
542 | 224 | equemene | float m,rs,re;
|
543 | 224 | equemene |
|
544 | 224 | equemene | m=Mass;
|
545 | 234 | equemene | rs=2.e0f*m;
|
546 | 224 | equemene | re=ExternalRadius;
|
547 | 224 | equemene |
|
548 | 224 | equemene | float bmx,b,h;
|
549 | 224 | equemene | int nh;
|
550 | 224 | equemene |
|
551 | 224 | equemene | // Autosize for image
|
552 | 234 | equemene | bmx=1.25e0f*re;
|
553 | 224 | equemene |
|
554 | 224 | equemene | // Angular step of integration
|
555 | 224 | equemene | h=4.e0f*PI/(float)TRACKPOINTS;
|
556 | 224 | equemene |
|
557 | 224 | equemene | // impact parameter
|
558 | 224 | equemene | b=(float)bi/(float)bmaxi*bmx;
|
559 | 224 | equemene |
|
560 | 224 | equemene | float up,vp,pp,us,vs,ps;
|
561 | 224 | equemene |
|
562 | 234 | equemene | up=0.e0f;
|
563 | 234 | equemene | vp=1.e0f;
|
564 | 234 | equemene |
|
565 | 234 | equemene | pp=0.e0f;
|
566 | 224 | equemene | nh=0;
|
567 | 224 | equemene |
|
568 | 224 | equemene | rungekutta(&ps,&us,&vs,pp,up,vp,h,m,b);
|
569 | 234 | equemene |
|
570 | 224 | equemene | // b versus us
|
571 | 224 | equemene | float bvus=fabs(b/us);
|
572 | 224 | equemene | float bvus0=bvus;
|
573 | 224 | equemene | Trajectories[bi*TRACKPOINTS+nh]=bvus;
|
574 | 224 | equemene |
|
575 | 224 | equemene | do
|
576 | 224 | equemene | {
|
577 | 224 | equemene | nh++;
|
578 | 224 | equemene | pp=ps;
|
579 | 224 | equemene | up=us;
|
580 | 224 | equemene | vp=vs;
|
581 | 224 | equemene | rungekutta(&ps,&us,&vs,pp,up,vp,h,m,b);
|
582 | 224 | equemene | bvus=fabs(b/us);
|
583 | 224 | equemene | Trajectories[bi*TRACKPOINTS+nh]=bvus;
|
584 | 224 | equemene |
|
585 | 224 | equemene | } while ((bvus>=rs)&&(bvus<=bvus0));
|
586 | 224 | equemene |
|
587 | 224 | equemene | IdLast[bi]=nh;
|
588 | 224 | equemene |
|
589 | 224 | equemene | barrier(CLK_GLOBAL_MEM_FENCE);
|
590 | 234 | equemene |
|
591 | 224 | equemene | }
|
592 | 224 | equemene |
|
593 | 225 | equemene | __kernel void EachCircle(__global float *zImage,__global float *fImage,
|
594 | 225 | equemene | float Mass,float InternalRadius,
|
595 | 225 | equemene | float ExternalRadius,float Angle,
|
596 | 225 | equemene | int Line)
|
597 | 224 | equemene | {
|
598 | 234 | equemene | // Integer Impact Parameter ID
|
599 | 234 | equemene | uint bi=(uint)get_global_id(0);
|
600 | 234 | equemene | // Integer Impact Parameter Size (half of image)
|
601 | 234 | equemene | uint bmaxi=(uint)get_global_size(0);
|
602 | 224 | equemene |
|
603 | 234 | equemene | private float Trajectory[TRACKPOINTS];
|
604 | 224 | equemene |
|
605 | 209 | equemene | float m,rs,ri,re,tho;
|
606 | 209 | equemene | int raie,q;
|
607 | 204 | equemene |
|
608 | 204 | equemene | m=Mass;
|
609 | 234 | equemene | rs=2.e0f*m;
|
610 | 204 | equemene | ri=InternalRadius;
|
611 | 204 | equemene | re=ExternalRadius;
|
612 | 204 | equemene | tho=Angle;
|
613 | 204 | equemene | q=-2;
|
614 | 209 | equemene | raie=Line;
|
615 | 204 | equemene |
|
616 | 224 | equemene | float bmx,db,b,h;
|
617 | 234 | equemene | uint nh;
|
618 | 204 | equemene |
|
619 | 234 | equemene |
|
620 | 204 | equemene | // Autosize for image
|
621 | 224 | equemene | bmx=1.25e0f*re;
|
622 | 204 | equemene |
|
623 | 204 | equemene | // Angular step of integration
|
624 | 224 | equemene | h=4.e0f*PI/(float)TRACKPOINTS;
|
625 | 204 | equemene |
|
626 | 204 | equemene | // impact parameter
|
627 | 204 | equemene | b=(float)bi/(float)bmaxi*bmx;
|
628 | 224 | equemene | db=bmx/(2.e0f*(float)bmaxi);
|
629 | 204 | equemene |
|
630 | 204 | equemene | float up,vp,pp,us,vs,ps;
|
631 | 204 | equemene |
|
632 | 234 | equemene | up=0.e0f;
|
633 | 234 | equemene | vp=1.e0f;
|
634 | 234 | equemene |
|
635 | 234 | equemene | pp=0.e0f;
|
636 | 204 | equemene | nh=0;
|
637 | 204 | equemene |
|
638 | 204 | equemene | rungekutta(&ps,&us,&vs,pp,up,vp,h,m,b);
|
639 | 234 | equemene |
|
640 | 204 | equemene | // b versus us
|
641 | 204 | equemene | float bvus=fabs(b/us);
|
642 | 204 | equemene | float bvus0=bvus;
|
643 | 225 | equemene | Trajectory[nh]=bvus;
|
644 | 204 | equemene |
|
645 | 204 | equemene | do
|
646 | 204 | equemene | {
|
647 | 204 | equemene | nh++;
|
648 | 204 | equemene | pp=ps;
|
649 | 204 | equemene | up=us;
|
650 | 204 | equemene | vp=vs;
|
651 | 204 | equemene | rungekutta(&ps,&us,&vs,pp,up,vp,h,m,b);
|
652 | 234 | equemene | bvus=(float)fabs(b/us);
|
653 | 225 | equemene | Trajectory[nh]=bvus;
|
654 | 204 | equemene |
|
655 | 204 | equemene | } while ((bvus>=rs)&&(bvus<=bvus0));
|
656 | 204 | equemene |
|
657 | 234 | equemene |
|
658 | 225 | equemene | for (uint i=(uint)nh+1;i<TRACKPOINTS;i++) {
|
659 | 225 | equemene | Trajectory[i]=0.e0f;
|
660 | 225 | equemene | }
|
661 | 225 | equemene |
|
662 | 204 | equemene |
|
663 | 234 | equemene | uint imx=(uint)(16*bi);
|
664 | 234 | equemene |
|
665 | 234 | equemene | for (uint i=0;i<imx;i++)
|
666 | 224 | equemene | {
|
667 | 234 | equemene | float zp=0.e0f,fp=0.e0f;
|
668 | 234 | equemene | float phi=2.e0f*PI/(float)imx*(float)i;
|
669 | 224 | equemene | float phd=atanp(cos(phi)*sin(tho),cos(tho));
|
670 | 224 | equemene | uint yi=(uint)((float)bi*sin(phi)+bmaxi);
|
671 | 224 | equemene | uint xi=(uint)((float)bi*cos(phi)+bmaxi);
|
672 | 224 | equemene |
|
673 | 234 | equemene | uint HalfLap=0,ExitOnImpact=0,ni;
|
674 | 224 | equemene | float php,nr,r;
|
675 | 224 | equemene |
|
676 | 224 | equemene | do
|
677 | 224 | equemene | {
|
678 | 224 | equemene | php=phd+(float)HalfLap*PI;
|
679 | 224 | equemene | nr=php/h;
|
680 | 224 | equemene | ni=(int)nr;
|
681 | 224 | equemene |
|
682 | 224 | equemene | if (ni<nh)
|
683 | 224 | equemene | {
|
684 | 234 | equemene | r=(Trajectory[ni+1]-Trajectory[ni])*(nr-ni*1.e0f)+Trajectory[ni];
|
685 | 224 | equemene | }
|
686 | 224 | equemene | else
|
687 | 224 | equemene | {
|
688 | 225 | equemene | r=Trajectory[ni];
|
689 | 224 | equemene | }
|
690 | 234 | equemene |
|
691 | 224 | equemene | if ((r<=re)&&(r>=ri))
|
692 | 224 | equemene | {
|
693 | 224 | equemene | ExitOnImpact=1;
|
694 | 224 | equemene | impact(phi,r,b,tho,m,&zp,&fp,q,db,h,raie);
|
695 | 224 | equemene | }
|
696 | 234 | equemene |
|
697 | 224 | equemene | HalfLap++;
|
698 | 224 | equemene |
|
699 | 224 | equemene | } while ((HalfLap<=2)&&(ExitOnImpact==0));
|
700 | 234 | equemene |
|
701 | 224 | equemene | zImage[yi+2*bmaxi*xi]=zp;
|
702 | 224 | equemene | fImage[yi+2*bmaxi*xi]=fp;
|
703 | 224 | equemene |
|
704 | 224 | equemene | }
|
705 | 224 | equemene |
|
706 | 204 | equemene | barrier(CLK_GLOBAL_MEM_FENCE);
|
707 | 234 | equemene |
|
708 | 199 | equemene | }
|
709 | 225 | equemene |
|
710 | 225 | equemene | __kernel void Original(__global float *zImage,__global float *fImage,
|
711 | 225 | equemene | uint Size,float Mass,float InternalRadius,
|
712 | 225 | equemene | float ExternalRadius,float Angle,
|
713 | 225 | equemene | int Line)
|
714 | 225 | equemene | {
|
715 | 225 | equemene | // Integer Impact Parameter Size (half of image)
|
716 | 225 | equemene | uint bmaxi=(uint)Size;
|
717 | 225 | equemene |
|
718 | 225 | equemene | float Trajectory[TRACKPOINTS];
|
719 | 225 | equemene |
|
720 | 225 | equemene | // Perform trajectory for each pixel
|
721 | 225 | equemene |
|
722 | 225 | equemene | float m,rs,ri,re,tho;
|
723 | 225 | equemene | int raie,q;
|
724 | 225 | equemene |
|
725 | 225 | equemene | m=Mass;
|
726 | 234 | equemene | rs=2.e0f*m;
|
727 | 225 | equemene | ri=InternalRadius;
|
728 | 225 | equemene | re=ExternalRadius;
|
729 | 225 | equemene | tho=Angle;
|
730 | 225 | equemene | q=-2;
|
731 | 225 | equemene | raie=Line;
|
732 | 225 | equemene |
|
733 | 225 | equemene | float bmx,db,b,h;
|
734 | 234 | equemene | uint nh;
|
735 | 225 | equemene |
|
736 | 225 | equemene | // Autosize for image
|
737 | 225 | equemene | bmx=1.25e0f*re;
|
738 | 225 | equemene |
|
739 | 225 | equemene | // Angular step of integration
|
740 | 225 | equemene | h=4.e0f*PI/(float)TRACKPOINTS;
|
741 | 225 | equemene |
|
742 | 234 | equemene | // Integer Impact Parameter ID
|
743 | 225 | equemene | for (int bi=0;bi<bmaxi;bi++)
|
744 | 225 | equemene | {
|
745 | 225 | equemene | // impact parameter
|
746 | 225 | equemene | b=(float)bi/(float)bmaxi*bmx;
|
747 | 225 | equemene | db=bmx/(2.e0f*(float)bmaxi);
|
748 | 225 | equemene |
|
749 | 225 | equemene | float up,vp,pp,us,vs,ps;
|
750 | 225 | equemene |
|
751 | 234 | equemene | up=0.e0f;
|
752 | 234 | equemene | vp=1.e0f;
|
753 | 234 | equemene |
|
754 | 234 | equemene | pp=0.e0f;
|
755 | 225 | equemene | nh=0;
|
756 | 225 | equemene |
|
757 | 225 | equemene | rungekutta(&ps,&us,&vs,pp,up,vp,h,m,b);
|
758 | 234 | equemene |
|
759 | 225 | equemene | // b versus us
|
760 | 225 | equemene | float bvus=fabs(b/us);
|
761 | 225 | equemene | float bvus0=bvus;
|
762 | 225 | equemene | Trajectory[nh]=bvus;
|
763 | 225 | equemene |
|
764 | 225 | equemene | do
|
765 | 225 | equemene | {
|
766 | 225 | equemene | nh++;
|
767 | 225 | equemene | pp=ps;
|
768 | 225 | equemene | up=us;
|
769 | 225 | equemene | vp=vs;
|
770 | 225 | equemene | rungekutta(&ps,&us,&vs,pp,up,vp,h,m,b);
|
771 | 225 | equemene | bvus=fabs(b/us);
|
772 | 225 | equemene | Trajectory[nh]=bvus;
|
773 | 225 | equemene |
|
774 | 225 | equemene | } while ((bvus>=rs)&&(bvus<=bvus0));
|
775 | 225 | equemene |
|
776 | 225 | equemene | for (uint i=(uint)nh+1;i<TRACKPOINTS;i++) {
|
777 | 225 | equemene | Trajectory[i]=0.e0f;
|
778 | 225 | equemene | }
|
779 | 225 | equemene |
|
780 | 225 | equemene | int imx=(int)(16*bi);
|
781 | 225 | equemene |
|
782 | 225 | equemene | for (int i=0;i<imx;i++)
|
783 | 225 | equemene | {
|
784 | 234 | equemene | float zp=0.e0f,fp=0.e0f;
|
785 | 225 | equemene | float phi=2.e0f*PI/(float)imx*(float)i;
|
786 | 225 | equemene | float phd=atanp(cos(phi)*sin(tho),cos(tho));
|
787 | 225 | equemene | uint yi=(uint)((float)bi*sin(phi)+bmaxi);
|
788 | 225 | equemene | uint xi=(uint)((float)bi*cos(phi)+bmaxi);
|
789 | 225 | equemene |
|
790 | 234 | equemene | uint HalfLap=0,ExitOnImpact=0,ni;
|
791 | 225 | equemene | float php,nr,r;
|
792 | 225 | equemene |
|
793 | 225 | equemene | do
|
794 | 225 | equemene | {
|
795 | 225 | equemene | php=phd+(float)HalfLap*PI;
|
796 | 225 | equemene | nr=php/h;
|
797 | 225 | equemene | ni=(int)nr;
|
798 | 225 | equemene |
|
799 | 225 | equemene | if (ni<nh)
|
800 | 225 | equemene | {
|
801 | 234 | equemene | r=(Trajectory[ni+1]-Trajectory[ni])*(nr-ni*1.e0f)+Trajectory[ni];
|
802 | 225 | equemene | }
|
803 | 225 | equemene | else
|
804 | 225 | equemene | {
|
805 | 225 | equemene | r=Trajectory[ni];
|
806 | 225 | equemene | }
|
807 | 234 | equemene |
|
808 | 225 | equemene | if ((r<=re)&&(r>=ri))
|
809 | 225 | equemene | {
|
810 | 225 | equemene | ExitOnImpact=1;
|
811 | 225 | equemene | impact(phi,r,b,tho,m,&zp,&fp,q,db,h,raie);
|
812 | 225 | equemene | }
|
813 | 234 | equemene |
|
814 | 225 | equemene | HalfLap++;
|
815 | 234 | equemene |
|
816 | 225 | equemene | } while ((HalfLap<=2)&&(ExitOnImpact==0));
|
817 | 234 | equemene |
|
818 | 225 | equemene | zImage[yi+2*bmaxi*xi]=zp;
|
819 | 225 | equemene | fImage[yi+2*bmaxi*xi]=fp;
|
820 | 234 | equemene |
|
821 | 225 | equemene | }
|
822 | 225 | equemene |
|
823 | 234 | equemene | }
|
824 | 234 | equemene |
|
825 | 225 | equemene | barrier(CLK_GLOBAL_MEM_FENCE);
|
826 | 234 | equemene |
|
827 | 225 | equemene | }
|
828 | 211 | equemene | """
|
829 | 199 | equemene | |
830 | 243 | equemene | |
831 | 243 | equemene | |
832 | 243 | equemene | |
833 | 243 | equemene | |
834 | 243 | equemene | |
835 | 243 | equemene | |
836 | 243 | equemene | |
837 | 243 | equemene | |
838 | 243 | equemene | |
839 | 243 | equemene | |
840 | 243 | equemene | |
841 | 243 | equemene | |
842 | 243 | equemene | |
843 | 243 | equemene | |
844 | 243 | equemene | |
845 | 243 | equemene | |
846 | 243 | equemene | |
847 | 243 | equemene | |
848 | 243 | equemene | |
849 | 243 | equemene | |
850 | 243 | equemene | |
851 | 243 | equemene | |
852 | 243 | equemene | |
853 | 243 | equemene | |
854 | 243 | equemene | |
855 | 243 | equemene | |
856 | 243 | equemene | |
857 | 243 | equemene | |
858 | 243 | equemene | |
859 | 243 | equemene | |
860 | 243 | equemene | |
861 | 243 | equemene | |
862 | 243 | equemene | |
863 | 243 | equemene | |
864 | 243 | equemene | |
865 | 243 | equemene | |
866 | 243 | equemene | |
867 | 243 | equemene | |
868 | 243 | equemene | |
869 | 243 | equemene | |
870 | 243 | equemene | |
871 | 243 | equemene | |
872 | 243 | equemene | |
873 | 243 | equemene | |
874 | 243 | equemene | |
875 | 243 | equemene | |
876 | 243 | equemene | |
877 | 243 | equemene | |
878 | 243 | equemene | |
879 | 243 | equemene | |
880 | 243 | equemene | |
881 | 243 | equemene | |
882 | 243 | equemene | |
883 | 243 | equemene | |
884 | 243 | equemene | |
885 | 243 | equemene | |
886 | 243 | equemene | |
887 | 243 | equemene | |
888 | 243 | equemene | |
889 | 243 | equemene | |
890 | 243 | equemene | |
891 | 243 | equemene | |
892 | 243 | equemene | |
893 | 243 | equemene | |
894 | 243 | equemene | |
895 | 243 | equemene | |
896 | 243 | equemene | |
897 | 243 | equemene | |
898 | 243 | equemene | |
899 | 243 | equemene | |
900 | 243 | equemene | |
901 | 217 | equemene | def KernelCodeCuda(): |
902 | 217 | equemene | BlobCUDA= """
|
903 | 217 | equemene |
|
904 | 217 | equemene | #define PI (float)3.14159265359
|
905 | 217 | equemene | #define nbr 256
|
906 | 217 | equemene |
|
907 | 217 | equemene | #define EINSTEIN 0
|
908 | 217 | equemene | #define NEWTON 1
|
909 | 217 | equemene |
|
910 | 224 | equemene | #ifdef SETTRACKPOINTS
|
911 | 224 | equemene | #define TRACKPOINTS SETTRACKPOINTS
|
912 | 224 | equemene | #else
|
913 | 224 | equemene | #define TRACKPOINTS
|
914 | 224 | equemene | #endif
|
915 | 217 | equemene | __device__ float nothing(float x)
|
916 | 217 | equemene | {
|
917 | 217 | equemene | return(x);
|
918 | 217 | equemene | }
|
919 | 217 | equemene |
|
920 | 217 | equemene | __device__ float atanp(float x,float y)
|
921 | 217 | equemene | {
|
922 | 217 | equemene | float angle;
|
923 | 217 | equemene |
|
924 | 217 | equemene | angle=atan2(y,x);
|
925 | 217 | equemene |
|
926 | 217 | equemene | if (angle<0.e0f)
|
927 | 217 | equemene | {
|
928 | 217 | equemene | angle+=(float)2.e0f*PI;
|
929 | 217 | equemene | }
|
930 | 217 | equemene |
|
931 | 217 | equemene | return(angle);
|
932 | 217 | equemene | }
|
933 | 217 | equemene |
|
934 | 217 | equemene | __device__ float f(float v)
|
935 | 217 | equemene | {
|
936 | 217 | equemene | return(v);
|
937 | 217 | equemene | }
|
938 | 217 | equemene |
|
939 | 217 | equemene | #if PHYSICS == NEWTON
|
940 | 217 | equemene | __device__ float g(float u,float m,float b)
|
941 | 217 | equemene | {
|
942 | 217 | equemene | return (-u);
|
943 | 217 | equemene | }
|
944 | 217 | equemene | #else
|
945 | 217 | equemene | __device__ float g(float u,float m,float b)
|
946 | 217 | equemene | {
|
947 | 217 | equemene | return (3.e0f*m/b*pow(u,2)-u);
|
948 | 217 | equemene | }
|
949 | 217 | equemene | #endif
|
950 | 217 | equemene |
|
951 | 217 | equemene | __device__ void calcul(float *us,float *vs,float up,float vp,
|
952 | 234 | equemene | float h,float m,float b)
|
953 | 217 | equemene | {
|
954 | 217 | equemene | float c0,c1,c2,c3,d0,d1,d2,d3;
|
955 | 217 | equemene |
|
956 | 217 | equemene | c0=h*f(vp);
|
957 | 217 | equemene | c1=h*f(vp+c0/2.);
|
958 | 217 | equemene | c2=h*f(vp+c1/2.);
|
959 | 217 | equemene | c3=h*f(vp+c2);
|
960 | 217 | equemene | d0=h*g(up,m,b);
|
961 | 217 | equemene | d1=h*g(up+d0/2.,m,b);
|
962 | 217 | equemene | d2=h*g(up+d1/2.,m,b);
|
963 | 217 | equemene | d3=h*g(up+d2,m,b);
|
964 | 217 | equemene |
|
965 | 217 | equemene | *us=up+(c0+2.*c1+2.*c2+c3)/6.;
|
966 | 217 | equemene | *vs=vp+(d0+2.*d1+2.*d2+d3)/6.;
|
967 | 217 | equemene | }
|
968 | 217 | equemene |
|
969 | 217 | equemene | __device__ void rungekutta(float *ps,float *us,float *vs,
|
970 | 234 | equemene | float pp,float up,float vp,
|
971 | 234 | equemene | float h,float m,float b)
|
972 | 217 | equemene | {
|
973 | 217 | equemene | calcul(us,vs,up,vp,h,m,b);
|
974 | 217 | equemene | *ps=pp+h;
|
975 | 217 | equemene | }
|
976 | 217 | equemene |
|
977 | 217 | equemene | __device__ float decalage_spectral(float r,float b,float phi,
|
978 | 234 | equemene | float tho,float m)
|
979 | 217 | equemene | {
|
980 | 217 | equemene | return (sqrt(1-3*m/r)/(1+sqrt(m/pow(r,3))*b*sin(tho)*sin(phi)));
|
981 | 217 | equemene | }
|
982 | 217 | equemene |
|
983 | 217 | equemene | __device__ float spectre(float rf,int q,float b,float db,
|
984 | 234 | equemene | float h,float r,float m,float bss)
|
985 | 217 | equemene | {
|
986 | 217 | equemene | float flx;
|
987 | 217 | equemene |
|
988 | 221 | equemene | // flx=exp(q*log(r/m))*pow(rf,4)*b*db*h;
|
989 | 221 | equemene | flx=exp(q*log(r/m)+4.*log(rf))*b*db*h;
|
990 | 217 | equemene | return(flx);
|
991 | 217 | equemene | }
|
992 | 217 | equemene |
|
993 | 217 | equemene | __device__ float spectre_cn(float rf32,float b32,float db32,
|
994 | 234 | equemene | float h32,float r32,float m32,float bss32)
|
995 | 217 | equemene | {
|
996 | 234 | equemene |
|
997 | 217 | equemene | #define MYFLOAT float
|
998 | 217 | equemene |
|
999 | 217 | equemene | MYFLOAT rf=(MYFLOAT)(rf32);
|
1000 | 217 | equemene | MYFLOAT b=(MYFLOAT)(b32);
|
1001 | 217 | equemene | MYFLOAT db=(MYFLOAT)(db32);
|
1002 | 217 | equemene | MYFLOAT h=(MYFLOAT)(h32);
|
1003 | 217 | equemene | MYFLOAT r=(MYFLOAT)(r32);
|
1004 | 217 | equemene | MYFLOAT m=(MYFLOAT)(m32);
|
1005 | 217 | equemene | MYFLOAT bss=(MYFLOAT)(bss32);
|
1006 | 217 | equemene |
|
1007 | 217 | equemene | MYFLOAT flx;
|
1008 | 217 | equemene | MYFLOAT nu_rec,nu_em,qu,temp_em,flux_int;
|
1009 | 217 | equemene | int fi,posfreq;
|
1010 | 217 | equemene |
|
1011 | 217 | equemene | #define planck 6.62e-34
|
1012 | 217 | equemene | #define k 1.38e-23
|
1013 | 217 | equemene | #define c2 9.e16
|
1014 | 217 | equemene | #define temp 3.e7
|
1015 | 217 | equemene | #define m_point 1.
|
1016 | 217 | equemene |
|
1017 | 217 | equemene | #define lplanck (log(6.62)-34.*log(10.))
|
1018 | 217 | equemene | #define lk (log(1.38)-23.*log(10.))
|
1019 | 217 | equemene | #define lc2 (log(9.)+16.*log(10.))
|
1020 | 217 | equemene |
|
1021 | 217 | equemene | MYFLOAT v=1.-3./r;
|
1022 | 217 | equemene |
|
1023 | 217 | equemene | qu=1./sqrt((1.-3./r)*r)*(sqrt(r)-sqrt(6.)+sqrt(3.)/2.*log((sqrt(r)+sqrt(3.))/(sqrt(r)-sqrt(3.))* 0.17157287525380988 ));
|
1024 | 217 | equemene |
|
1025 | 217 | equemene | temp_em=temp*sqrt(m)*exp(0.25*log(m_point)-0.75*log(r)-0.125*log(v)+0.25*log(fabs(qu)));
|
1026 | 217 | equemene |
|
1027 | 217 | equemene | flux_int=0.;
|
1028 | 217 | equemene | flx=0.;
|
1029 | 217 | equemene |
|
1030 | 217 | equemene | for (fi=0;fi<nbr;fi++)
|
1031 | 217 | equemene | {
|
1032 | 217 | equemene | nu_em=bss*(MYFLOAT)fi/(MYFLOAT)nbr;
|
1033 | 217 | equemene | nu_rec=nu_em*rf;
|
1034 | 217 | equemene | posfreq=(int)(nu_rec*(MYFLOAT)nbr/bss);
|
1035 | 217 | equemene | if ((posfreq>0)&&(posfreq<nbr))
|
1036 | 234 | equemene | {
|
1037 | 217 | equemene | // Initial version
|
1038 | 234 | equemene | // flux_int=2.*planck/c2*pow(nu_em,3)/(exp(planck*nu_em/(k*temp_em))-1.);
|
1039 | 217 | equemene | // Version with log used
|
1040 | 234 | equemene | //flux_int=2.*exp(lplanck-lc2+3.*log(nu_em))/(exp(exp(lplanck-lk+log(nu_em/temp_em)))-1.);
|
1041 | 234 | equemene | // flux_int*=pow(rf,3)*b*db*h;
|
1042 | 234 | equemene | //flux_int*=exp(3.*log(rf))*b*db*h;
|
1043 | 234 | equemene | flux_int=2.*exp(lplanck-lc2+3.*log(nu_em))/(exp(exp(lplanck-lk+log(nu_em/temp_em)))-1.)*exp(3.*log(rf))*b*db*h;
|
1044 | 217 | equemene |
|
1045 | 234 | equemene | flx+=flux_int;
|
1046 | 234 | equemene | }
|
1047 | 217 | equemene | }
|
1048 | 217 | equemene |
|
1049 | 217 | equemene | return((float)(flx));
|
1050 | 217 | equemene | }
|
1051 | 217 | equemene |
|
1052 | 217 | equemene | __device__ void impact(float phi,float r,float b,float tho,float m,
|
1053 | 234 | equemene | float *zp,float *fp,
|
1054 | 234 | equemene | int q,float db,
|
1055 | 234 | equemene | float h,int raie)
|
1056 | 217 | equemene | {
|
1057 | 217 | equemene | float flx,rf,bss;
|
1058 | 217 | equemene |
|
1059 | 217 | equemene | rf=decalage_spectral(r,b,phi,tho,m);
|
1060 | 217 | equemene |
|
1061 | 217 | equemene | if (raie==0)
|
1062 | 217 | equemene | {
|
1063 | 217 | equemene | bss=1.e19;
|
1064 | 217 | equemene | flx=spectre_cn(rf,b,db,h,r,m,bss);
|
1065 | 217 | equemene | }
|
1066 | 217 | equemene | else
|
1067 | 234 | equemene | {
|
1068 | 217 | equemene | bss=2.;
|
1069 | 217 | equemene | flx=spectre(rf,q,b,db,h,r,m,bss);
|
1070 | 217 | equemene | }
|
1071 | 234 | equemene |
|
1072 | 217 | equemene | *zp=1./rf;
|
1073 | 217 | equemene | *fp=flx;
|
1074 | 217 | equemene |
|
1075 | 217 | equemene | }
|
1076 | 217 | equemene |
|
1077 | 217 | equemene | __global__ void EachPixel(float *zImage,float *fImage,
|
1078 | 217 | equemene | float Mass,float InternalRadius,
|
1079 | 217 | equemene | float ExternalRadius,float Angle,
|
1080 | 217 | equemene | int Line)
|
1081 | 217 | equemene | {
|
1082 | 218 | equemene | uint xi=(uint)(blockIdx.x*blockDim.x+threadIdx.x);
|
1083 | 218 | equemene | uint yi=(uint)(blockIdx.y*blockDim.y+threadIdx.y);
|
1084 | 217 | equemene | uint sizex=(uint)gridDim.x*blockDim.x;
|
1085 | 217 | equemene | uint sizey=(uint)gridDim.y*blockDim.y;
|
1086 | 217 | equemene |
|
1087 | 243 | equemene |
|
1088 | 217 | equemene | // Perform trajectory for each pixel, exit on hit
|
1089 | 217 | equemene |
|
1090 | 217 | equemene | float m,rs,ri,re,tho;
|
1091 | 217 | equemene | int q,raie;
|
1092 | 217 | equemene |
|
1093 | 217 | equemene | m=Mass;
|
1094 | 217 | equemene | rs=2.*m;
|
1095 | 217 | equemene | ri=InternalRadius;
|
1096 | 217 | equemene | re=ExternalRadius;
|
1097 | 217 | equemene | tho=Angle;
|
1098 | 217 | equemene | q=-2;
|
1099 | 217 | equemene | raie=Line;
|
1100 | 217 | equemene |
|
1101 | 243 | equemene | float bmx,db,b,h;
|
1102 | 218 | equemene | float rp0,rpp,rps;
|
1103 | 243 | equemene | float phi,phd;
|
1104 | 217 | equemene | int nh;
|
1105 | 217 | equemene | float zp,fp;
|
1106 | 217 | equemene |
|
1107 | 217 | equemene | // Autosize for image
|
1108 | 217 | equemene | bmx=1.25*re;
|
1109 | 217 | equemene | b=0.;
|
1110 | 217 | equemene |
|
1111 | 217 | equemene | h=4.e0f*PI/(float)TRACKPOINTS;
|
1112 | 217 | equemene |
|
1113 | 217 | equemene | // set origin as center of image
|
1114 | 217 | equemene | float x=(float)xi-(float)(sizex/2)+(float)5e-1f;
|
1115 | 217 | equemene | float y=(float)yi-(float)(sizey/2)+(float)5e-1f;
|
1116 | 217 | equemene | // angle extracted from cylindric symmetry
|
1117 | 217 | equemene | phi=atanp(x,y);
|
1118 | 217 | equemene | phd=atanp(cos(phi)*sin(tho),cos(tho));
|
1119 | 217 | equemene |
|
1120 | 217 | equemene | float up,vp,pp,us,vs,ps;
|
1121 | 217 | equemene |
|
1122 | 217 | equemene | // impact parameter
|
1123 | 217 | equemene | b=sqrt(x*x+y*y)*(float)2.e0f/(float)sizex*bmx;
|
1124 | 217 | equemene | // step of impact parameter;
|
1125 | 217 | equemene | // db=bmx/(float)(sizex/2);
|
1126 | 217 | equemene | db=bmx/(float)(sizex);
|
1127 | 217 | equemene |
|
1128 | 217 | equemene | up=0.;
|
1129 | 217 | equemene | vp=1.;
|
1130 | 217 | equemene | pp=0.;
|
1131 | 217 | equemene | nh=0;
|
1132 | 217 | equemene |
|
1133 | 217 | equemene | rungekutta(&ps,&us,&vs,pp,up,vp,h,m,b);
|
1134 | 234 | equemene |
|
1135 | 218 | equemene | rps=fabs(b/us);
|
1136 | 218 | equemene | rp0=rps;
|
1137 | 217 | equemene |
|
1138 | 217 | equemene | int ExitOnImpact=0;
|
1139 | 217 | equemene |
|
1140 | 217 | equemene | do
|
1141 | 217 | equemene | {
|
1142 | 217 | equemene | nh++;
|
1143 | 217 | equemene | pp=ps;
|
1144 | 217 | equemene | up=us;
|
1145 | 217 | equemene | vp=vs;
|
1146 | 218 | equemene | rungekutta(&ps,&us,&vs,pp,up,vp,h,m,b);
|
1147 | 234 | equemene | rpp=rps;
|
1148 | 218 | equemene | rps=fabs(b/us);
|
1149 | 218 | equemene | ExitOnImpact = ((fmod(pp,PI)<fmod(phd,PI))&&(fmod(ps,PI)>fmod(phd,PI)))&&(rps>ri)&&(rps<re)?1:0;
|
1150 | 217 | equemene |
|
1151 | 218 | equemene | } while ((rps>=rs)&&(rps<=rp0)&&(ExitOnImpact==0));
|
1152 | 217 | equemene |
|
1153 | 217 | equemene | if (ExitOnImpact==1) {
|
1154 | 218 | equemene | impact(phi,rpp,b,tho,m,&zp,&fp,q,db,h,raie);
|
1155 | 217 | equemene | }
|
1156 | 217 | equemene | else
|
1157 | 217 | equemene | {
|
1158 | 234 | equemene | zp=0.e0f;
|
1159 | 234 | equemene | fp=0.e0f;
|
1160 | 217 | equemene | }
|
1161 | 217 | equemene |
|
1162 | 218 | equemene | __syncthreads();
|
1163 | 218 | equemene |
|
1164 | 217 | equemene | zImage[yi+sizex*xi]=(float)zp;
|
1165 | 217 | equemene | fImage[yi+sizex*xi]=(float)fp;
|
1166 | 217 | equemene | }
|
1167 | 217 | equemene |
|
1168 | 217 | equemene | __global__ void Pixel(float *zImage,float *fImage,
|
1169 | 217 | equemene | float *Trajectories,int *IdLast,
|
1170 | 224 | equemene | uint ImpactParameter,
|
1171 | 217 | equemene | float Mass,float InternalRadius,
|
1172 | 217 | equemene | float ExternalRadius,float Angle,
|
1173 | 217 | equemene | int Line)
|
1174 | 217 | equemene | {
|
1175 | 219 | equemene | uint xi=(uint)(blockIdx.x*blockDim.x+threadIdx.x);
|
1176 | 219 | equemene | uint yi=(uint)(blockIdx.y*blockDim.y+threadIdx.y);
|
1177 | 219 | equemene | uint sizex=(uint)gridDim.x*blockDim.x;
|
1178 | 219 | equemene | uint sizey=(uint)gridDim.y*blockDim.y;
|
1179 | 217 | equemene |
|
1180 | 217 | equemene | // Perform trajectory for each pixel
|
1181 | 217 | equemene |
|
1182 | 243 | equemene | float m,ri,re,tho;
|
1183 | 217 | equemene | int q,raie;
|
1184 | 217 | equemene |
|
1185 | 217 | equemene | m=Mass;
|
1186 | 217 | equemene | ri=InternalRadius;
|
1187 | 217 | equemene | re=ExternalRadius;
|
1188 | 217 | equemene | tho=Angle;
|
1189 | 217 | equemene | q=-2;
|
1190 | 217 | equemene | raie=Line;
|
1191 | 217 | equemene |
|
1192 | 243 | equemene | float bmx,db,b,h;
|
1193 | 243 | equemene | float phi,phd,php,nr,r;
|
1194 | 217 | equemene | float zp=0,fp=0;
|
1195 | 217 | equemene | // Autosize for image, 25% greater than external radius
|
1196 | 234 | equemene | bmx=1.25e0f*re;
|
1197 | 217 | equemene |
|
1198 | 217 | equemene | // Angular step of integration
|
1199 | 224 | equemene | h=4.e0f*PI/(float)TRACKPOINTS;
|
1200 | 217 | equemene |
|
1201 | 217 | equemene | // Step of Impact Parameter
|
1202 | 234 | equemene | db=bmx/(2.e0f*(float)ImpactParameter);
|
1203 | 217 | equemene |
|
1204 | 217 | equemene | // set origin as center of image
|
1205 | 217 | equemene | float x=(float)xi-(float)(sizex/2)+(float)5e-1f;
|
1206 | 217 | equemene | float y=(float)yi-(float)(sizey/2)+(float)5e-1f;
|
1207 | 217 | equemene | // angle extracted from cylindric symmetry
|
1208 | 217 | equemene | phi=atanp(x,y);
|
1209 | 217 | equemene | phd=atanp(cos(phi)*sin(tho),cos(tho));
|
1210 | 217 | equemene |
|
1211 | 217 | equemene | // Real Impact Parameter
|
1212 | 217 | equemene | b=sqrt(x*x+y*y)*bmx/(float)ImpactParameter;
|
1213 | 217 | equemene |
|
1214 | 217 | equemene | // Integer Impact Parameter
|
1215 | 217 | equemene | uint bi=(uint)sqrt(x*x+y*y);
|
1216 | 217 | equemene |
|
1217 | 217 | equemene | int HalfLap=0,ExitOnImpact=0,ni;
|
1218 | 217 | equemene |
|
1219 | 217 | equemene | if (bi<ImpactParameter)
|
1220 | 217 | equemene | {
|
1221 | 217 | equemene | do
|
1222 | 217 | equemene | {
|
1223 | 217 | equemene | php=phd+(float)HalfLap*PI;
|
1224 | 217 | equemene | nr=php/h;
|
1225 | 217 | equemene | ni=(int)nr;
|
1226 | 217 | equemene |
|
1227 | 217 | equemene | if (ni<IdLast[bi])
|
1228 | 217 | equemene | {
|
1229 | 234 | equemene | r=(Trajectories[bi*TRACKPOINTS+ni+1]-Trajectories[bi*TRACKPOINTS+ni])*(nr-ni*1.e0f)+Trajectories[bi*TRACKPOINTS+ni];
|
1230 | 217 | equemene | }
|
1231 | 217 | equemene | else
|
1232 | 217 | equemene | {
|
1233 | 224 | equemene | r=Trajectories[bi*TRACKPOINTS+ni];
|
1234 | 217 | equemene | }
|
1235 | 234 | equemene |
|
1236 | 217 | equemene | if ((r<=re)&&(r>=ri))
|
1237 | 217 | equemene | {
|
1238 | 217 | equemene | ExitOnImpact=1;
|
1239 | 217 | equemene | impact(phi,r,b,tho,m,&zp,&fp,q,db,h,raie);
|
1240 | 217 | equemene | }
|
1241 | 234 | equemene |
|
1242 | 217 | equemene | HalfLap++;
|
1243 | 217 | equemene | } while ((HalfLap<=2)&&(ExitOnImpact==0));
|
1244 | 217 | equemene |
|
1245 | 217 | equemene | }
|
1246 | 217 | equemene |
|
1247 | 217 | equemene | zImage[yi+sizex*xi]=zp;
|
1248 | 217 | equemene | fImage[yi+sizex*xi]=fp;
|
1249 | 217 | equemene | }
|
1250 | 217 | equemene |
|
1251 | 217 | equemene | __global__ void Circle(float *Trajectories,int *IdLast,
|
1252 | 217 | equemene | float *zImage,float *fImage,
|
1253 | 217 | equemene | float Mass,float InternalRadius,
|
1254 | 217 | equemene | float ExternalRadius,float Angle,
|
1255 | 217 | equemene | int Line)
|
1256 | 217 | equemene | {
|
1257 | 234 | equemene | // Integer Impact Parameter ID
|
1258 | 219 | equemene | int bi=blockIdx.x*blockDim.x+threadIdx.x;
|
1259 | 217 | equemene | // Integer points on circle
|
1260 | 219 | equemene | int i=blockIdx.y*blockDim.y+threadIdx.y;
|
1261 | 217 | equemene | // Integer Impact Parameter Size (half of image)
|
1262 | 217 | equemene | int bmaxi=gridDim.x*blockDim.x;
|
1263 | 217 | equemene | // Integer Points on circle
|
1264 | 217 | equemene | int imx=gridDim.y*blockDim.y;
|
1265 | 217 | equemene |
|
1266 | 217 | equemene | // Perform trajectory for each pixel
|
1267 | 217 | equemene |
|
1268 | 243 | equemene | float m,ri,re,tho;
|
1269 | 217 | equemene | int q,raie;
|
1270 | 217 | equemene |
|
1271 | 217 | equemene | m=Mass;
|
1272 | 217 | equemene | ri=InternalRadius;
|
1273 | 217 | equemene | re=ExternalRadius;
|
1274 | 217 | equemene | tho=Angle;
|
1275 | 217 | equemene | raie=Line;
|
1276 | 217 | equemene |
|
1277 | 217 | equemene | float bmx,db,b,h;
|
1278 | 243 | equemene | float phi,phd;
|
1279 | 217 | equemene | float zp=0,fp=0;
|
1280 | 217 | equemene |
|
1281 | 217 | equemene | // Autosize for image
|
1282 | 234 | equemene | bmx=1.25e0f*re;
|
1283 | 217 | equemene |
|
1284 | 217 | equemene | // Angular step of integration
|
1285 | 224 | equemene | h=4.e0f*PI/(float)TRACKPOINTS;
|
1286 | 217 | equemene |
|
1287 | 217 | equemene | // impact parameter
|
1288 | 217 | equemene | b=(float)bi/(float)bmaxi*bmx;
|
1289 | 234 | equemene | db=bmx/(2.e0f*(float)bmaxi);
|
1290 | 217 | equemene |
|
1291 | 234 | equemene | phi=2.e0f*PI/(float)imx*(float)i;
|
1292 | 217 | equemene | phd=atanp(cos(phi)*sin(tho),cos(tho));
|
1293 | 217 | equemene | int yi=(int)((float)bi*sin(phi))+bmaxi;
|
1294 | 217 | equemene | int xi=(int)((float)bi*cos(phi))+bmaxi;
|
1295 | 217 | equemene |
|
1296 | 217 | equemene | int HalfLap=0,ExitOnImpact=0,ni;
|
1297 | 217 | equemene | float php,nr,r;
|
1298 | 217 | equemene |
|
1299 | 217 | equemene | do
|
1300 | 217 | equemene | {
|
1301 | 217 | equemene | php=phd+(float)HalfLap*PI;
|
1302 | 217 | equemene | nr=php/h;
|
1303 | 217 | equemene | ni=(int)nr;
|
1304 | 217 | equemene |
|
1305 | 217 | equemene | if (ni<IdLast[bi])
|
1306 | 217 | equemene | {
|
1307 | 234 | equemene | r=(Trajectories[bi*TRACKPOINTS+ni+1]-Trajectories[bi*TRACKPOINTS+ni])*(nr-ni*1.e0f)+Trajectories[bi*TRACKPOINTS+ni];
|
1308 | 217 | equemene | }
|
1309 | 217 | equemene | else
|
1310 | 217 | equemene | {
|
1311 | 234 | equemene | r=Trajectories[bi*TRACKPOINTS+ni];
|
1312 | 217 | equemene | }
|
1313 | 234 | equemene |
|
1314 | 217 | equemene | if ((r<=re)&&(r>=ri))
|
1315 | 217 | equemene | {
|
1316 | 234 | equemene | ExitOnImpact=1;
|
1317 | 234 | equemene | impact(phi,r,b,tho,m,&zp,&fp,q,db,h,raie);
|
1318 | 217 | equemene | }
|
1319 | 234 | equemene |
|
1320 | 217 | equemene | HalfLap++;
|
1321 | 217 | equemene | } while ((HalfLap<=2)&&(ExitOnImpact==0));
|
1322 | 234 | equemene |
|
1323 | 217 | equemene | zImage[yi+2*bmaxi*xi]=zp;
|
1324 | 234 | equemene | fImage[yi+2*bmaxi*xi]=fp;
|
1325 | 217 | equemene |
|
1326 | 217 | equemene | }
|
1327 | 217 | equemene |
|
1328 | 224 | equemene | __global__ void Trajectory(float *Trajectories,int *IdLast,
|
1329 | 217 | equemene | float Mass,float InternalRadius,
|
1330 | 217 | equemene | float ExternalRadius,float Angle,
|
1331 | 217 | equemene | int Line)
|
1332 | 217 | equemene | {
|
1333 | 234 | equemene | // Integer Impact Parameter ID
|
1334 | 219 | equemene | int bi=blockIdx.x*blockDim.x+threadIdx.x;
|
1335 | 217 | equemene | // Integer Impact Parameter Size (half of image)
|
1336 | 217 | equemene | int bmaxi=gridDim.x*blockDim.x;
|
1337 | 217 | equemene |
|
1338 | 217 | equemene | // Perform trajectory for each pixel
|
1339 | 217 | equemene |
|
1340 | 243 | equemene | float m,rs,re;
|
1341 | 217 | equemene |
|
1342 | 217 | equemene | m=Mass;
|
1343 | 234 | equemene | rs=2.e0f*m;
|
1344 | 217 | equemene | re=ExternalRadius;
|
1345 | 217 | equemene |
|
1346 | 243 | equemene | float bmx,b,h;
|
1347 | 217 | equemene | int nh;
|
1348 | 217 | equemene |
|
1349 | 217 | equemene | // Autosize for image
|
1350 | 234 | equemene | bmx=1.25e0f*re;
|
1351 | 217 | equemene |
|
1352 | 217 | equemene | // Angular step of integration
|
1353 | 224 | equemene | h=4.e0f*PI/(float)TRACKPOINTS;
|
1354 | 217 | equemene |
|
1355 | 217 | equemene | // impact parameter
|
1356 | 217 | equemene | b=(float)bi/(float)bmaxi*bmx;
|
1357 | 217 | equemene |
|
1358 | 217 | equemene | float up,vp,pp,us,vs,ps;
|
1359 | 217 | equemene |
|
1360 | 234 | equemene | up=0.e0f;
|
1361 | 234 | equemene | vp=1.e0f;
|
1362 | 234 | equemene | pp=0.e0f;
|
1363 | 217 | equemene | nh=0;
|
1364 | 217 | equemene |
|
1365 | 217 | equemene | rungekutta(&ps,&us,&vs,pp,up,vp,h,m,b);
|
1366 | 234 | equemene |
|
1367 | 217 | equemene | // b versus us
|
1368 | 217 | equemene | float bvus=fabs(b/us);
|
1369 | 217 | equemene | float bvus0=bvus;
|
1370 | 224 | equemene | Trajectories[bi*TRACKPOINTS+nh]=bvus;
|
1371 | 217 | equemene |
|
1372 | 217 | equemene | do
|
1373 | 217 | equemene | {
|
1374 | 217 | equemene | nh++;
|
1375 | 217 | equemene | pp=ps;
|
1376 | 217 | equemene | up=us;
|
1377 | 217 | equemene | vp=vs;
|
1378 | 217 | equemene | rungekutta(&ps,&us,&vs,pp,up,vp,h,m,b);
|
1379 | 217 | equemene | bvus=fabs(b/us);
|
1380 | 224 | equemene | Trajectories[bi*TRACKPOINTS+nh]=bvus;
|
1381 | 217 | equemene |
|
1382 | 217 | equemene | } while ((bvus>=rs)&&(bvus<=bvus0));
|
1383 | 217 | equemene |
|
1384 | 217 | equemene | IdLast[bi]=nh;
|
1385 | 217 | equemene |
|
1386 | 217 | equemene | }
|
1387 | 224 | equemene |
|
1388 | 225 | equemene | __global__ void EachCircle(float *zImage,float *fImage,
|
1389 | 225 | equemene | float Mass,float InternalRadius,
|
1390 | 225 | equemene | float ExternalRadius,float Angle,
|
1391 | 225 | equemene | int Line)
|
1392 | 224 | equemene | {
|
1393 | 234 | equemene | // Integer Impact Parameter ID
|
1394 | 224 | equemene | int bi=blockIdx.x*blockDim.x+threadIdx.x;
|
1395 | 224 | equemene |
|
1396 | 224 | equemene | // Integer Impact Parameter Size (half of image)
|
1397 | 224 | equemene | int bmaxi=gridDim.x*blockDim.x;
|
1398 | 224 | equemene |
|
1399 | 292 | equemene | float Trajectory[TRACKPOINTS];
|
1400 | 224 | equemene |
|
1401 | 224 | equemene | // Perform trajectory for each pixel
|
1402 | 224 | equemene |
|
1403 | 224 | equemene | float m,rs,ri,re,tho;
|
1404 | 224 | equemene | int raie,q;
|
1405 | 224 | equemene |
|
1406 | 224 | equemene | m=Mass;
|
1407 | 224 | equemene | rs=2.*m;
|
1408 | 224 | equemene | ri=InternalRadius;
|
1409 | 224 | equemene | re=ExternalRadius;
|
1410 | 224 | equemene | tho=Angle;
|
1411 | 224 | equemene | q=-2;
|
1412 | 224 | equemene | raie=Line;
|
1413 | 224 | equemene |
|
1414 | 224 | equemene | float bmx,db,b,h;
|
1415 | 224 | equemene | int nh;
|
1416 | 224 | equemene |
|
1417 | 224 | equemene | // Autosize for image
|
1418 | 224 | equemene | bmx=1.25e0f*re;
|
1419 | 224 | equemene |
|
1420 | 224 | equemene | // Angular step of integration
|
1421 | 224 | equemene | h=4.e0f*PI/(float)TRACKPOINTS;
|
1422 | 224 | equemene |
|
1423 | 224 | equemene | // impact parameter
|
1424 | 224 | equemene | b=(float)bi/(float)bmaxi*bmx;
|
1425 | 224 | equemene | db=bmx/(2.e0f*(float)bmaxi);
|
1426 | 224 | equemene |
|
1427 | 224 | equemene | float up,vp,pp,us,vs,ps;
|
1428 | 224 | equemene |
|
1429 | 224 | equemene | up=0.;
|
1430 | 224 | equemene | vp=1.;
|
1431 | 224 | equemene | pp=0.;
|
1432 | 224 | equemene | nh=0;
|
1433 | 224 | equemene |
|
1434 | 224 | equemene | rungekutta(&ps,&us,&vs,pp,up,vp,h,m,b);
|
1435 | 234 | equemene |
|
1436 | 224 | equemene | // b versus us
|
1437 | 224 | equemene | float bvus=fabs(b/us);
|
1438 | 224 | equemene | float bvus0=bvus;
|
1439 | 225 | equemene | Trajectory[nh]=bvus;
|
1440 | 224 | equemene |
|
1441 | 224 | equemene | do
|
1442 | 224 | equemene | {
|
1443 | 224 | equemene | nh++;
|
1444 | 224 | equemene | pp=ps;
|
1445 | 224 | equemene | up=us;
|
1446 | 224 | equemene | vp=vs;
|
1447 | 224 | equemene | rungekutta(&ps,&us,&vs,pp,up,vp,h,m,b);
|
1448 | 224 | equemene | bvus=fabs(b/us);
|
1449 | 225 | equemene | Trajectory[nh]=bvus;
|
1450 | 224 | equemene |
|
1451 | 224 | equemene | } while ((bvus>=rs)&&(bvus<=bvus0));
|
1452 | 224 | equemene |
|
1453 | 292 | equemene | for (uint i=(uint)nh+1;i<TRACKPOINTS;i++) {
|
1454 | 292 | equemene | Trajectory[i]=0.e0f;
|
1455 | 292 | equemene | }
|
1456 | 292 | equemene |
|
1457 | 224 | equemene | int imx=(int)(16*bi);
|
1458 | 224 | equemene |
|
1459 | 224 | equemene | for (int i=0;i<imx;i++)
|
1460 | 224 | equemene | {
|
1461 | 224 | equemene | float zp=0,fp=0;
|
1462 | 224 | equemene | float phi=2.*PI/(float)imx*(float)i;
|
1463 | 224 | equemene | float phd=atanp(cos(phi)*sin(tho),cos(tho));
|
1464 | 224 | equemene | uint yi=(uint)((float)bi*sin(phi)+bmaxi);
|
1465 | 224 | equemene | uint xi=(uint)((float)bi*cos(phi)+bmaxi);
|
1466 | 224 | equemene |
|
1467 | 224 | equemene | int HalfLap=0,ExitOnImpact=0,ni;
|
1468 | 224 | equemene | float php,nr,r;
|
1469 | 224 | equemene |
|
1470 | 224 | equemene | do
|
1471 | 224 | equemene | {
|
1472 | 224 | equemene | php=phd+(float)HalfLap*PI;
|
1473 | 224 | equemene | nr=php/h;
|
1474 | 224 | equemene | ni=(int)nr;
|
1475 | 224 | equemene |
|
1476 | 224 | equemene | if (ni<nh)
|
1477 | 224 | equemene | {
|
1478 | 225 | equemene | r=(Trajectory[ni+1]-Trajectory[ni])*(nr-ni*1.)+Trajectory[ni];
|
1479 | 224 | equemene | }
|
1480 | 224 | equemene | else
|
1481 | 224 | equemene | {
|
1482 | 225 | equemene | r=Trajectory[ni];
|
1483 | 224 | equemene | }
|
1484 | 234 | equemene |
|
1485 | 224 | equemene | if ((r<=re)&&(r>=ri))
|
1486 | 224 | equemene | {
|
1487 | 224 | equemene | ExitOnImpact=1;
|
1488 | 224 | equemene | impact(phi,r,b,tho,m,&zp,&fp,q,db,h,raie);
|
1489 | 224 | equemene | }
|
1490 | 234 | equemene |
|
1491 | 224 | equemene | HalfLap++;
|
1492 | 224 | equemene |
|
1493 | 224 | equemene | } while ((HalfLap<=2)&&(ExitOnImpact==0));
|
1494 | 224 | equemene |
|
1495 | 224 | equemene | __syncthreads();
|
1496 | 224 | equemene |
|
1497 | 224 | equemene | zImage[yi+2*bmaxi*xi]=zp;
|
1498 | 224 | equemene | fImage[yi+2*bmaxi*xi]=fp;
|
1499 | 224 | equemene |
|
1500 | 224 | equemene | }
|
1501 | 234 | equemene |
|
1502 | 224 | equemene | }
|
1503 | 225 | equemene |
|
1504 | 225 | equemene | __global__ void Original(float *zImage,float *fImage,
|
1505 | 225 | equemene | uint Size,float Mass,float InternalRadius,
|
1506 | 225 | equemene | float ExternalRadius,float Angle,
|
1507 | 225 | equemene | int Line)
|
1508 | 225 | equemene | {
|
1509 | 225 | equemene | // Integer Impact Parameter Size (half of image)
|
1510 | 225 | equemene | uint bmaxi=(uint)Size;
|
1511 | 225 | equemene |
|
1512 | 225 | equemene | float Trajectory[TRACKPOINTS];
|
1513 | 225 | equemene |
|
1514 | 225 | equemene | // Perform trajectory for each pixel
|
1515 | 225 | equemene |
|
1516 | 225 | equemene | float m,rs,ri,re,tho;
|
1517 | 225 | equemene | int raie,q;
|
1518 | 225 | equemene |
|
1519 | 225 | equemene | m=Mass;
|
1520 | 234 | equemene | rs=2.e0f*m;
|
1521 | 225 | equemene | ri=InternalRadius;
|
1522 | 225 | equemene | re=ExternalRadius;
|
1523 | 225 | equemene | tho=Angle;
|
1524 | 225 | equemene | q=-2;
|
1525 | 225 | equemene | raie=Line;
|
1526 | 225 | equemene |
|
1527 | 225 | equemene | float bmx,db,b,h;
|
1528 | 225 | equemene | int nh;
|
1529 | 225 | equemene |
|
1530 | 225 | equemene | // Autosize for image
|
1531 | 225 | equemene | bmx=1.25e0f*re;
|
1532 | 225 | equemene |
|
1533 | 225 | equemene | // Angular step of integration
|
1534 | 225 | equemene | h=4.e0f*PI/(float)TRACKPOINTS;
|
1535 | 225 | equemene |
|
1536 | 234 | equemene | // Integer Impact Parameter ID
|
1537 | 225 | equemene | for (int bi=0;bi<bmaxi;bi++)
|
1538 | 225 | equemene | {
|
1539 | 225 | equemene | // impact parameter
|
1540 | 225 | equemene | b=(float)bi/(float)bmaxi*bmx;
|
1541 | 225 | equemene | db=bmx/(2.e0f*(float)bmaxi);
|
1542 | 225 | equemene |
|
1543 | 225 | equemene | float up,vp,pp,us,vs,ps;
|
1544 | 225 | equemene |
|
1545 | 225 | equemene | up=0.;
|
1546 | 225 | equemene | vp=1.;
|
1547 | 225 | equemene | pp=0.;
|
1548 | 225 | equemene | nh=0;
|
1549 | 225 | equemene |
|
1550 | 225 | equemene | rungekutta(&ps,&us,&vs,pp,up,vp,h,m,b);
|
1551 | 234 | equemene |
|
1552 | 225 | equemene | // b versus us
|
1553 | 225 | equemene | float bvus=fabs(b/us);
|
1554 | 225 | equemene | float bvus0=bvus;
|
1555 | 225 | equemene | Trajectory[nh]=bvus;
|
1556 | 225 | equemene |
|
1557 | 225 | equemene | do
|
1558 | 225 | equemene | {
|
1559 | 225 | equemene | nh++;
|
1560 | 225 | equemene | pp=ps;
|
1561 | 225 | equemene | up=us;
|
1562 | 225 | equemene | vp=vs;
|
1563 | 225 | equemene | rungekutta(&ps,&us,&vs,pp,up,vp,h,m,b);
|
1564 | 225 | equemene | bvus=fabs(b/us);
|
1565 | 225 | equemene | Trajectory[nh]=bvus;
|
1566 | 225 | equemene |
|
1567 | 225 | equemene | } while ((bvus>=rs)&&(bvus<=bvus0));
|
1568 | 225 | equemene |
|
1569 | 225 | equemene | for (uint i=(uint)nh+1;i<TRACKPOINTS;i++) {
|
1570 | 225 | equemene | Trajectory[i]=0.e0f;
|
1571 | 225 | equemene | }
|
1572 | 225 | equemene |
|
1573 | 225 | equemene | int imx=(int)(16*bi);
|
1574 | 225 | equemene |
|
1575 | 225 | equemene | for (int i=0;i<imx;i++)
|
1576 | 225 | equemene | {
|
1577 | 225 | equemene | float zp=0,fp=0;
|
1578 | 225 | equemene | float phi=2.e0f*PI/(float)imx*(float)i;
|
1579 | 225 | equemene | float phd=atanp(cos(phi)*sin(tho),cos(tho));
|
1580 | 225 | equemene | uint yi=(uint)((float)bi*sin(phi)+bmaxi);
|
1581 | 225 | equemene | uint xi=(uint)((float)bi*cos(phi)+bmaxi);
|
1582 | 225 | equemene |
|
1583 | 225 | equemene | int HalfLap=0,ExitOnImpact=0,ni;
|
1584 | 225 | equemene | float php,nr,r;
|
1585 | 225 | equemene |
|
1586 | 225 | equemene | do
|
1587 | 225 | equemene | {
|
1588 | 225 | equemene | php=phd+(float)HalfLap*PI;
|
1589 | 225 | equemene | nr=php/h;
|
1590 | 225 | equemene | ni=(int)nr;
|
1591 | 225 | equemene |
|
1592 | 225 | equemene | if (ni<nh)
|
1593 | 225 | equemene | {
|
1594 | 225 | equemene | r=(Trajectory[ni+1]-Trajectory[ni])*(nr-ni*1.)+Trajectory[ni];
|
1595 | 225 | equemene | }
|
1596 | 225 | equemene | else
|
1597 | 225 | equemene | {
|
1598 | 225 | equemene | r=Trajectory[ni];
|
1599 | 225 | equemene | }
|
1600 | 234 | equemene |
|
1601 | 225 | equemene | if ((r<=re)&&(r>=ri))
|
1602 | 225 | equemene | {
|
1603 | 225 | equemene | ExitOnImpact=1;
|
1604 | 225 | equemene | impact(phi,r,b,tho,m,&zp,&fp,q,db,h,raie);
|
1605 | 225 | equemene | }
|
1606 | 234 | equemene |
|
1607 | 225 | equemene | HalfLap++;
|
1608 | 234 | equemene |
|
1609 | 225 | equemene | } while ((HalfLap<=2)&&(ExitOnImpact==0));
|
1610 | 234 | equemene |
|
1611 | 225 | equemene | zImage[yi+2*bmaxi*xi]=zp;
|
1612 | 225 | equemene | fImage[yi+2*bmaxi*xi]=fp;
|
1613 | 234 | equemene |
|
1614 | 225 | equemene | }
|
1615 | 225 | equemene |
|
1616 | 234 | equemene | }
|
1617 | 234 | equemene |
|
1618 | 225 | equemene | }
|
1619 | 217 | equemene | """
|
1620 | 217 | equemene | return(BlobCUDA)
|
1621 | 234 | equemene | |
1622 | 211 | equemene | # def ImageOutput(sigma,prefix):
|
1623 | 211 | equemene | # from PIL import Image
|
1624 | 211 | equemene | # Max=sigma.max()
|
1625 | 211 | equemene | # Min=sigma.min()
|
1626 | 211 | equemene | # # Normalize value as 8bits Integer
|
1627 | 211 | equemene | # SigmaInt=(255*(sigma-Min)/(Max-Min)).astype('uint8')
|
1628 | 211 | equemene | # image = Image.fromarray(SigmaInt)
|
1629 | 211 | equemene | # image.save("%s.jpg" % prefix)
|
1630 | 211 | equemene | |
1631 | 211 | equemene | def ImageOutput(sigma,prefix,Colors): |
1632 | 263 | equemene | try:
|
1633 | 263 | equemene | import matplotlib.pyplot as plt |
1634 | 263 | equemene | start_time=time.time() |
1635 | 263 | equemene | if Colors == 'Red2Yellow': |
1636 | 263 | equemene | plt.imsave("%s.png" % prefix, sigma, cmap='afmhot') |
1637 | 263 | equemene | else:
|
1638 | 263 | equemene | plt.imsave("%s.png" % prefix, sigma, cmap='Greys_r') |
1639 | 263 | equemene | save_time = time.time()-start_time |
1640 | 263 | equemene | print("Save image as %s.png file" % prefix)
|
1641 | 263 | equemene | print("Save Time : %f" % save_time)
|
1642 | 263 | equemene | except:
|
1643 | 263 | equemene | from PIL import Image |
1644 | 263 | equemene | start_time=time.time() |
1645 | 263 | equemene | Max = sigma.max() |
1646 | 263 | equemene | Min = sigma.min() |
1647 | 263 | equemene | # Normalize value as 8bits Integer
|
1648 | 263 | equemene | SigmaInt = (255 * (sigma - Min) / (Max - Min)).astype("uint8") |
1649 | 263 | equemene | image = Image.fromarray(SigmaInt) |
1650 | 263 | equemene | image.save("%s.jpg" % prefix)
|
1651 | 263 | equemene | save_time = time.time()-start_time |
1652 | 263 | equemene | print("Save image as %s.png file" % prefix)
|
1653 | 263 | equemene | print("Save Time : %f" % save_time)
|
1654 | 263 | equemene | |
1655 | 204 | equemene | def BlackHoleCL(zImage,fImage,InputCL): |
1656 | 199 | equemene | |
1657 | 199 | equemene | kernel_params = {} |
1658 | 199 | equemene | |
1659 | 204 | equemene | Device=InputCL['Device']
|
1660 | 204 | equemene | GpuStyle=InputCL['GpuStyle']
|
1661 | 204 | equemene | VariableType=InputCL['VariableType']
|
1662 | 204 | equemene | Size=InputCL['Size']
|
1663 | 204 | equemene | Mass=InputCL['Mass']
|
1664 | 204 | equemene | InternalRadius=InputCL['InternalRadius']
|
1665 | 204 | equemene | ExternalRadius=InputCL['ExternalRadius']
|
1666 | 204 | equemene | Angle=InputCL['Angle']
|
1667 | 204 | equemene | Method=InputCL['Method']
|
1668 | 204 | equemene | TrackPoints=InputCL['TrackPoints']
|
1669 | 211 | equemene | Physics=InputCL['Physics']
|
1670 | 237 | equemene | NoImage=InputCL['NoImage']
|
1671 | 257 | equemene | TrackSave=InputCL['TrackSave']
|
1672 | 204 | equemene | |
1673 | 211 | equemene | PhysicsList=DictionariesAPI() |
1674 | 211 | equemene | |
1675 | 204 | equemene | if InputCL['BlackBody']: |
1676 | 209 | equemene | # Spectrum is Black Body one
|
1677 | 209 | equemene | Line=0
|
1678 | 204 | equemene | else:
|
1679 | 209 | equemene | # Spectrum is Monochromatic Line one
|
1680 | 209 | equemene | Line=1
|
1681 | 204 | equemene | |
1682 | 217 | equemene | Trajectories=numpy.zeros((int(InputCL['Size']/2),InputCL['TrackPoints']),dtype=numpy.float32) |
1683 | 217 | equemene | IdLast=numpy.zeros(int(InputCL['Size']/2),dtype=numpy.int32) |
1684 | 204 | equemene | |
1685 | 199 | equemene | # Je detecte un peripherique GPU dans la liste des peripheriques
|
1686 | 199 | equemene | Id=0
|
1687 | 199 | equemene | HasXPU=False
|
1688 | 199 | equemene | for platform in cl.get_platforms(): |
1689 | 199 | equemene | for device in platform.get_devices(): |
1690 | 199 | equemene | if Id==Device:
|
1691 | 234 | equemene | PF4XPU=platform.name |
1692 | 199 | equemene | XPU=device |
1693 | 217 | equemene | print("CPU/GPU selected: ",device.name.lstrip())
|
1694 | 199 | equemene | HasXPU=True
|
1695 | 199 | equemene | Id+=1
|
1696 | 199 | equemene | |
1697 | 199 | equemene | if HasXPU==False: |
1698 | 217 | equemene | print("No XPU #%i found in all of %i devices, sorry..." % (Device,Id-1)) |
1699 | 234 | equemene | sys.exit() |
1700 | 234 | equemene | |
1701 | 199 | equemene | ctx = cl.Context([XPU]) |
1702 | 199 | equemene | queue = cl.CommandQueue(ctx, |
1703 | 199 | equemene | properties=cl.command_queue_properties.PROFILING_ENABLE) |
1704 | 199 | equemene | |
1705 | 228 | equemene | BuildOptions="-DPHYSICS=%i -DSETTRACKPOINTS=%i " % (PhysicsList[Physics],InputCL['TrackPoints']) |
1706 | 211 | equemene | |
1707 | 234 | equemene | print('My Platform is ',PF4XPU)
|
1708 | 228 | equemene | |
1709 | 234 | equemene | if 'Intel' in PF4XPU or 'Experimental' in PF4XPU or 'Clover' in PF4XPU or 'Portable' in PF4XPU : |
1710 | 228 | equemene | print('No extra options for Intel and Clover!')
|
1711 | 228 | equemene | else:
|
1712 | 228 | equemene | BuildOptions = BuildOptions+" -cl-mad-enable"
|
1713 | 228 | equemene | |
1714 | 211 | equemene | BlackHoleCL = cl.Program(ctx,BlobOpenCL).build(options = BuildOptions) |
1715 | 211 | equemene | |
1716 | 199 | equemene | # Je recupere les flag possibles pour les buffers
|
1717 | 199 | equemene | mf = cl.mem_flags |
1718 | 199 | equemene | |
1719 | 228 | equemene | if Method=='TrajectoPixel' or Method=='TrajectoCircle': |
1720 | 263 | equemene | # TrajectoriesCL = cl.Buffer(ctx, mf.WRITE_ONLY | mf.COPY_HOST_PTR, hostbuf=Trajectories)
|
1721 | 263 | equemene | # IdLastCL = cl.Buffer(ctx, mf.WRITE_ONLY | mf.COPY_HOST_PTR, hostbuf=IdLast)
|
1722 | 228 | equemene | |
1723 | 263 | equemene | # zImageCL = cl.Buffer(ctx, mf.WRITE_ONLY | mf.COPY_HOST_PTR, hostbuf=zImage)
|
1724 | 263 | equemene | # fImageCL = cl.Buffer(ctx, mf.WRITE_ONLY | mf.COPY_HOST_PTR, hostbuf=fImage)
|
1725 | 263 | equemene | |
1726 | 263 | equemene | TrajectoriesCL = cl.Buffer(ctx, mf.WRITE_ONLY, Trajectories.nbytes) |
1727 | 263 | equemene | IdLastCL = cl.Buffer(ctx, mf.WRITE_ONLY, IdLast.nbytes) |
1728 | 263 | equemene | |
1729 | 263 | equemene | zImageCL = cl.Buffer(ctx, mf.WRITE_ONLY, zImage.nbytes) |
1730 | 263 | equemene | fImageCL = cl.Buffer(ctx, mf.WRITE_ONLY, fImage.nbytes) |
1731 | 199 | equemene | |
1732 | 234 | equemene | start_time=time.time() |
1733 | 199 | equemene | |
1734 | 204 | equemene | if Method=='EachPixel': |
1735 | 204 | equemene | CLLaunch=BlackHoleCL.EachPixel(queue,(zImage.shape[0],zImage.shape[1]), |
1736 | 204 | equemene | None,zImageCL,fImageCL,
|
1737 | 204 | equemene | numpy.float32(Mass), |
1738 | 204 | equemene | numpy.float32(InternalRadius), |
1739 | 204 | equemene | numpy.float32(ExternalRadius), |
1740 | 204 | equemene | numpy.float32(Angle), |
1741 | 209 | equemene | numpy.int32(Line)) |
1742 | 204 | equemene | CLLaunch.wait() |
1743 | 224 | equemene | elif Method=='Original': |
1744 | 225 | equemene | CLLaunch=BlackHoleCL.Original(queue,(1,),
|
1745 | 224 | equemene | None,zImageCL,fImageCL,
|
1746 | 225 | equemene | numpy.uint32(zImage.shape[0]/2), |
1747 | 224 | equemene | numpy.float32(Mass), |
1748 | 224 | equemene | numpy.float32(InternalRadius), |
1749 | 224 | equemene | numpy.float32(ExternalRadius), |
1750 | 224 | equemene | numpy.float32(Angle), |
1751 | 224 | equemene | numpy.int32(Line)) |
1752 | 224 | equemene | CLLaunch.wait() |
1753 | 225 | equemene | elif Method=='EachCircle': |
1754 | 244 | equemene | CLLaunch=BlackHoleCL.EachCircle(queue,(int(zImage.shape[0]/2),), |
1755 | 225 | equemene | None,zImageCL,fImageCL,
|
1756 | 225 | equemene | numpy.float32(Mass), |
1757 | 225 | equemene | numpy.float32(InternalRadius), |
1758 | 225 | equemene | numpy.float32(ExternalRadius), |
1759 | 225 | equemene | numpy.float32(Angle), |
1760 | 225 | equemene | numpy.int32(Line)) |
1761 | 225 | equemene | CLLaunch.wait() |
1762 | 204 | equemene | elif Method=='TrajectoCircle': |
1763 | 204 | equemene | CLLaunch=BlackHoleCL.Trajectory(queue,(Trajectories.shape[0],),
|
1764 | 204 | equemene | None,TrajectoriesCL,IdLastCL,
|
1765 | 204 | equemene | numpy.float32(Mass), |
1766 | 204 | equemene | numpy.float32(InternalRadius), |
1767 | 204 | equemene | numpy.float32(ExternalRadius), |
1768 | 204 | equemene | numpy.float32(Angle), |
1769 | 209 | equemene | numpy.int32(Line)) |
1770 | 204 | equemene | |
1771 | 204 | equemene | CLLaunch=BlackHoleCL.Circle(queue,(Trajectories.shape[0],
|
1772 | 244 | equemene | int(zImage.shape[0]*4)),None, |
1773 | 204 | equemene | TrajectoriesCL,IdLastCL, |
1774 | 204 | equemene | zImageCL,fImageCL, |
1775 | 204 | equemene | numpy.float32(Mass), |
1776 | 204 | equemene | numpy.float32(InternalRadius), |
1777 | 204 | equemene | numpy.float32(ExternalRadius), |
1778 | 204 | equemene | numpy.float32(Angle), |
1779 | 209 | equemene | numpy.int32(Line)) |
1780 | 204 | equemene | CLLaunch.wait() |
1781 | 204 | equemene | else:
|
1782 | 204 | equemene | CLLaunch=BlackHoleCL.Trajectory(queue,(Trajectories.shape[0],),
|
1783 | 204 | equemene | None,TrajectoriesCL,IdLastCL,
|
1784 | 204 | equemene | numpy.float32(Mass), |
1785 | 204 | equemene | numpy.float32(InternalRadius), |
1786 | 204 | equemene | numpy.float32(ExternalRadius), |
1787 | 204 | equemene | numpy.float32(Angle), |
1788 | 209 | equemene | numpy.int32(Line)) |
1789 | 204 | equemene | |
1790 | 228 | equemene | CLLaunch=BlackHoleCL.Pixel(queue,(zImage.shape[0],zImage.shape[1]),None, |
1791 | 204 | equemene | zImageCL,fImageCL,TrajectoriesCL,IdLastCL, |
1792 | 204 | equemene | numpy.uint32(Trajectories.shape[0]),
|
1793 | 228 | equemene | numpy.float32(Mass), |
1794 | 228 | equemene | numpy.float32(InternalRadius), |
1795 | 228 | equemene | numpy.float32(ExternalRadius), |
1796 | 228 | equemene | numpy.float32(Angle), |
1797 | 228 | equemene | numpy.int32(Line)) |
1798 | 204 | equemene | CLLaunch.wait() |
1799 | 204 | equemene | |
1800 | 218 | equemene | compute = time.time()-start_time |
1801 | 199 | equemene | |
1802 | 201 | equemene | cl.enqueue_copy(queue,zImage,zImageCL).wait() |
1803 | 201 | equemene | cl.enqueue_copy(queue,fImage,fImageCL).wait() |
1804 | 228 | equemene | if Method=='TrajectoPixel' or Method=='TrajectoCircle': |
1805 | 228 | equemene | cl.enqueue_copy(queue,Trajectories,TrajectoriesCL).wait() |
1806 | 228 | equemene | cl.enqueue_copy(queue,IdLast,IdLastCL).wait() |
1807 | 218 | equemene | elapsed = time.time()-start_time |
1808 | 218 | equemene | print("\nCompute Time : %f" % compute)
|
1809 | 218 | equemene | print("Elapsed Time : %f\n" % elapsed)
|
1810 | 211 | equemene | |
1811 | 211 | equemene | zMaxPosition=numpy.where(zImage[:,:]==zImage.max()) |
1812 | 211 | equemene | fMaxPosition=numpy.where(fImage[:,:]==fImage.max()) |
1813 | 236 | equemene | print("Z max @(%f,%f) : %f" % ((1.*zMaxPosition[1][0]/zImage.shape[1]-0.5,1.*zMaxPosition[0][0]/zImage.shape[0]-0.5,zImage.max()))) |
1814 | 236 | equemene | print("Flux max @(%f,%f) : %f" % ((1.*fMaxPosition[1][0]/fImage.shape[1]-0.5,1.*fMaxPosition[0][0]/fImage.shape[0]-0.5,fImage.max()))) |
1815 | 201 | equemene | zImageCL.release() |
1816 | 201 | equemene | fImageCL.release() |
1817 | 204 | equemene | |
1818 | 228 | equemene | if Method=='TrajectoPixel' or Method=='TrajectoCircle': |
1819 | 237 | equemene | if not NoImage: |
1820 | 237 | equemene | AngleStep=4*numpy.pi/TrackPoints
|
1821 | 237 | equemene | Angles=numpy.arange(0.,4*numpy.pi,AngleStep) |
1822 | 237 | equemene | Angles.shape=(1,TrackPoints)
|
1823 | 237 | equemene | Hostname=gethostname() |
1824 | 237 | equemene | Date=time.strftime("%Y%m%d_%H%M%S")
|
1825 | 237 | equemene | ImageInfo="%s_Device%i_%s_%s" % (Method,Device,Hostname,Date)
|
1826 | 237 | equemene | |
1827 | 257 | equemene | if TrackSave:
|
1828 | 257 | equemene | # numpy.savetxt("TrouNoirTrajectories_%s.csv" % ImageInfo,
|
1829 | 257 | equemene | # numpy.transpose(numpy.concatenate((Angles,Trajectories),axis=0)),
|
1830 | 257 | equemene | # delimiter=' ', fmt='%.2e')
|
1831 | 257 | equemene | numpy.savetxt("TrouNoirTrajectories.csv",
|
1832 | 257 | equemene | numpy.transpose(numpy.concatenate((Angles,Trajectories),axis=0)),delimiter=' ', fmt='%.2e') |
1833 | 237 | equemene | |
1834 | 228 | equemene | TrajectoriesCL.release() |
1835 | 228 | equemene | IdLastCL.release() |
1836 | 237 | equemene | |
1837 | 199 | equemene | return(elapsed)
|
1838 | 199 | equemene | |
1839 | 217 | equemene | def BlackHoleCUDA(zImage,fImage,InputCL): |
1840 | 217 | equemene | |
1841 | 217 | equemene | kernel_params = {} |
1842 | 217 | equemene | |
1843 | 217 | equemene | Device=InputCL['Device']
|
1844 | 217 | equemene | GpuStyle=InputCL['GpuStyle']
|
1845 | 217 | equemene | VariableType=InputCL['VariableType']
|
1846 | 217 | equemene | Size=InputCL['Size']
|
1847 | 217 | equemene | Mass=InputCL['Mass']
|
1848 | 217 | equemene | InternalRadius=InputCL['InternalRadius']
|
1849 | 217 | equemene | ExternalRadius=InputCL['ExternalRadius']
|
1850 | 217 | equemene | Angle=InputCL['Angle']
|
1851 | 217 | equemene | Method=InputCL['Method']
|
1852 | 217 | equemene | TrackPoints=InputCL['TrackPoints']
|
1853 | 217 | equemene | Physics=InputCL['Physics']
|
1854 | 235 | equemene | Threads=InputCL['Threads']
|
1855 | 217 | equemene | |
1856 | 217 | equemene | PhysicsList=DictionariesAPI() |
1857 | 217 | equemene | |
1858 | 217 | equemene | if InputCL['BlackBody']: |
1859 | 217 | equemene | # Spectrum is Black Body one
|
1860 | 217 | equemene | Line=0
|
1861 | 217 | equemene | else:
|
1862 | 217 | equemene | # Spectrum is Monochromatic Line one
|
1863 | 217 | equemene | Line=1
|
1864 | 217 | equemene | |
1865 | 217 | equemene | Trajectories=numpy.zeros((int(InputCL['Size']/2),InputCL['TrackPoints']),dtype=numpy.float32) |
1866 | 217 | equemene | IdLast=numpy.zeros(int(InputCL['Size']/2),dtype=numpy.int32) |
1867 | 217 | equemene | |
1868 | 217 | equemene | try:
|
1869 | 217 | equemene | # For PyCUDA import
|
1870 | 217 | equemene | import pycuda.driver as cuda |
1871 | 217 | equemene | from pycuda.compiler import SourceModule |
1872 | 217 | equemene | |
1873 | 217 | equemene | cuda.init() |
1874 | 217 | equemene | for Id in range(cuda.Device.count()): |
1875 | 217 | equemene | if Id==Device:
|
1876 | 217 | equemene | XPU=cuda.Device(Id) |
1877 | 217 | equemene | print("GPU selected %s" % XPU.name())
|
1878 | 217 | equemene | print
|
1879 | 217 | equemene | |
1880 | 217 | equemene | except ImportError: |
1881 | 217 | equemene | print("Platform does not seem to support CUDA")
|
1882 | 217 | equemene | |
1883 | 217 | equemene | Context=XPU.make_context() |
1884 | 217 | equemene | |
1885 | 217 | equemene | try:
|
1886 | 224 | equemene | mod = SourceModule(KernelCodeCuda(),options=['--compiler-options','-DPHYSICS=%i -DSETTRACKPOINTS=%i' % (PhysicsList[Physics],TrackPoints)]) |
1887 | 217 | equemene | print("Compilation seems to be OK")
|
1888 | 217 | equemene | except:
|
1889 | 217 | equemene | print("Compilation seems to break")
|
1890 | 217 | equemene | |
1891 | 217 | equemene | EachPixelCU=mod.get_function("EachPixel")
|
1892 | 224 | equemene | OriginalCU=mod.get_function("Original")
|
1893 | 225 | equemene | EachCircleCU=mod.get_function("EachCircle")
|
1894 | 217 | equemene | TrajectoryCU=mod.get_function("Trajectory")
|
1895 | 217 | equemene | PixelCU=mod.get_function("Pixel")
|
1896 | 217 | equemene | CircleCU=mod.get_function("Circle")
|
1897 | 217 | equemene | |
1898 | 217 | equemene | TrajectoriesCU = cuda.mem_alloc(Trajectories.size*Trajectories.dtype.itemsize) |
1899 | 217 | equemene | cuda.memcpy_htod(TrajectoriesCU, Trajectories) |
1900 | 217 | equemene | zImageCU = cuda.mem_alloc(zImage.size*zImage.dtype.itemsize) |
1901 | 217 | equemene | cuda.memcpy_htod(zImageCU, zImage) |
1902 | 217 | equemene | fImageCU = cuda.mem_alloc(fImage.size*fImage.dtype.itemsize) |
1903 | 217 | equemene | cuda.memcpy_htod(zImageCU, fImage) |
1904 | 217 | equemene | IdLastCU = cuda.mem_alloc(IdLast.size*IdLast.dtype.itemsize) |
1905 | 217 | equemene | cuda.memcpy_htod(IdLastCU, IdLast) |
1906 | 217 | equemene | |
1907 | 234 | equemene | start_time=time.time() |
1908 | 217 | equemene | |
1909 | 217 | equemene | if Method=='EachPixel': |
1910 | 217 | equemene | EachPixelCU(zImageCU,fImageCU, |
1911 | 217 | equemene | numpy.float32(Mass), |
1912 | 217 | equemene | numpy.float32(InternalRadius), |
1913 | 217 | equemene | numpy.float32(ExternalRadius), |
1914 | 217 | equemene | numpy.float32(Angle), |
1915 | 217 | equemene | numpy.int32(Line), |
1916 | 243 | equemene | grid=(int(zImage.shape[0]/Threads), |
1917 | 243 | equemene | int(zImage.shape[1]/Threads)), |
1918 | 235 | equemene | block=(Threads,Threads,1))
|
1919 | 225 | equemene | elif Method=='EachCircle': |
1920 | 225 | equemene | EachCircleCU(zImageCU,fImageCU, |
1921 | 225 | equemene | numpy.float32(Mass), |
1922 | 225 | equemene | numpy.float32(InternalRadius), |
1923 | 225 | equemene | numpy.float32(ExternalRadius), |
1924 | 225 | equemene | numpy.float32(Angle), |
1925 | 225 | equemene | numpy.int32(Line), |
1926 | 241 | equemene | grid=(int(zImage.shape[0]/Threads/2),1), |
1927 | 235 | equemene | block=(Threads,1,1)) |
1928 | 224 | equemene | elif Method=='Original': |
1929 | 224 | equemene | OriginalCU(zImageCU,fImageCU, |
1930 | 225 | equemene | numpy.uint32(zImage.shape[0]/2), |
1931 | 224 | equemene | numpy.float32(Mass), |
1932 | 224 | equemene | numpy.float32(InternalRadius), |
1933 | 224 | equemene | numpy.float32(ExternalRadius), |
1934 | 224 | equemene | numpy.float32(Angle), |
1935 | 224 | equemene | numpy.int32(Line), |
1936 | 225 | equemene | grid=(1,1), |
1937 | 225 | equemene | block=(1,1,1)) |
1938 | 217 | equemene | elif Method=='TrajectoCircle': |
1939 | 217 | equemene | TrajectoryCU(TrajectoriesCU,IdLastCU, |
1940 | 217 | equemene | numpy.float32(Mass), |
1941 | 217 | equemene | numpy.float32(InternalRadius), |
1942 | 217 | equemene | numpy.float32(ExternalRadius), |
1943 | 217 | equemene | numpy.float32(Angle), |
1944 | 217 | equemene | numpy.int32(Line), |
1945 | 241 | equemene | grid=(int(Trajectories.shape[0]/Threads),1), |
1946 | 235 | equemene | block=(Threads,1,1)) |
1947 | 217 | equemene | |
1948 | 217 | equemene | CircleCU(TrajectoriesCU,IdLastCU,zImageCU,fImageCU, |
1949 | 217 | equemene | numpy.float32(Mass), |
1950 | 217 | equemene | numpy.float32(InternalRadius), |
1951 | 217 | equemene | numpy.float32(ExternalRadius), |
1952 | 217 | equemene | numpy.float32(Angle), |
1953 | 217 | equemene | numpy.int32(Line), |
1954 | 241 | equemene | grid=(int(Trajectories.shape[0]/Threads), |
1955 | 241 | equemene | int(zImage.shape[0]*4/Threads)), |
1956 | 235 | equemene | block=(Threads,Threads,1))
|
1957 | 217 | equemene | else:
|
1958 | 241 | equemene | # Default method: TrajectoPixel
|
1959 | 217 | equemene | TrajectoryCU(TrajectoriesCU,IdLastCU, |
1960 | 217 | equemene | numpy.float32(Mass), |
1961 | 217 | equemene | numpy.float32(InternalRadius), |
1962 | 217 | equemene | numpy.float32(ExternalRadius), |
1963 | 217 | equemene | numpy.float32(Angle), |
1964 | 217 | equemene | numpy.int32(Line), |
1965 | 241 | equemene | grid=(int(Trajectories.shape[0]/Threads),1), |
1966 | 235 | equemene | block=(Threads,1,1)) |
1967 | 217 | equemene | |
1968 | 217 | equemene | PixelCU(zImageCU,fImageCU,TrajectoriesCU,IdLastCU, |
1969 | 217 | equemene | numpy.uint32(Trajectories.shape[0]),
|
1970 | 217 | equemene | numpy.float32(Mass), |
1971 | 217 | equemene | numpy.float32(InternalRadius), |
1972 | 217 | equemene | numpy.float32(ExternalRadius), |
1973 | 217 | equemene | numpy.float32(Angle), |
1974 | 217 | equemene | numpy.int32(Line), |
1975 | 241 | equemene | grid=(int(zImage.shape[0]/Threads), |
1976 | 241 | equemene | int(zImage.shape[1]/Threads),1), |
1977 | 235 | equemene | block=(Threads,Threads,1))
|
1978 | 217 | equemene | |
1979 | 220 | equemene | Context.synchronize() |
1980 | 220 | equemene | |
1981 | 218 | equemene | compute = time.time()-start_time |
1982 | 217 | equemene | |
1983 | 217 | equemene | cuda.memcpy_dtoh(zImage,zImageCU) |
1984 | 217 | equemene | cuda.memcpy_dtoh(fImage,fImageCU) |
1985 | 238 | equemene | if Method=='TrajectoPixel' or Method=='TrajectoCircle': |
1986 | 238 | equemene | cuda.memcpy_dtoh(Trajectories,TrajectoriesCU) |
1987 | 218 | equemene | elapsed = time.time()-start_time |
1988 | 218 | equemene | print("\nCompute Time : %f" % compute)
|
1989 | 218 | equemene | print("Elapsed Time : %f\n" % elapsed)
|
1990 | 217 | equemene | |
1991 | 217 | equemene | zMaxPosition=numpy.where(zImage[:,:]==zImage.max()) |
1992 | 217 | equemene | fMaxPosition=numpy.where(fImage[:,:]==fImage.max()) |
1993 | 236 | equemene | print("Z max @(%f,%f) : %f" % ((1.*zMaxPosition[1][0]/zImage.shape[1]-0.5,1.*zMaxPosition[0][0]/zImage.shape[0]-0.5,zImage.max()))) |
1994 | 236 | equemene | print("Flux max @(%f,%f) : %f" % ((1.*fMaxPosition[1][0]/fImage.shape[1]-0.5,1.*fMaxPosition[0][0]/fImage.shape[0]-0.5,fImage.max()))) |
1995 | 217 | equemene | |
1996 | 220 | equemene | |
1997 | 218 | equemene | Context.pop() |
1998 | 220 | equemene | |
1999 | 217 | equemene | Context.detach() |
2000 | 217 | equemene | |
2001 | 238 | equemene | if Method=='TrajectoPixel' or Method=='TrajectoCircle': |
2002 | 238 | equemene | if not NoImage: |
2003 | 238 | equemene | AngleStep=4*numpy.pi/TrackPoints
|
2004 | 238 | equemene | Angles=numpy.arange(0.,4*numpy.pi,AngleStep) |
2005 | 238 | equemene | Angles.shape=(1,TrackPoints)
|
2006 | 238 | equemene | Hostname=gethostname() |
2007 | 238 | equemene | Date=time.strftime("%Y%m%d_%H%M%S")
|
2008 | 238 | equemene | ImageInfo="%s_Device%i_%s_%s" % (Method,Device,Hostname,Date)
|
2009 | 238 | equemene | |
2010 | 238 | equemene | # numpy.savetxt("TrouNoirTrajectories_%s.csv" % ImageInfo,
|
2011 | 238 | equemene | # numpy.transpose(numpy.concatenate((Angles,Trajectories),axis=0)),
|
2012 | 238 | equemene | # delimiter=' ', fmt='%.2e')
|
2013 | 238 | equemene | numpy.savetxt("TrouNoirTrajectories.csv",
|
2014 | 238 | equemene | numpy.transpose(numpy.concatenate((Angles,Trajectories),axis=0)),
|
2015 | 238 | equemene | delimiter=' ', fmt='%.2e') |
2016 | 238 | equemene | |
2017 | 238 | equemene | |
2018 | 217 | equemene | return(elapsed)
|
2019 | 217 | equemene | |
2020 | 199 | equemene | if __name__=='__main__': |
2021 | 257 | equemene | |
2022 | 257 | equemene | # Default device: first one!
|
2023 | 257 | equemene | Device=0
|
2024 | 257 | equemene | # Default implementation: OpenCL, most versatile!
|
2025 | 199 | equemene | GpuStyle = 'OpenCL'
|
2026 | 199 | equemene | Mass = 1.
|
2027 | 199 | equemene | # Internal Radius 3 times de Schwarzschild Radius
|
2028 | 199 | equemene | InternalRadius=6.*Mass
|
2029 | 199 | equemene | #
|
2030 | 199 | equemene | ExternalRadius=12.
|
2031 | 199 | equemene | #
|
2032 | 199 | equemene | # Angle with normal to disc 10 degrees
|
2033 | 199 | equemene | Angle = numpy.pi/180.*(90.-10.) |
2034 | 199 | equemene | # Radiation of disc : BlackBody or Monochromatic
|
2035 | 209 | equemene | BlackBody = False
|
2036 | 199 | equemene | # Size of image
|
2037 | 257 | equemene | Size=1024
|
2038 | 199 | equemene | # Variable Type
|
2039 | 199 | equemene | VariableType='FP32'
|
2040 | 199 | equemene | # ?
|
2041 | 199 | equemene | q=-2
|
2042 | 204 | equemene | # Method of resolution
|
2043 | 209 | equemene | Method='TrajectoPixel'
|
2044 | 211 | equemene | # Colors for output image
|
2045 | 211 | equemene | Colors='Greyscale'
|
2046 | 211 | equemene | # Physics
|
2047 | 211 | equemene | Physics='Einstein'
|
2048 | 211 | equemene | # No output as image
|
2049 | 211 | equemene | NoImage = False
|
2050 | 235 | equemene | # Threads in CUDA
|
2051 | 235 | equemene | Threads = 32
|
2052 | 238 | equemene | # Trackpoints of trajectories
|
2053 | 238 | equemene | TrackPoints=2048
|
2054 | 257 | equemene | # Tracksave of trajectories
|
2055 | 257 | equemene | TrackSave=False
|
2056 | 211 | equemene | |
2057 | 290 | equemene | HowToUse='%s -h [Help] -b [BlackBodyEmission] -j [TrackSave] -n [NoImage] -p <Einstein/Newton> -s <SizeInPixels> -m <Mass> -i <DiscInternalRadius> -e <DiscExternalRadius> -a <AngleAboveDisc> -d <DeviceId> -c <Greyscale/Red2Yellow> -g <CUDA/OpenCL> -o <EachPixel/TrajectoCircle/TrajectoPixel/EachCircle/Original> -t <ThreadsInCuda> -v <FP32/FP64> -k <TrackPoints>'
|
2058 | 199 | equemene | |
2059 | 199 | equemene | try:
|
2060 | 290 | equemene | opts, args = getopt.getopt(sys.argv[1:],"hbnjs:m:i:e:a:d:g:v:o:t:c:p:k:",["tracksave","blackbody","noimage","camera","size=","mass=","internal=","external=","angle=","device=","gpustyle=","variabletype=","method=","threads=","colors=","physics=","trackpoints="]) |
2061 | 199 | equemene | except getopt.GetoptError:
|
2062 | 199 | equemene | print(HowToUse % sys.argv[0])
|
2063 | 199 | equemene | sys.exit(2)
|
2064 | 199 | equemene | |
2065 | 199 | equemene | # List of Devices
|
2066 | 199 | equemene | Devices=[] |
2067 | 199 | equemene | Alu={} |
2068 | 199 | equemene | |
2069 | 199 | equemene | for opt, arg in opts: |
2070 | 199 | equemene | if opt == '-h': |
2071 | 199 | equemene | print(HowToUse % sys.argv[0])
|
2072 | 199 | equemene | |
2073 | 199 | equemene | print("\nInformations about devices detected under OpenCL API:")
|
2074 | 199 | equemene | # For PyOpenCL import
|
2075 | 199 | equemene | try:
|
2076 | 199 | equemene | import pyopencl as cl |
2077 | 199 | equemene | Id=0
|
2078 | 199 | equemene | for platform in cl.get_platforms(): |
2079 | 199 | equemene | for device in platform.get_devices(): |
2080 | 199 | equemene | #deviceType=cl.device_type.to_string(device.type)
|
2081 | 199 | equemene | deviceType="xPU"
|
2082 | 199 | equemene | print("Device #%i from %s of type %s : %s" % (Id,platform.vendor.lstrip(),deviceType,device.name.lstrip()))
|
2083 | 199 | equemene | Id=Id+1
|
2084 | 199 | equemene | |
2085 | 199 | equemene | except:
|
2086 | 199 | equemene | print("Your platform does not seem to support OpenCL")
|
2087 | 199 | equemene | |
2088 | 199 | equemene | print("\nInformations about devices detected under CUDA API:")
|
2089 | 199 | equemene | # For PyCUDA import
|
2090 | 199 | equemene | try:
|
2091 | 199 | equemene | import pycuda.driver as cuda |
2092 | 199 | equemene | cuda.init() |
2093 | 199 | equemene | for Id in range(cuda.Device.count()): |
2094 | 199 | equemene | device=cuda.Device(Id) |
2095 | 199 | equemene | print("Device #%i of type GPU : %s" % (Id,device.name()))
|
2096 | 199 | equemene | print
|
2097 | 199 | equemene | except:
|
2098 | 199 | equemene | print("Your platform does not seem to support CUDA")
|
2099 | 199 | equemene | |
2100 | 199 | equemene | sys.exit() |
2101 | 199 | equemene | |
2102 | 199 | equemene | elif opt in ("-d", "--device"): |
2103 | 199 | equemene | # Devices.append(int(arg))
|
2104 | 199 | equemene | Device=int(arg)
|
2105 | 199 | equemene | elif opt in ("-g", "--gpustyle"): |
2106 | 199 | equemene | GpuStyle = arg |
2107 | 204 | equemene | elif opt in ("-v", "--variabletype"): |
2108 | 199 | equemene | VariableType = arg |
2109 | 199 | equemene | elif opt in ("-s", "--size"): |
2110 | 199 | equemene | Size = int(arg)
|
2111 | 238 | equemene | elif opt in ("-k", "--trackpoints"): |
2112 | 238 | equemene | TrackPoints = int(arg)
|
2113 | 199 | equemene | elif opt in ("-m", "--mass"): |
2114 | 199 | equemene | Mass = float(arg)
|
2115 | 199 | equemene | elif opt in ("-i", "--internal"): |
2116 | 199 | equemene | InternalRadius = float(arg)
|
2117 | 199 | equemene | elif opt in ("-e", "--external"): |
2118 | 199 | equemene | ExternalRadius = float(arg)
|
2119 | 199 | equemene | elif opt in ("-a", "--angle"): |
2120 | 199 | equemene | Angle = numpy.pi/180.*(90.-float(arg)) |
2121 | 199 | equemene | elif opt in ("-b", "--blackbody"): |
2122 | 199 | equemene | BlackBody = True
|
2123 | 257 | equemene | elif opt in ("-j", "--tracksave"): |
2124 | 257 | equemene | TrackSave = True
|
2125 | 211 | equemene | elif opt in ("-n", "--noimage"): |
2126 | 211 | equemene | NoImage = True
|
2127 | 235 | equemene | elif opt in ("-o", "--method"): |
2128 | 204 | equemene | Method = arg |
2129 | 235 | equemene | elif opt in ("-t", "--threads"): |
2130 | 235 | equemene | Threads = int(arg)
|
2131 | 211 | equemene | elif opt in ("-c", "--colors"): |
2132 | 211 | equemene | Colors = arg |
2133 | 211 | equemene | elif opt in ("-p", "--physics"): |
2134 | 211 | equemene | Physics = arg |
2135 | 199 | equemene | |
2136 | 199 | equemene | print("Device Identification selected : %s" % Device)
|
2137 | 199 | equemene | print("GpuStyle used : %s" % GpuStyle)
|
2138 | 199 | equemene | print("VariableType : %s" % VariableType)
|
2139 | 199 | equemene | print("Size : %i" % Size)
|
2140 | 199 | equemene | print("Mass : %f" % Mass)
|
2141 | 199 | equemene | print("Internal Radius : %f" % InternalRadius)
|
2142 | 199 | equemene | print("External Radius : %f" % ExternalRadius)
|
2143 | 199 | equemene | print("Angle with normal of (in radians) : %f" % Angle)
|
2144 | 199 | equemene | print("Black Body Disc Emission (monochromatic instead) : %s" % BlackBody)
|
2145 | 204 | equemene | print("Method of resolution : %s" % Method)
|
2146 | 211 | equemene | print("Colors for output images : %s" % Colors)
|
2147 | 211 | equemene | print("Physics used for Trajectories : %s" % Physics)
|
2148 | 238 | equemene | print("Trackpoints of Trajectories : %i" % TrackPoints)
|
2149 | 257 | equemene | print("Tracksave of Trajectories : %i" % TrackSave)
|
2150 | 199 | equemene | |
2151 | 199 | equemene | if GpuStyle=='CUDA': |
2152 | 199 | equemene | print("\nSelection of CUDA device")
|
2153 | 199 | equemene | try:
|
2154 | 199 | equemene | # For PyCUDA import
|
2155 | 199 | equemene | import pycuda.driver as cuda |
2156 | 199 | equemene | |
2157 | 199 | equemene | cuda.init() |
2158 | 199 | equemene | for Id in range(cuda.Device.count()): |
2159 | 199 | equemene | device=cuda.Device(Id) |
2160 | 199 | equemene | print("Device #%i of type GPU : %s" % (Id,device.name()))
|
2161 | 199 | equemene | if Id in Devices: |
2162 | 199 | equemene | Alu[Id]='GPU'
|
2163 | 199 | equemene | |
2164 | 199 | equemene | except ImportError: |
2165 | 199 | equemene | print("Platform does not seem to support CUDA")
|
2166 | 199 | equemene | |
2167 | 199 | equemene | if GpuStyle=='OpenCL': |
2168 | 199 | equemene | print("\nSelection of OpenCL device")
|
2169 | 199 | equemene | try:
|
2170 | 199 | equemene | # For PyOpenCL import
|
2171 | 199 | equemene | import pyopencl as cl |
2172 | 199 | equemene | Id=0
|
2173 | 199 | equemene | for platform in cl.get_platforms(): |
2174 | 199 | equemene | for device in platform.get_devices(): |
2175 | 199 | equemene | #deviceType=cl.device_type.to_string(device.type)
|
2176 | 199 | equemene | deviceType="xPU"
|
2177 | 199 | equemene | print("Device #%i from %s of type %s : %s" % (Id,platform.vendor.lstrip().rstrip(),deviceType,device.name.lstrip().rstrip()))
|
2178 | 199 | equemene | |
2179 | 199 | equemene | if Id in Devices: |
2180 | 199 | equemene | # Set the Alu as detected Device Type
|
2181 | 199 | equemene | Alu[Id]=deviceType |
2182 | 199 | equemene | Id=Id+1
|
2183 | 199 | equemene | except ImportError: |
2184 | 199 | equemene | print("Platform does not seem to support OpenCL")
|
2185 | 199 | equemene | |
2186 | 199 | equemene | |
2187 | 201 | equemene | zImage=numpy.zeros((Size,Size),dtype=numpy.float32) |
2188 | 201 | equemene | fImage=numpy.zeros((Size,Size),dtype=numpy.float32) |
2189 | 199 | equemene | |
2190 | 204 | equemene | InputCL={} |
2191 | 204 | equemene | InputCL['Device']=Device
|
2192 | 204 | equemene | InputCL['GpuStyle']=GpuStyle
|
2193 | 204 | equemene | InputCL['VariableType']=VariableType
|
2194 | 204 | equemene | InputCL['Size']=Size
|
2195 | 204 | equemene | InputCL['Mass']=Mass
|
2196 | 204 | equemene | InputCL['InternalRadius']=InternalRadius
|
2197 | 204 | equemene | InputCL['ExternalRadius']=ExternalRadius
|
2198 | 204 | equemene | InputCL['Angle']=Angle
|
2199 | 204 | equemene | InputCL['BlackBody']=BlackBody
|
2200 | 204 | equemene | InputCL['Method']=Method
|
2201 | 204 | equemene | InputCL['TrackPoints']=TrackPoints
|
2202 | 211 | equemene | InputCL['Physics']=Physics
|
2203 | 235 | equemene | InputCL['Threads']=Threads
|
2204 | 237 | equemene | InputCL['NoImage']=NoImage
|
2205 | 257 | equemene | InputCL['TrackSave']=TrackSave
|
2206 | 199 | equemene | |
2207 | 217 | equemene | if GpuStyle=='OpenCL': |
2208 | 217 | equemene | duration=BlackHoleCL(zImage,fImage,InputCL) |
2209 | 217 | equemene | else:
|
2210 | 217 | equemene | duration=BlackHoleCUDA(zImage,fImage,InputCL) |
2211 | 217 | equemene | |
2212 | 211 | equemene | Hostname=gethostname() |
2213 | 211 | equemene | Date=time.strftime("%Y%m%d_%H%M%S")
|
2214 | 211 | equemene | ImageInfo="%s_Device%i_%s_%s" % (Method,Device,Hostname,Date)
|
2215 | 211 | equemene | |
2216 | 211 | equemene | |
2217 | 211 | equemene | if not NoImage: |
2218 | 211 | equemene | ImageOutput(zImage,"TrouNoirZ_%s" % ImageInfo,Colors)
|
2219 | 211 | equemene | ImageOutput(fImage,"TrouNoirF_%s" % ImageInfo,Colors) |