root / Ising / MPI / Ising2D-MPI.py @ 308
Historique | Voir | Annoter | Télécharger (7,03 ko)
1 | 91 | equemene | #!/usr/bin/env python
|
---|---|---|---|
2 | 91 | equemene | #!/usr/bin/env python
|
3 | 91 | equemene | #
|
4 | 91 | equemene | # Ising2D model using mpi4py MPI implementation for Python
|
5 | 91 | equemene | #
|
6 | 91 | equemene | # CC BY-NC-SA 2011 : <emmanuel.quemener@ens-lyon.fr>
|
7 | 91 | equemene | #
|
8 | 91 | equemene | # Thanks to Lisandro Dalcin for MPI4PY :
|
9 | 91 | equemene | # http://mpi4py.scipy.org/
|
10 | 91 | equemene | |
11 | 91 | equemene | import sys |
12 | 91 | equemene | import numpy |
13 | 91 | equemene | #import pylab
|
14 | 91 | equemene | from PIL import Image |
15 | 91 | equemene | from math import exp |
16 | 91 | equemene | from random import random |
17 | 91 | equemene | import time |
18 | 91 | equemene | # MPI librairie call
|
19 | 91 | equemene | from mpi4py import MPI |
20 | 91 | equemene | import getopt |
21 | 91 | equemene | import matplotlib.pyplot as plt |
22 | 91 | equemene | |
23 | 91 | equemene | LAPIMAGE=False
|
24 | 91 | equemene | |
25 | 91 | equemene | def partition ( lst, n ): |
26 | 91 | equemene | return [ lst[i::n] for i in xrange(n) ] |
27 | 91 | equemene | |
28 | 91 | equemene | def ImageOutput(sigma,prefix): |
29 | 91 | equemene | Max=sigma.max() |
30 | 91 | equemene | Min=sigma.min() |
31 | 91 | equemene | |
32 | 91 | equemene | # Normalize value as 8bits Integer
|
33 | 91 | equemene | SigmaInt=(255*(sigma-Min)/(Max-Min)).astype('uint8') |
34 | 91 | equemene | image = Image.fromarray(SigmaInt) |
35 | 91 | equemene | image.save("%s.jpg" % prefix)
|
36 | 91 | equemene | |
37 | 91 | equemene | def Metropolis(sigma,J,B,T,Iterations): |
38 | 91 | equemene | start=time.time() |
39 | 91 | equemene | |
40 | 91 | equemene | SizeX,SizeY=sigma.shape |
41 | 91 | equemene | |
42 | 91 | equemene | for p in xrange(0,Iterations): |
43 | 91 | equemene | # Random access coordonate
|
44 | 91 | equemene | X,Y=numpy.random.randint(SizeX),numpy.random.randint(SizeY) |
45 | 91 | equemene | |
46 | 91 | equemene | DeltaE=sigma[X,Y]*(2*J*(sigma[X,(Y+1)%SizeY]+ |
47 | 91 | equemene | sigma[X,(Y-1)%SizeY]+
|
48 | 91 | equemene | sigma[(X-1)%SizeX,Y]+
|
49 | 91 | equemene | sigma[(X+1)%SizeX,Y])+B)
|
50 | 91 | equemene | |
51 | 91 | equemene | if DeltaE < 0. or random() < exp(-DeltaE/T): |
52 | 91 | equemene | sigma[X,Y]=-sigma[X,Y] |
53 | 91 | equemene | duration=time.time()-start |
54 | 91 | equemene | return(duration)
|
55 | 91 | equemene | |
56 | 91 | equemene | def Magnetization(sigma,M): |
57 | 91 | equemene | return(numpy.sum(sigma)/(sigma.shape[0]*sigma.shape[1]*1.0)) |
58 | 91 | equemene | |
59 | 91 | equemene | def CriticalT(T,E): |
60 | 91 | equemene | |
61 | 91 | equemene | Epoly=numpy.poly1d(numpy.polyfit(T,E,T.size/3))
|
62 | 91 | equemene | dEpoly=numpy.diff(Epoly(T)) |
63 | 91 | equemene | dEpoly=numpy.insert(dEpoly,0,0) |
64 | 91 | equemene | return(T[numpy.argmin(dEpoly)])
|
65 | 91 | equemene | |
66 | 91 | equemene | def DisplayCurves(T,E,M,J,B): |
67 | 91 | equemene | |
68 | 91 | equemene | plt.xlabel("Temperature")
|
69 | 91 | equemene | plt.ylabel("Energy")
|
70 | 91 | equemene | |
71 | 91 | equemene | Experience,=plt.plot(T,E,label="Energy")
|
72 | 91 | equemene | |
73 | 91 | equemene | plt.legend() |
74 | 91 | equemene | plt.show() |
75 | 91 | equemene | |
76 | 91 | equemene | def Energy(sigma,J,B): |
77 | 91 | equemene | # Copier et caster
|
78 | 91 | equemene | E=numpy.copy(sigma).astype(numpy.float32) |
79 | 91 | equemene | |
80 | 91 | equemene | # Appel par slice
|
81 | 91 | equemene | E[1:-1,1:-1]=E[1:-1,1:-1]*(2.*J*(E[:-2,1:-1]+E[2:,1:-1]+ |
82 | 91 | equemene | E[1:-1,:-2]+E[1:-1,2:])+B) |
83 | 91 | equemene | |
84 | 91 | equemene | # Bien nettoyer la peripherie
|
85 | 91 | equemene | E[:,0]=0 |
86 | 91 | equemene | E[:,-1]=0 |
87 | 91 | equemene | E[0,:]=0 |
88 | 91 | equemene | E[-1,:]=0 |
89 | 91 | equemene | |
90 | 91 | equemene | Energy=numpy.sum(E) |
91 | 91 | equemene | |
92 | 91 | equemene | return(Energy/(E.shape[0]*E.shape[1]*1.0)) |
93 | 91 | equemene | |
94 | 91 | equemene | if __name__=='__main__': |
95 | 91 | equemene | |
96 | 91 | equemene | ToSave=[] |
97 | 91 | equemene | |
98 | 91 | equemene | # MPI Init
|
99 | 91 | equemene | comm = MPI.COMM_WORLD |
100 | 91 | equemene | rank = comm.Get_rank() |
101 | 91 | equemene | |
102 | 91 | equemene | # Define number of Nodes on with computing is performed (exclude 0)
|
103 | 91 | equemene | NODES=comm.Get_size()-1
|
104 | 91 | equemene | |
105 | 91 | equemene | # pass explicit MPI datatypes
|
106 | 91 | equemene | if rank == 0: |
107 | 91 | equemene | |
108 | 91 | equemene | # Set defaults values
|
109 | 91 | equemene | # Coupling factor
|
110 | 91 | equemene | J=1.
|
111 | 91 | equemene | # Magnetic Field
|
112 | 91 | equemene | B=0.
|
113 | 91 | equemene | # Size of Lattice
|
114 | 91 | equemene | Size=256
|
115 | 91 | equemene | # Default Temperatures (start, end, step)
|
116 | 91 | equemene | Tmin=0.1
|
117 | 91 | equemene | Tmax=5.
|
118 | 91 | equemene | Tstep=0.1
|
119 | 91 | equemene | # Default Number of Iterations
|
120 | 97 | equemene | Iterations=Size*Size*Size |
121 | 91 | equemene | |
122 | 91 | equemene | # Curves is True to print the curves
|
123 | 91 | equemene | Curves=False
|
124 | 91 | equemene | |
125 | 91 | equemene | try:
|
126 | 91 | equemene | opts, args = getopt.getopt(sys.argv[1:],"hcj:b:z:i:s:e:p:",["coupling=","magneticfield=","size=","Iterations=","tempstart=","tempend=","tempstep=","units"]) |
127 | 91 | equemene | except getopt.GetoptError:
|
128 | 91 | equemene | print '%s -j <Coupling Factor> -b <Magnetic Field> -z <Size of Square Lattice> -i <Iterations> -s <Minimum Temperature> -e <Maximum Temperature> -p <steP Temperature> -c (Print Curves)' % sys.argv[0] |
129 | 91 | equemene | sys.exit(2)
|
130 | 91 | equemene | |
131 | 91 | equemene | for opt, arg in opts: |
132 | 91 | equemene | if opt == '-h': |
133 | 91 | equemene | print '%s -j <Coupling Factor> -b <Magnetic Field> -z <Size of Square Lattice> -i <Iterations> -s <Minimum Temperature> -e <Maximum Temperature> -p <steP Temperature> -c (Print Curves)' % sys.argv[0] |
134 | 91 | equemene | sys.exit() |
135 | 91 | equemene | elif opt == '-c': |
136 | 91 | equemene | Curves=True
|
137 | 91 | equemene | elif opt in ("-j", "--coupling"): |
138 | 91 | equemene | J = float(arg)
|
139 | 91 | equemene | elif opt in ("-b", "--magneticfield"): |
140 | 91 | equemene | B = float(arg)
|
141 | 91 | equemene | elif opt in ("-s", "--tempmin"): |
142 | 91 | equemene | Tmin = float(arg)
|
143 | 91 | equemene | elif opt in ("-e", "--tempmax"): |
144 | 91 | equemene | Tmax = arg |
145 | 91 | equemene | elif opt in ("-p", "--tempstep"): |
146 | 91 | equemene | Tstep = numpy.uint32(arg) |
147 | 91 | equemene | elif opt in ("-i", "--iterations"): |
148 | 91 | equemene | Iterations = int(arg)
|
149 | 91 | equemene | elif opt in ("-z", "--size"): |
150 | 91 | equemene | Size = int(arg)
|
151 | 91 | equemene | |
152 | 91 | equemene | print "Coupling Factor J : %s" % J |
153 | 91 | equemene | print "Magnetic Field B : %s" % B |
154 | 91 | equemene | print "Size of lattice : %s" % Size |
155 | 91 | equemene | print "Iterations : %s" % Iterations |
156 | 91 | equemene | print "Temperature on start : %s" % Tmin |
157 | 91 | equemene | print "Temperature on end : %s" % Tmax |
158 | 91 | equemene | print "Temperature step : %s" % Tstep |
159 | 91 | equemene | |
160 | 91 | equemene | LAPIMAGE=False
|
161 | 91 | equemene | |
162 | 91 | equemene | sigmaIn=numpy.where(numpy.random.randn(Size,Size)>0,1,-1).astype(numpy.int8) |
163 | 91 | equemene | |
164 | 91 | equemene | ImageOutput(sigmaIn,"Ising2D_MPI_%i_Initial" % (Size))
|
165 | 91 | equemene | |
166 | 91 | equemene | Trange=numpy.arange(Tmin,Tmax+Tstep,Tstep) |
167 | 91 | equemene | |
168 | 91 | equemene | sigmaIn=numpy.where(numpy.random.randn(Size,Size)>0
|
169 | 91 | equemene | ,1,-1).astype(numpy.int8) |
170 | 91 | equemene | |
171 | 91 | equemene | numpy.random.seed(int(time.time()))
|
172 | 91 | equemene | |
173 | 91 | equemene | # Master control distribution of computing
|
174 | 91 | equemene | print "Distributing work to %i node(s)..." % NODES |
175 | 91 | equemene | Distribution=numpy.array_split(Trange,NODES) |
176 | 91 | equemene | |
177 | 91 | equemene | for i in range(NODES): |
178 | 91 | equemene | |
179 | 91 | equemene | Input=Distribution[i] |
180 | 91 | equemene | print "Send from 0 to %i %s" % (i+1,Input) |
181 | 91 | equemene | ToSend=sigmaIn,J,B,Iterations,Input |
182 | 91 | equemene | # Send MPI call to each node
|
183 | 91 | equemene | comm.send(ToSend, dest=i+1, tag=11) |
184 | 91 | equemene | |
185 | 91 | equemene | print "Retreive results..." |
186 | 91 | equemene | |
187 | 91 | equemene | Results=[] |
188 | 91 | equemene | for i in range(NODES): |
189 | 91 | equemene | # Receive MPI call from each node
|
190 | 91 | equemene | Output=comm.recv(source=i+1,tag=11) |
191 | 91 | equemene | print "Result from %i: %s" % (i+1,Output) |
192 | 91 | equemene | Results+=Output |
193 | 91 | equemene | |
194 | 91 | equemene | E=numpy.array(Results)[:,1]
|
195 | 91 | equemene | M=numpy.array(Results)[:,2]
|
196 | 91 | equemene | |
197 | 91 | equemene | numpy.savez("Ising2D_MPI_%i_%.8i" % (Size,Iterations),(Trange,E,M))
|
198 | 91 | equemene | |
199 | 91 | equemene | # Estimate Critical temperature
|
200 | 91 | equemene | print "The critical temperature on %ix%i lattice with J=%f, B=%f is %f " % (Size,Size,J,B,CriticalT(Trange,E)) |
201 | 91 | equemene | |
202 | 91 | equemene | if Curves:
|
203 | 91 | equemene | DisplayCurves(Trange,E,M,J,B) |
204 | 91 | equemene | else:
|
205 | 91 | equemene | numpy.random.seed(int(time.time()/rank))
|
206 | 91 | equemene | # Slave applies simulation to set provided by master
|
207 | 91 | equemene | # Receive MPI call with Input set
|
208 | 91 | equemene | ToSplit=comm.recv(source=0, tag=11) |
209 | 91 | equemene | sigmaIn,J,B,Iterations,Input=ToSplit |
210 | 91 | equemene | print "Rank %i receive with %ix%i lattice at J=%.2f, B=%.2f with %i iterations and T=%s" % (rank,sigmaIn.shape[0],sigmaIn.shape[1],J,B,Iterations,Input) |
211 | 91 | equemene | Output=[] |
212 | 91 | equemene | # Launch simulations on the set, one by one
|
213 | 91 | equemene | for T in Input: |
214 | 91 | equemene | print "Processing T=%.2f on rank %i" % (T,rank) |
215 | 91 | equemene | # Reinitialize to original
|
216 | 91 | equemene | sigma=numpy.copy(sigmaIn) |
217 | 91 | equemene | duration=Metropolis(sigma,J,B,T,Iterations) |
218 | 91 | equemene | print "CPU Time : %f" % (duration) |
219 | 91 | equemene | E=Energy(sigma,J,B) |
220 | 91 | equemene | M=Magnetization(sigma,0.)
|
221 | 91 | equemene | ImageOutput(sigma,"Ising2D_MPI_%i_%1.1f_Final" %
|
222 | 91 | equemene | (sigmaIn.shape[0],T))
|
223 | 91 | equemene | Output.append([T,E,M]) |
224 | 91 | equemene | comm.send(Output, dest=0, tag=11) |