Révision 307
Splutter/GPU/SplutterGPU.py (revision 307) | ||
---|---|---|
387 | 387 |
start_time=time.time() |
388 | 388 |
Splutter[:]=0 |
389 | 389 |
|
390 |
print Splutter,len(Splutter)
|
|
390 |
print(Splutter,len(Splutter))
|
|
391 | 391 |
|
392 | 392 |
SplutterCU = cuda.InOut(Splutter) |
393 | 393 |
|
... | ... | |
402 | 402 |
grid=(jobs,1), |
403 | 403 |
block=(1,1,1)) |
404 | 404 |
|
405 |
print "%s with (WorkItems/Threads)=(%i,%i) %s method done" % \
|
|
406 |
(Alu,jobs,1,ParaStyle)
|
|
405 |
print("%s with (WorkItems/Threads)=(%i,%i) %s method done" % \
|
|
406 |
(Alu,jobs,1,ParaStyle))
|
|
407 | 407 |
elif ParaStyle=='Hybrid': |
408 | 408 |
threads=BestThreadsNumber(jobs) |
409 | 409 |
MetropolisHybridCU(SplutterCU, |
... | ... | |
413 | 413 |
numpy.uint32(nprnd(2**30/jobs)), |
414 | 414 |
grid=(jobs,1), |
415 | 415 |
block=(threads,1,1)) |
416 |
print "%s with (WorkItems/Threads)=(%i,%i) %s method done" % \
|
|
417 |
(Alu,jobs/threads,threads,ParaStyle) |
|
416 |
print("%s with (WorkItems/Threads)=(%i,%i) %s method done" % \
|
|
417 |
(Alu,jobs/threads,threads,ParaStyle))
|
|
418 | 418 |
else: |
419 | 419 |
MetropolisThreadsCU(SplutterCU, |
420 | 420 |
numpy.uint32(len(Splutter)), |
... | ... | |
423 | 423 |
numpy.uint32(nprnd(2**30/jobs)), |
424 | 424 |
grid=(1,1), |
425 | 425 |
block=(jobs,1,1)) |
426 |
print "%s with (WorkItems/Threads)=(%i,%i) %s method done" % \
|
|
427 |
(Alu,1,jobs,ParaStyle) |
|
426 |
print("%s with (WorkItems/Threads)=(%i,%i) %s method done" % \
|
|
427 |
(Alu,1,jobs,ParaStyle))
|
|
428 | 428 |
stop.record() |
429 | 429 |
stop.synchronize() |
430 | 430 |
|
431 | 431 |
# elapsed = start.time_till(stop)*1e-3 |
432 | 432 |
elapsed = time.time()-start_time |
433 | 433 |
|
434 |
print Splutter,sum(Splutter)
|
|
434 |
print(Splutter,sum(Splutter))
|
|
435 | 435 |
MySplutter[i]=numpy.median(Splutter) |
436 |
print numpy.mean(Splutter),MySplutter[i],numpy.std(Splutter)
|
|
436 |
print(numpy.mean(Splutter),MySplutter[i],numpy.std(Splutter))
|
|
437 | 437 |
|
438 | 438 |
MyDuration[i]=elapsed |
439 | 439 |
|
... | ... | |
442 | 442 |
#print MyPi[i],numpy.std(AllPi),MyDuration[i] |
443 | 443 |
|
444 | 444 |
|
445 |
print jobs,numpy.mean(MyDuration),numpy.median(MyDuration),numpy.std(MyDuration)
|
|
445 |
print(jobs,numpy.mean(MyDuration),numpy.median(MyDuration),numpy.std(MyDuration))
|
|
446 | 446 |
|
447 | 447 |
return(numpy.mean(MyDuration),numpy.median(MyDuration),numpy.std(MyDuration)) |
448 | 448 |
|
... | ... | |
456 | 456 |
MinMemoryXPU=0 |
457 | 457 |
|
458 | 458 |
if Device==0: |
459 |
print "Enter XPU selector based on ALU type: first selected"
|
|
459 |
print("Enter XPU selector based on ALU type: first selected")
|
|
460 | 460 |
HasXPU=False |
461 | 461 |
# Default Device selection based on ALU Type |
462 | 462 |
for platform in cl.get_platforms(): |
... | ... | |
469 | 469 |
MinMemoryXPU=deviceMemory |
470 | 470 |
if not HasXPU: |
471 | 471 |
XPU=device |
472 |
print "XPU selected with Allocable Memory %i: %s" % (deviceMemory,device.name)
|
|
472 |
print("XPU selected with Allocable Memory %i: %s" % (deviceMemory,device.name))
|
|
473 | 473 |
HasXPU=True |
474 | 474 |
MemoryXPU=deviceMemory |
475 | 475 |
|
476 | 476 |
else: |
477 |
print "Enter XPU selector based on device number & ALU type"
|
|
477 |
print("Enter XPU selector based on device number & ALU type")
|
|
478 | 478 |
Id=1 |
479 | 479 |
HasXPU=False |
480 | 480 |
# Primary Device selection based on Device Id |
... | ... | |
488 | 488 |
MinMemoryXPU=deviceMemory |
489 | 489 |
if Id==Device and HasXPU==False: |
490 | 490 |
XPU=device |
491 |
print "CPU/GPU selected with Allocable Memory %i: %s" % (deviceMemory,device.name)
|
|
491 |
print("CPU/GPU selected with Allocable Memory %i: %s" % (deviceMemory,device.name))
|
|
492 | 492 |
HasXPU=True |
493 | 493 |
MemoryXPU=deviceMemory |
494 | 494 |
Id=Id+1 |
495 | 495 |
if HasXPU==False: |
496 |
print "No XPU #%i of type %s found in all of %i devices, sorry..." % \
|
|
497 |
(Device,Alu,Id-1) |
|
496 |
print("No XPU #%i of type %s found in all of %i devices, sorry..." % \
|
|
497 |
(Device,Alu,Id-1))
|
|
498 | 498 |
return(0,0,0) |
499 | 499 |
|
500 |
print "Allocable Memory is %i, between %i and %i " % (MemoryXPU,MinMemoryXPU,MaxMemoryXPU)
|
|
500 |
print("Allocable Memory is %i, between %i and %i " % (MemoryXPU,MinMemoryXPU,MaxMemoryXPU))
|
|
501 | 501 |
|
502 | 502 |
# Je cree le contexte et la queue pour son execution |
503 | 503 |
ctx = cl.Context([XPU]) |
... | ... | |
520 | 520 |
MySplutter=numpy.zeros(steps) |
521 | 521 |
|
522 | 522 |
MaxWorks=2**(int)(numpy.log2(MinMemoryXPU/4)) |
523 |
print MaxWorks,2**(int)(numpy.log2(MemoryXPU))
|
|
523 |
print(MaxWorks,2**(int)(numpy.log2(MemoryXPU)))
|
|
524 | 524 |
|
525 | 525 |
#Splutter=numpy.zeros((MaxWorks/jobs)*jobs).astype(numpy.uint32) |
526 | 526 |
#Splutter=numpy.zeros(jobs*16).astype(numpy.uint32) |
... | ... | |
535 | 535 |
|
536 | 536 |
Splutter[:]=0 |
537 | 537 |
|
538 |
print Splutter,len(Splutter)
|
|
538 |
print(Splutter,len(Splutter))
|
|
539 | 539 |
|
540 | 540 |
h2d_time=time.time() |
541 | 541 |
SplutterCL = cl.Buffer(ctx, mf.WRITE_ONLY|mf.COPY_HOST_PTR,hostbuf=Splutter) |
... | ... | |
563 | 563 |
numpy.uint32(nprnd(2**30/jobs)), |
564 | 564 |
numpy.uint32(nprnd(2**30/jobs))) |
565 | 565 |
|
566 |
print "%s with (WorkItems/Threads)=(%i,%i) %s method done" % \
|
|
567 |
(Alu,jobs,1,ParaStyle) |
|
566 |
print("%s with (WorkItems/Threads)=(%i,%i) %s method done" % \
|
|
567 |
(Alu,jobs,1,ParaStyle))
|
|
568 | 568 |
elif ParaStyle=='Hybrid': |
569 | 569 |
#threads=BestThreadsNumber(jobs) |
570 | 570 |
threads=BestThreadsNumber(256) |
571 |
print "print",threads
|
|
571 |
print("print",threads)
|
|
572 | 572 |
# en OpenCL, necessaire de mettre un Global_id identique au local_id |
573 | 573 |
CLLaunch=MetropolisCL.SplutterHybrid(queue,(jobs,),(threads,), |
574 | 574 |
SplutterCL, |
... | ... | |
577 | 577 |
numpy.uint32(nprnd(2**30/jobs)), |
578 | 578 |
numpy.uint32(nprnd(2**30/jobs))) |
579 | 579 |
|
580 |
print "%s with (WorkItems/Threads)=(%i,%i) %s method done" % \
|
|
581 |
(Alu,jobs/threads,threads,ParaStyle) |
|
580 |
print("%s with (WorkItems/Threads)=(%i,%i) %s method done" % \
|
|
581 |
(Alu,jobs/threads,threads,ParaStyle))
|
|
582 | 582 |
else: |
583 | 583 |
# en OpenCL, necessaire de mettre un global_id identique au local_id |
584 | 584 |
CLLaunch=MetropolisCL.SplutterLocal(queue,(jobs,),(jobs,), |
... | ... | |
589 | 589 |
numpy.uint32(nprnd(2**30/jobs))) |
590 | 590 |
|
591 | 591 |
|
592 |
print "%s with %i %s done" % (Alu,jobs,ParaStyle)
|
|
592 |
print("%s with %i %s done" % (Alu,jobs,ParaStyle))
|
|
593 | 593 |
|
594 | 594 |
CLLaunch.wait() |
595 | 595 |
d2h_time=time.time() |
... | ... | |
601 | 601 |
print('Elapsed compute time %f' % elapsed) |
602 | 602 |
|
603 | 603 |
MyDuration[i]=elapsed |
604 |
#print Splutter,sum(Splutter)
|
|
604 |
print(Splutter,sum(Splutter))
|
|
605 | 605 |
#MySplutter[i]=numpy.median(Splutter) |
606 |
#print numpy.mean(Splutter)*len(Splutter),MySplutter[i]*len(Splutter),numpy.std(Splutter)
|
|
606 |
#print(numpy.mean(Splutter)*len(Splutter),MySplutter[i]*len(Splutter),numpy.std(Splutter))
|
|
607 | 607 |
|
608 | 608 |
SplutterCL.release() |
609 | 609 |
|
610 |
print jobs,numpy.mean(MyDuration),numpy.median(MyDuration),numpy.std(MyDuration)
|
|
610 |
print(jobs,numpy.mean(MyDuration),numpy.median(MyDuration),numpy.std(MyDuration))
|
|
611 | 611 |
|
612 | 612 |
return(numpy.mean(MyDuration),numpy.median(MyDuration),numpy.std(MyDuration)) |
613 | 613 |
|
... | ... | |
624 | 624 |
coeffs_Amdahl[1]=coeffs_Amdahl[1]*coeffs_Amdahl[0]/D[0] |
625 | 625 |
coeffs_Amdahl[2]=coeffs_Amdahl[2]*coeffs_Amdahl[0]/D[0] |
626 | 626 |
coeffs_Amdahl[0]=D[0] |
627 |
print "Amdahl Normalized: T=%.2f(%.6f+%.6f/N)" % \
|
|
628 |
(coeffs_Amdahl[0],coeffs_Amdahl[1],coeffs_Amdahl[2]) |
|
627 |
print("Amdahl Normalized: T=%.2f(%.6f+%.6f/N)" % \
|
|
628 |
(coeffs_Amdahl[0],coeffs_Amdahl[1],coeffs_Amdahl[2]))
|
|
629 | 629 |
except: |
630 |
print "Impossible to fit for Amdahl law : only %i elements" % len(D)
|
|
630 |
print("Impossible to fit for Amdahl law : only %i elements" % len(D))
|
|
631 | 631 |
|
632 | 632 |
try: |
633 | 633 |
coeffs_AmdahlR, matcov_AmdahlR = curve_fit(AmdahlR, N, D) |
... | ... | |
635 | 635 |
D_AmdahlR=AmdahlR(N,coeffs_AmdahlR[0],coeffs_AmdahlR[1]) |
636 | 636 |
coeffs_AmdahlR[1]=coeffs_AmdahlR[1]*coeffs_AmdahlR[0]/D[0] |
637 | 637 |
coeffs_AmdahlR[0]=D[0] |
638 |
print "Amdahl Reduced Normalized: T=%.2f(%.6f+%.6f/N)" % \
|
|
639 |
(coeffs_AmdahlR[0],1-coeffs_AmdahlR[1],coeffs_AmdahlR[1]) |
|
638 |
print("Amdahl Reduced Normalized: T=%.2f(%.6f+%.6f/N)" % \
|
|
639 |
(coeffs_AmdahlR[0],1-coeffs_AmdahlR[1],coeffs_AmdahlR[1]))
|
|
640 | 640 |
|
641 | 641 |
except: |
642 |
print "Impossible to fit for Reduced Amdahl law : only %i elements" % len(D)
|
|
642 |
print("Impossible to fit for Reduced Amdahl law : only %i elements" % len(D))
|
|
643 | 643 |
|
644 | 644 |
try: |
645 | 645 |
coeffs_Mylq, matcov_Mylq = curve_fit(Mylq, N, D) |
... | ... | |
648 | 648 |
# coeffs_Mylq[2]=coeffs_Mylq[2]*coeffs_Mylq[0]/D[0] |
649 | 649 |
coeffs_Mylq[3]=coeffs_Mylq[3]*coeffs_Mylq[0]/D[0] |
650 | 650 |
coeffs_Mylq[0]=D[0] |
651 |
print "Mylq Normalized : T=%.2f(%.6f+%.6f/N)+%.6f*N" % (coeffs_Mylq[0],
|
|
651 |
print("Mylq Normalized : T=%.2f(%.6f+%.6f/N)+%.6f*N" % (coeffs_Mylq[0],
|
|
652 | 652 |
coeffs_Mylq[1], |
653 | 653 |
coeffs_Mylq[3], |
654 |
coeffs_Mylq[2]) |
|
654 |
coeffs_Mylq[2]))
|
|
655 | 655 |
D_Mylq=Mylq(N,coeffs_Mylq[0],coeffs_Mylq[1],coeffs_Mylq[2], |
656 | 656 |
coeffs_Mylq[3]) |
657 | 657 |
except: |
658 |
print "Impossible to fit for Mylq law : only %i elements" % len(D)
|
|
658 |
print("Impossible to fit for Mylq law : only %i elements" % len(D))
|
|
659 | 659 |
|
660 | 660 |
try: |
661 | 661 |
coeffs_Mylq2, matcov_Mylq2 = curve_fit(Mylq2, N, D) |
... | ... | |
665 | 665 |
# coeffs_Mylq2[3]=coeffs_Mylq2[3]*coeffs_Mylq2[0]/D[0] |
666 | 666 |
coeffs_Mylq2[4]=coeffs_Mylq2[4]*coeffs_Mylq2[0]/D[0] |
667 | 667 |
coeffs_Mylq2[0]=D[0] |
668 |
print "Mylq 2nd order Normalized: T=%.2f(%.6f+%.6f/N)+%.6f*N+%.6f*N^2" % \
|
|
669 |
(coeffs_Mylq2[0],coeffs_Mylq2[1], |
|
670 |
coeffs_Mylq2[4],coeffs_Mylq2[2],coeffs_Mylq2[3])
|
|
668 |
print("Mylq 2nd order Normalized: T=%.2f(%.6f+%.6f/N)+%.6f*N+%.6f*N^2" % \
|
|
669 |
(coeffs_Mylq2[0],coeffs_Mylq2[1],
|
|
670 |
coeffs_Mylq2[4],coeffs_Mylq2[2],coeffs_Mylq2[3]))
|
|
671 | 671 |
|
672 | 672 |
except: |
673 |
print "Impossible to fit for 2nd order Mylq law : only %i elements" % len(D)
|
|
673 |
print("Impossible to fit for 2nd order Mylq law : only %i elements" % len(D) )
|
|
674 | 674 |
|
675 | 675 |
if Curves: |
676 | 676 |
plt.xlabel("Number of Threads/work Items") |
... | ... | |
681 | 681 |
pAmdahl,=plt.plot(N,D_Amdahl,label="Loi de Amdahl") |
682 | 682 |
pMylq,=plt.plot(N,D_Mylq,label="Loi de Mylq") |
683 | 683 |
except: |
684 |
print "Fit curves seem not to be available"
|
|
684 |
print("Fit curves seem not to be available")
|
|
685 | 685 |
|
686 | 686 |
plt.legend() |
687 | 687 |
plt.show() |
... | ... | |
721 | 721 |
try: |
722 | 722 |
opts, args = getopt.getopt(sys.argv[1:],"hocfa:g:p:i:s:e:t:r:d:m:",["alu=","gpustyle=","parastyle=","iterations=","jobstart=","jobend=","jobstep=","redo=","device="]) |
723 | 723 |
except getopt.GetoptError: |
724 |
print '%s -o (Out of Core Metrology) -c (Print Curves) -f (Fit to Amdahl Law) -a <CPU/GPU/ACCELERATOR> -d <DeviceId> -g <CUDA/OpenCL> -p <Threads/Hybrid/Blocks> -i <Iterations> -s <JobStart> -e <JobEnd> -t <JobStep> -r <RedoToImproveStats> -m <MemoryRaw>' % sys.argv[0]
|
|
724 |
print('%s -o (Out of Core Metrology) -c (Print Curves) -f (Fit to Amdahl Law) -a <CPU/GPU/ACCELERATOR> -d <DeviceId> -g <CUDA/OpenCL> -p <Threads/Hybrid/Blocks> -i <Iterations> -s <JobStart> -e <JobEnd> -t <JobStep> -r <RedoToImproveStats> -m <MemoryRaw>' % sys.argv[0])
|
|
725 | 725 |
sys.exit(2) |
726 | 726 |
|
727 | 727 |
for opt, arg in opts: |
728 | 728 |
if opt == '-h': |
729 |
print '%s -o (Out of Core Metrology) -c (Print Curves) -f (Fit to Amdahl Law) -a <CPU/GPU/ACCELERATOR> -d <DeviceId> -g <CUDA/OpenCL> -p <Threads/Hybrid/Blocks> -i <Iterations> -s <JobStart> -e <JobEnd> -t <JobStep> -r <RedoToImproveStats> -m <MemoryRaw>' % sys.argv[0]
|
|
729 |
print('%s -o (Out of Core Metrology) -c (Print Curves) -f (Fit to Amdahl Law) -a <CPU/GPU/ACCELERATOR> -d <DeviceId> -g <CUDA/OpenCL> -p <Threads/Hybrid/Blocks> -i <Iterations> -s <JobStart> -e <JobEnd> -t <JobStep> -r <RedoToImproveStats> -m <MemoryRaw>' % sys.argv[0])
|
|
730 | 730 |
|
731 |
print "\nInformations about devices detected under OpenCL:"
|
|
731 |
print("\nInformations about devices detected under OpenCL:")
|
|
732 | 732 |
# For PyOpenCL import |
733 | 733 |
try: |
734 | 734 |
import pyopencl as cl |
... | ... | |
737 | 737 |
for device in platform.get_devices(): |
738 | 738 |
#deviceType=cl.device_type.to_string(device.type) |
739 | 739 |
deviceMemory=device.max_mem_alloc_size |
740 |
print "Device #%i from %s with memory %i : %s" % (Id,platform.vendor,deviceMemory,device.name.lstrip())
|
|
740 |
print("Device #%i from %s with memory %i : %s" % (Id,platform.vendor,deviceMemory,device.name.lstrip()))
|
|
741 | 741 |
Id=Id+1 |
742 | 742 |
|
743 |
|
|
743 |
print()
|
|
744 | 744 |
sys.exit() |
745 | 745 |
except ImportError: |
746 |
print "Your platform does not seem to support OpenCL"
|
|
746 |
print("Your platform does not seem to support OpenCL")
|
|
747 | 747 |
|
748 | 748 |
elif opt == '-o': |
749 | 749 |
OutMetrology=True |
... | ... | |
774 | 774 |
Memory = int(arg) |
775 | 775 |
|
776 | 776 |
if Alu=='CPU' and GpuStyle=='CUDA': |
777 |
print "Alu can't be CPU for CUDA, set Alu to GPU"
|
|
777 |
print("Alu can't be CPU for CUDA, set Alu to GPU")
|
|
778 | 778 |
Alu='GPU' |
779 | 779 |
|
780 | 780 |
if ParaStyle not in ('Blocks','Threads','Hybrid'): |
781 |
print "%s not exists, ParaStyle set as Threads !" % ParaStyle
|
|
781 |
print("%s not exists, ParaStyle set as Threads !" % ParaStyle)
|
|
782 | 782 |
ParaStyle='Blocks' |
783 | 783 |
|
784 |
print "Compute unit : %s" % Alu
|
|
785 |
print "Device Identification : %s" % Device
|
|
786 |
print "GpuStyle used : %s" % GpuStyle
|
|
787 |
print "Parallel Style used : %s" % ParaStyle
|
|
788 |
print "Iterations : %s" % Iterations
|
|
789 |
print "Number of threads on start : %s" % JobStart
|
|
790 |
print "Number of threads on end : %s" % JobEnd
|
|
791 |
print "Number of redo : %s" % Redo
|
|
792 |
print "Memory : %s" % Memory
|
|
793 |
print "Metrology done out of CPU/GPU : %r" % OutMetrology
|
|
784 |
print("Compute unit : %s" % Alu)
|
|
785 |
print("Device Identification : %s" % Device)
|
|
786 |
print("GpuStyle used : %s" % GpuStyle)
|
|
787 |
print("Parallel Style used : %s" % ParaStyle)
|
|
788 |
print("Iterations : %s" % Iterations)
|
|
789 |
print("Number of threads on start : %s" % JobStart)
|
|
790 |
print("Number of threads on end : %s" % JobEnd)
|
|
791 |
print("Number of redo : %s" % Redo)
|
|
792 |
print("Memory : %s" % Memory)
|
|
793 |
print("Metrology done out of CPU/GPU : %r" % OutMetrology)
|
|
794 | 794 |
|
795 | 795 |
if GpuStyle=='CUDA': |
796 | 796 |
try: |
... | ... | |
800 | 800 |
import pycuda.autoinit |
801 | 801 |
from pycuda.compiler import SourceModule |
802 | 802 |
except ImportError: |
803 |
print "Platform does not seem to support CUDA"
|
|
803 |
print("Platform does not seem to support CUDA")
|
|
804 | 804 |
|
805 | 805 |
if GpuStyle=='OpenCL': |
806 | 806 |
try: |
... | ... | |
810 | 810 |
for platform in cl.get_platforms(): |
811 | 811 |
for device in platform.get_devices(): |
812 | 812 |
#deviceType=cl.device_type.to_string(device.type) |
813 |
print "Device #%i : %s" % (Id,device.name)
|
|
813 |
print("Device #%i : %s" % (Id,device.name))
|
|
814 | 814 |
if Id == Device: |
815 | 815 |
# Set the Alu as detected Device Type |
816 | 816 |
Alu='xPU' |
817 | 817 |
Id=Id+1 |
818 | 818 |
except ImportError: |
819 |
print "Platform does not seem to support CUDA"
|
|
819 |
print("Platform does not seem to support CUDA")
|
|
820 | 820 |
|
821 | 821 |
average=numpy.array([]).astype(numpy.float32) |
822 | 822 |
median=numpy.array([]).astype(numpy.float32) |
... | ... | |
840 | 840 |
a,m,s=MetropolisCuda(circle,Iterations,1,Jobs,ParaStyle, |
841 | 841 |
Memory) |
842 | 842 |
except: |
843 |
print "Problem with %i // computations on Cuda" % Jobs
|
|
843 |
print("Problem with %i // computations on Cuda" % Jobs)
|
|
844 | 844 |
elif GpuStyle=='OpenCL': |
845 | 845 |
try: |
846 | 846 |
a,m,s=MetropolisOpenCL(circle,Iterations,1,Jobs,ParaStyle, |
847 | 847 |
Alu,Device,Memory) |
848 | 848 |
except: |
849 |
print "Problem with %i // computations on OpenCL" % Jobs
|
|
849 |
print("Problem with %i // computations on OpenCL" % Jobs)
|
|
850 | 850 |
duration=numpy.append(duration,time.time()-start) |
851 | 851 |
if (a,m,s) != (0,0,0): |
852 | 852 |
avg=numpy.mean(duration) |
853 | 853 |
med=numpy.median(duration) |
854 | 854 |
std=numpy.std(duration) |
855 | 855 |
else: |
856 |
print "Values seem to be wrong..."
|
|
856 |
print("Values seem to be wrong...")
|
|
857 | 857 |
else: |
858 | 858 |
if GpuStyle=='CUDA': |
859 | 859 |
try: |
860 | 860 |
avg,med,std=MetropolisCuda(circle,Iterations,Redo, |
861 | 861 |
Jobs,ParaStyle,Memory) |
862 | 862 |
except: |
863 |
print "Problem with %i // computations on Cuda" % Jobs
|
|
863 |
print("Problem with %i // computations on Cuda" % Jobs)
|
|
864 | 864 |
elif GpuStyle=='OpenCL': |
865 | 865 |
try: |
866 | 866 |
avg,med,std=MetropolisOpenCL(circle,Iterations,Redo,Jobs, |
867 | 867 |
ParaStyle,Alu,Device,Memory) |
868 | 868 |
except: |
869 |
print "Problem with %i // computations on OpenCL" % Jobs
|
|
869 |
print("Problem with %i // computations on OpenCL" % Jobs)
|
|
870 | 870 |
|
871 | 871 |
if (avg,med,std) != (0,0,0): |
872 |
print "jobs,avg,med,std",Jobs,avg,med,std
|
|
872 |
print("jobs,avg,med,std",Jobs,avg,med,std)
|
|
873 | 873 |
average=numpy.append(average,avg) |
874 | 874 |
median=numpy.append(median,med) |
875 | 875 |
stddev=numpy.append(stddev,std) |
876 | 876 |
else: |
877 |
print "Values seem to be wrong..."
|
|
877 |
print("Values seem to be wrong...")
|
|
878 | 878 |
#THREADS*=2 |
879 | 879 |
if len(average)!=0: |
880 | 880 |
numpy.savez("Splutter_%s_%s_%s_%i_%i_%.8i_Device%i_%s_%s" % (Alu,GpuStyle,ParaStyle,JobStart,JobEnd,Iterations,Device,Metrology,gethostname()),(ExploredJobs,average,median,stddev)) |
Formats disponibles : Unified diff