root / Splutter / GPU / SplutterGPU.py @ 307
Historique | Voir | Annoter | Télécharger (27,7 ko)
1 | 57 | equemene | #!/usr/bin/env python
|
---|---|---|---|
2 | 57 | equemene | |
3 | 57 | equemene | #
|
4 | 57 | equemene | # Splutter-by-MonteCarlo using PyCUDA/PyOpenCL
|
5 | 57 | equemene | #
|
6 | 57 | equemene | # CC BY-NC-SA 2014 : <emmanuel.quemener@ens-lyon.fr>
|
7 | 57 | equemene | #
|
8 | 57 | equemene | # Thanks to Andreas Klockner for PyCUDA:
|
9 | 57 | equemene | # http://mathema.tician.de/software/pycuda
|
10 | 66 | equemene | # http://mathema.tician.de/software/pyopencl
|
11 | 57 | equemene | #
|
12 | 57 | equemene | |
13 | 57 | equemene | # 2013-01-01 : problems with launch timeout
|
14 | 57 | equemene | # http://stackoverflow.com/questions/497685/how-do-you-get-around-the-maximum-cuda-run-time
|
15 | 57 | equemene | # Option "Interactive" "0" in /etc/X11/xorg.conf
|
16 | 57 | equemene | |
17 | 66 | equemene | # Marsaglia elements about RNG
|
18 | 66 | equemene | |
19 | 57 | equemene | # Common tools
|
20 | 57 | equemene | import numpy |
21 | 57 | equemene | from numpy.random import randint as nprnd |
22 | 57 | equemene | import sys |
23 | 57 | equemene | import getopt |
24 | 57 | equemene | import time |
25 | 57 | equemene | import math |
26 | 57 | equemene | from socket import gethostname |
27 | 57 | equemene | |
28 | 68 | equemene | # find prime factors of a number
|
29 | 68 | equemene | # Get for WWW :
|
30 | 68 | equemene | # http://pythonism.wordpress.com/2008/05/17/looking-at-factorisation-in-python/
|
31 | 68 | equemene | def PrimeFactors(x): |
32 | 68 | equemene | factorlist=numpy.array([]).astype('uint32')
|
33 | 68 | equemene | loop=2
|
34 | 68 | equemene | while loop<=x:
|
35 | 68 | equemene | if x%loop==0: |
36 | 68 | equemene | x/=loop |
37 | 68 | equemene | factorlist=numpy.append(factorlist,[loop]) |
38 | 68 | equemene | else:
|
39 | 68 | equemene | loop+=1
|
40 | 68 | equemene | return factorlist
|
41 | 68 | equemene | |
42 | 57 | equemene | # Try to find the best thread number in Hybrid approach (Blocks&Threads)
|
43 | 57 | equemene | # output is thread number
|
44 | 57 | equemene | def BestThreadsNumber(jobs): |
45 | 57 | equemene | factors=PrimeFactors(jobs) |
46 | 57 | equemene | matrix=numpy.append([factors],[factors[::-1]],axis=0) |
47 | 57 | equemene | threads=1
|
48 | 57 | equemene | for factor in matrix.transpose().ravel(): |
49 | 57 | equemene | threads=threads*factor |
50 | 57 | equemene | if threads*threads>jobs:
|
51 | 57 | equemene | break
|
52 | 57 | equemene | return(long(threads)) |
53 | 57 | equemene | |
54 | 57 | equemene | # Predicted Amdahl Law (Reduced with s=1-p)
|
55 | 57 | equemene | def AmdahlR(N, T1, p): |
56 | 57 | equemene | return (T1*(1-p+p/N)) |
57 | 57 | equemene | |
58 | 57 | equemene | # Predicted Amdahl Law
|
59 | 57 | equemene | def Amdahl(N, T1, s, p): |
60 | 57 | equemene | return (T1*(s+p/N))
|
61 | 57 | equemene | |
62 | 57 | equemene | # Predicted Mylq Law with first order
|
63 | 57 | equemene | def Mylq(N, T1,s,c,p): |
64 | 57 | equemene | return (T1*(s+p/N)+c*N)
|
65 | 57 | equemene | |
66 | 57 | equemene | # Predicted Mylq Law with second order
|
67 | 57 | equemene | def Mylq2(N, T1,s,c1,c2,p): |
68 | 57 | equemene | return (T1*(s+p/N)+c1*N+c2*N*N)
|
69 | 57 | equemene | |
70 | 57 | equemene | KERNEL_CODE_CUDA="""
|
71 | 57 | equemene |
|
72 | 57 | equemene | // Marsaglia RNG very simple implementation
|
73 | 57 | equemene |
|
74 | 57 | equemene | #define znew ((z=36969*(z&65535)+(z>>16))<<16)
|
75 | 57 | equemene | #define wnew ((w=18000*(w&65535)+(w>>16))&65535)
|
76 | 63 | equemene |
|
77 | 57 | equemene | #define MWC (znew+wnew)
|
78 | 57 | equemene | #define SHR3 (jsr=(jsr=(jsr=jsr^(jsr<<17))^(jsr>>13))^(jsr<<5))
|
79 | 57 | equemene | #define CONG (jcong=69069*jcong+1234567)
|
80 | 57 | equemene | #define KISS ((MWC^CONG)+SHR3)
|
81 | 57 | equemene |
|
82 | 63 | equemene | #define CONGfp CONG * 2.328306435454494e-10f
|
83 | 63 | equemene | #define SHR3fp SHR3 * 2.328306435454494e-10f
|
84 | 57 | equemene | #define MWCfp MWC * 2.328306435454494e-10f
|
85 | 57 | equemene | #define KISSfp KISS * 2.328306435454494e-10f
|
86 | 57 | equemene |
|
87 | 63 | equemene | #define MAX (ulong)4294967296
|
88 | 66 | equemene | #define UMAX (uint)2147483648
|
89 | 57 | equemene |
|
90 | 66 | equemene | __global__ void SplutterGlobal(uint *s,const uint space,const ulong iterations,const uint seed_w,const uint seed_z)
|
91 | 66 | equemene | {
|
92 | 66 | equemene | const ulong id=(ulong)(blockIdx.x);
|
93 | 66 | equemene |
|
94 | 66 | equemene | uint z=seed_z-(uint)id;
|
95 | 66 | equemene | uint w=seed_w+(uint)id;
|
96 | 66 | equemene |
|
97 | 66 | equemene | uint jsr=seed_z;
|
98 | 66 | equemene | uint jcong=seed_w;
|
99 | 66 | equemene |
|
100 | 66 | equemene | for ( ulong i=0;i<iterations;i++) {
|
101 | 66 | equemene |
|
102 | 66 | equemene | // All version
|
103 | 66 | equemene | uint position=(uint)( ((ulong)MWC*(ulong)space)/MAX );
|
104 | 66 | equemene |
|
105 | 66 | equemene | // UMAX is set to avoid round over overflow
|
106 | 66 | equemene | atomicInc(&s[position],UMAX);
|
107 | 66 | equemene | }
|
108 | 66 | equemene |
|
109 | 66 | equemene | __syncthreads();
|
110 | 66 | equemene | }
|
111 | 66 | equemene |
|
112 | 63 | equemene | __global__ void SplutterGlobalDense(uint *s,const uint space,const ulong iterations,const uint seed_w,const uint seed_z)
|
113 | 63 | equemene | {
|
114 | 63 | equemene | const ulong id=(ulong)(threadIdx.x+blockIdx.x*blockDim.x);
|
115 | 63 | equemene | const ulong size=(ulong)(gridDim.x*blockDim.x);
|
116 | 63 | equemene | const ulong block=(ulong)space/(ulong)size;
|
117 | 63 | equemene |
|
118 | 63 | equemene | uint z=seed_z-(uint)id;
|
119 | 63 | equemene | uint w=seed_w+(uint)id;
|
120 | 63 | equemene |
|
121 | 63 | equemene | uint jsr=seed_z;
|
122 | 63 | equemene | uint jcong=seed_w;
|
123 | 63 | equemene |
|
124 | 63 | equemene | for ( ulong i=0;i<iterations;i++) {
|
125 | 63 | equemene |
|
126 | 63 | equemene | // Dense version
|
127 | 63 | equemene | uint position=(uint)( ((ulong)MWC+id*MAX)*block/MAX );
|
128 | 63 | equemene |
|
129 | 63 | equemene | s[position]++;
|
130 | 63 | equemene | }
|
131 | 63 | equemene |
|
132 | 63 | equemene | __syncthreads();
|
133 | 57 | equemene | }
|
134 | 63 | equemene |
|
135 | 63 | equemene | __global__ void SplutterGlobalSparse(uint *s,const uint space,const ulong iterations,const uint seed_w,const uint seed_z)
|
136 | 63 | equemene | {
|
137 | 63 | equemene | const ulong id=(ulong)(threadIdx.x+blockIdx.x*blockDim.x);
|
138 | 63 | equemene | const ulong size=(ulong)(gridDim.x*blockDim.x);
|
139 | 63 | equemene | const ulong block=(ulong)space/(ulong)size;
|
140 | 63 | equemene |
|
141 | 63 | equemene | uint z=seed_z-(uint)id;
|
142 | 63 | equemene | uint w=seed_w+(uint)id;
|
143 | 63 | equemene |
|
144 | 63 | equemene | uint jsr=seed_z;
|
145 | 63 | equemene | uint jcong=seed_w;
|
146 | 63 | equemene |
|
147 | 63 | equemene | for ( ulong i=0;i<iterations;i++) {
|
148 | 63 | equemene |
|
149 | 63 | equemene | // Sparse version
|
150 | 63 | equemene | uint position=(uint)( (ulong)MWC*block/MAX*size+id );
|
151 | 63 | equemene |
|
152 | 63 | equemene | s[position]++;
|
153 | 63 | equemene | }
|
154 | 63 | equemene |
|
155 | 63 | equemene | __syncthreads();
|
156 | 57 | equemene | }
|
157 | 57 | equemene |
|
158 | 63 | equemene | __global__ void SplutterLocalDense(uint *s,const uint space,const ulong iterations,const uint seed_w,const uint seed_z)
|
159 | 57 | equemene | {
|
160 | 63 | equemene | const ulong id=(ulong)(threadIdx.x);
|
161 | 63 | equemene | const ulong size=(ulong)(blockDim.x);
|
162 | 63 | equemene | const ulong block=(ulong)space/(ulong)size;
|
163 | 63 | equemene |
|
164 | 63 | equemene | uint z=seed_z-(uint)id;
|
165 | 63 | equemene | uint w=seed_w+(uint)id;
|
166 | 57 | equemene |
|
167 | 63 | equemene | uint jsr=seed_z;
|
168 | 63 | equemene | uint jcong=seed_w;
|
169 | 57 | equemene |
|
170 | 63 | equemene | for ( ulong i=0;i<iterations;i++) {
|
171 | 57 | equemene |
|
172 | 63 | equemene | // Dense version
|
173 | 63 | equemene | size_t position=(size_t)( ((ulong)MWC+id*MAX)*block/MAX );
|
174 | 57 | equemene |
|
175 | 63 | equemene | s[position]++;
|
176 | 63 | equemene | }
|
177 | 57 | equemene |
|
178 | 57 | equemene |
|
179 | 63 | equemene | __syncthreads();
|
180 | 63 | equemene |
|
181 | 57 | equemene | }
|
182 | 57 | equemene |
|
183 | 63 | equemene | __global__ void SplutterLocalSparse(uint *s,const uint space,const ulong iterations,const uint seed_w,const uint seed_z)
|
184 | 63 | equemene | {
|
185 | 63 | equemene | const ulong id=(ulong)threadIdx.x;
|
186 | 63 | equemene | const ulong size=(ulong)blockDim.x;
|
187 | 63 | equemene | const ulong block=(ulong)space/(ulong)size;
|
188 | 63 | equemene |
|
189 | 63 | equemene | uint z=seed_z-(uint)id;
|
190 | 63 | equemene | uint w=seed_w+(uint)id;
|
191 | 57 | equemene |
|
192 | 63 | equemene | uint jsr=seed_z;
|
193 | 63 | equemene | uint jcong=seed_w;
|
194 | 57 | equemene |
|
195 | 63 | equemene | for ( ulong i=0;i<iterations;i++) {
|
196 | 57 | equemene |
|
197 | 63 | equemene | // Sparse version
|
198 | 63 | equemene | size_t position=(size_t)( (ulong)MWC*block/MAX*size+id );
|
199 | 57 | equemene |
|
200 | 63 | equemene | s[position]++;
|
201 | 57 | equemene | }
|
202 | 57 | equemene |
|
203 | 57 | equemene | __syncthreads();
|
204 | 63 | equemene |
|
205 | 57 | equemene | }
|
206 | 57 | equemene |
|
207 | 63 | equemene | __global__ void SplutterHybridDense(uint *s,const uint space,const ulong iterations,const uint seed_w,const uint seed_z)
|
208 | 57 | equemene | {
|
209 | 63 | equemene | const ulong id=(ulong)(blockIdx.x);
|
210 | 63 | equemene | const ulong size=(ulong)(gridDim.x);
|
211 | 63 | equemene | const ulong block=(ulong)space/(ulong)size;
|
212 | 63 | equemene |
|
213 | 63 | equemene | uint z=seed_z-(uint)id;
|
214 | 63 | equemene | uint w=seed_w+(uint)id;
|
215 | 57 | equemene |
|
216 | 63 | equemene | uint jsr=seed_z;
|
217 | 63 | equemene | uint jcong=seed_w;
|
218 | 57 | equemene |
|
219 | 63 | equemene | for ( ulong i=0;i<iterations;i++) {
|
220 | 57 | equemene |
|
221 | 63 | equemene | // Dense version
|
222 | 63 | equemene | size_t position=(size_t)( ((ulong)MWC+id*MAX)*block/MAX );
|
223 | 63 | equemene |
|
224 | 63 | equemene | s[position]++;
|
225 | 57 | equemene | }
|
226 | 63 | equemene |
|
227 | 63 | equemene | __syncthreads();
|
228 | 63 | equemene | }
|
229 | 57 | equemene |
|
230 | 63 | equemene | __global__ void SplutterHybridSparse(uint *s,const uint space,const ulong iterations,const uint seed_w,const uint seed_z)
|
231 | 63 | equemene | {
|
232 | 63 | equemene | const ulong id=(ulong)(blockIdx.x);
|
233 | 63 | equemene | const ulong size=(ulong)(gridDim.x);
|
234 | 63 | equemene | const ulong block=(ulong)space/(ulong)size;
|
235 | 63 | equemene |
|
236 | 63 | equemene | uint z=seed_z-(uint)id;
|
237 | 63 | equemene | uint w=seed_w+(uint)id;
|
238 | 63 | equemene |
|
239 | 63 | equemene | uint jsr=seed_z;
|
240 | 63 | equemene | uint jcong=seed_w;
|
241 | 63 | equemene |
|
242 | 63 | equemene | for ( ulong i=0;i<iterations;i++) {
|
243 | 63 | equemene |
|
244 | 63 | equemene | // Sparse version
|
245 | 63 | equemene | size_t position=(size_t)( (((ulong)MWC*block)/MAX)*size+id );
|
246 | 63 | equemene |
|
247 | 63 | equemene | s[position]++;
|
248 | 63 | equemene |
|
249 | 63 | equemene | }
|
250 | 63 | equemene |
|
251 | 63 | equemene | //s[blockIdx.x]=blockIdx.x;
|
252 | 57 | equemene | __syncthreads();
|
253 | 63 | equemene | }
|
254 | 57 | equemene |
|
255 | 57 | equemene | """
|
256 | 57 | equemene | |
257 | 57 | equemene | KERNEL_CODE_OPENCL="""
|
258 | 66 | equemene | #pragma OPENCL EXTENSION cl_khr_global_int32_base_atomics : enable
|
259 | 66 | equemene |
|
260 | 57 | equemene | // Marsaglia RNG very simple implementation
|
261 | 57 | equemene | #define znew ((z=36969*(z&65535)+(z>>16))<<16)
|
262 | 57 | equemene | #define wnew ((w=18000*(w&65535)+(w>>16))&65535)
|
263 | 57 | equemene |
|
264 | 57 | equemene | #define MWC (znew+wnew)
|
265 | 57 | equemene | #define SHR3 (jsr=(jsr=(jsr=jsr^(jsr<<17))^(jsr>>13))^(jsr<<5))
|
266 | 57 | equemene | #define CONG (jcong=69069*jcong+1234567)
|
267 | 57 | equemene | #define KISS ((MWC^CONG)+SHR3)
|
268 | 57 | equemene |
|
269 | 57 | equemene | #define CONGfp CONG * 2.328306435454494e-10f
|
270 | 57 | equemene | #define SHR3fp SHR3 * 2.328306435454494e-10f
|
271 | 57 | equemene | #define MWCfp MWC * 2.328306435454494e-10f
|
272 | 57 | equemene | #define KISSfp KISS * 2.328306435454494e-10f
|
273 | 57 | equemene |
|
274 | 60 | equemene | #define MAX (ulong)4294967296
|
275 | 57 | equemene |
|
276 | 57 | equemene | uint rotl(uint value, int shift) {
|
277 | 57 | equemene | return (value << shift) | (value >> (sizeof(value) * CHAR_BIT - shift));
|
278 | 57 | equemene | }
|
279 | 57 | equemene |
|
280 | 57 | equemene | uint rotr(uint value, int shift) {
|
281 | 57 | equemene | return (value >> shift) | (value << (sizeof(value) * CHAR_BIT - shift));
|
282 | 57 | equemene | }
|
283 | 57 | equemene |
|
284 | 66 | equemene | __kernel void SplutterGlobal(__global uint *s,const uint space,const ulong iterations,const uint seed_w,const uint seed_z)
|
285 | 66 | equemene | {
|
286 | 66 | equemene | __private const ulong id=(ulong)get_global_id(0);
|
287 | 66 | equemene |
|
288 | 66 | equemene | __private uint z=seed_z-(uint)id;
|
289 | 66 | equemene | __private uint w=seed_w+(uint)id;
|
290 | 66 | equemene |
|
291 | 66 | equemene | __private uint jsr=seed_z;
|
292 | 66 | equemene | __private uint jcong=seed_w;
|
293 | 66 | equemene |
|
294 | 66 | equemene | for (__private ulong i=0;i<iterations;i++) {
|
295 | 66 | equemene |
|
296 | 66 | equemene | // Dense version
|
297 | 68 | equemene | __private size_t position=(size_t)( MWC%space );
|
298 | 66 | equemene |
|
299 | 66 | equemene | atomic_inc(&s[position]);
|
300 | 66 | equemene | }
|
301 | 66 | equemene |
|
302 | 66 | equemene | barrier(CLK_LOCAL_MEM_FENCE | CLK_GLOBAL_MEM_FENCE);
|
303 | 66 | equemene |
|
304 | 66 | equemene | }
|
305 | 66 | equemene |
|
306 | 68 | equemene | __kernel void SplutterLocal(__global uint *s,const uint space,const ulong iterations,const uint seed_w,const uint seed_z)
|
307 | 57 | equemene | {
|
308 | 63 | equemene | __private const ulong id=(ulong)get_local_id(0);
|
309 | 63 | equemene |
|
310 | 63 | equemene | __private uint z=seed_z-(uint)id;
|
311 | 63 | equemene | __private uint w=seed_w+(uint)id;
|
312 | 63 | equemene |
|
313 | 63 | equemene | __private uint jsr=seed_z;
|
314 | 63 | equemene | __private uint jcong=seed_w;
|
315 | 63 | equemene |
|
316 | 63 | equemene | for (__private ulong i=0;i<iterations;i++) {
|
317 | 63 | equemene |
|
318 | 63 | equemene | // Dense version
|
319 | 68 | equemene | //__private size_t position=(size_t)( (MWC+id*block)%space );
|
320 | 68 | equemene | __private size_t position=(size_t)( MWC%space );
|
321 | 63 | equemene |
|
322 | 68 | equemene | atomic_inc(&s[position]);
|
323 | 57 | equemene | }
|
324 | 57 | equemene |
|
325 | 57 | equemene | barrier(CLK_LOCAL_MEM_FENCE | CLK_GLOBAL_MEM_FENCE);
|
326 | 57 | equemene |
|
327 | 57 | equemene | }
|
328 | 57 | equemene |
|
329 | 68 | equemene | __kernel void SplutterHybrid(__global uint *s,const uint space,const ulong iterations,const uint seed_w,const uint seed_z)
|
330 | 57 | equemene | {
|
331 | 68 | equemene | __private const ulong id=(ulong)(get_global_id(0)+get_local_id(0));
|
332 | 63 | equemene |
|
333 | 63 | equemene | __private uint z=seed_z-(uint)id;
|
334 | 63 | equemene | __private uint w=seed_w+(uint)id;
|
335 | 57 | equemene |
|
336 | 63 | equemene | __private uint jsr=seed_z;
|
337 | 63 | equemene | __private uint jcong=seed_w;
|
338 | 57 | equemene |
|
339 | 63 | equemene | for (__private ulong i=0;i<iterations;i++) {
|
340 | 57 | equemene |
|
341 | 63 | equemene | // Dense version
|
342 | 68 | equemene | __private size_t position=(size_t)( MWC%space );
|
343 | 57 | equemene |
|
344 | 68 | equemene | atomic_inc(&s[position]);
|
345 | 57 | equemene | }
|
346 | 63 | equemene |
|
347 | 63 | equemene | }
|
348 | 57 | equemene |
|
349 | 57 | equemene | """
|
350 | 57 | equemene | |
351 | 68 | equemene | def MetropolisCuda(circle,iterations,steps,jobs,ParaStyle,Density,Memory): |
352 | 57 | equemene | |
353 | 57 | equemene | # Avec PyCUDA autoinit, rien a faire !
|
354 | 66 | equemene | |
355 | 57 | equemene | circleCU = cuda.InOut(circle) |
356 | 57 | equemene | |
357 | 57 | equemene | mod = SourceModule(KERNEL_CODE_CUDA) |
358 | 57 | equemene | |
359 | 66 | equemene | if Density=='Dense': |
360 | 63 | equemene | MetropolisBlocksCU=mod.get_function("SplutterGlobalDense")
|
361 | 63 | equemene | MetropolisThreadsCU=mod.get_function("SplutterLocalDense")
|
362 | 63 | equemene | MetropolisHybridCU=mod.get_function("SplutterHybridDense")
|
363 | 66 | equemene | elif Density=='Sparse': |
364 | 63 | equemene | MetropolisBlocksCU=mod.get_function("SplutterGlobalSparse")
|
365 | 63 | equemene | MetropolisThreadsCU=mod.get_function("SplutterLocalSparse")
|
366 | 63 | equemene | MetropolisHybridCU=mod.get_function("SplutterHybridSparse")
|
367 | 66 | equemene | else:
|
368 | 66 | equemene | MetropolisBlocksCU=mod.get_function("SplutterGlobal")
|
369 | 66 | equemene | |
370 | 57 | equemene | start = pycuda.driver.Event() |
371 | 57 | equemene | stop = pycuda.driver.Event() |
372 | 57 | equemene | |
373 | 57 | equemene | MySplutter=numpy.zeros(steps) |
374 | 57 | equemene | MyDuration=numpy.zeros(steps) |
375 | 57 | equemene | |
376 | 57 | equemene | if iterations%jobs==0: |
377 | 57 | equemene | iterationsCL=numpy.uint64(iterations/jobs) |
378 | 57 | equemene | else:
|
379 | 57 | equemene | iterationsCL=numpy.uint64(iterations/jobs+1)
|
380 | 57 | equemene | |
381 | 57 | equemene | iterationsNew=iterationsCL*jobs |
382 | 57 | equemene | |
383 | 63 | equemene | Splutter=numpy.zeros(jobs*16).astype(numpy.uint32)
|
384 | 63 | equemene | |
385 | 57 | equemene | for i in range(steps): |
386 | 57 | equemene | |
387 | 202 | equemene | start_time=time.time() |
388 | 63 | equemene | Splutter[:]=0
|
389 | 57 | equemene | |
390 | 307 | equemene | print(Splutter,len(Splutter))
|
391 | 57 | equemene | |
392 | 57 | equemene | SplutterCU = cuda.InOut(Splutter) |
393 | 57 | equemene | |
394 | 57 | equemene | start.record() |
395 | 57 | equemene | start.synchronize() |
396 | 57 | equemene | if ParaStyle=='Blocks': |
397 | 57 | equemene | MetropolisBlocksCU(SplutterCU, |
398 | 57 | equemene | numpy.uint32(len(Splutter)),
|
399 | 57 | equemene | numpy.uint64(iterationsCL), |
400 | 57 | equemene | numpy.uint32(nprnd(2**30/jobs)), |
401 | 57 | equemene | numpy.uint32(nprnd(2**30/jobs)), |
402 | 57 | equemene | grid=(jobs,1),
|
403 | 57 | equemene | block=(1,1,1)) |
404 | 57 | equemene | |
405 | 307 | equemene | print("%s with (WorkItems/Threads)=(%i,%i) %s method done" % \
|
406 | 307 | equemene | (Alu,jobs,1,ParaStyle))
|
407 | 57 | equemene | elif ParaStyle=='Hybrid': |
408 | 57 | equemene | threads=BestThreadsNumber(jobs) |
409 | 57 | equemene | MetropolisHybridCU(SplutterCU, |
410 | 57 | equemene | numpy.uint32(len(Splutter)),
|
411 | 57 | equemene | numpy.uint64(iterationsCL), |
412 | 57 | equemene | numpy.uint32(nprnd(2**30/jobs)), |
413 | 57 | equemene | numpy.uint32(nprnd(2**30/jobs)), |
414 | 57 | equemene | grid=(jobs,1),
|
415 | 57 | equemene | block=(threads,1,1)) |
416 | 307 | equemene | print("%s with (WorkItems/Threads)=(%i,%i) %s method done" % \
|
417 | 307 | equemene | (Alu,jobs/threads,threads,ParaStyle)) |
418 | 57 | equemene | else:
|
419 | 63 | equemene | MetropolisThreadsCU(SplutterCU, |
420 | 57 | equemene | numpy.uint32(len(Splutter)),
|
421 | 57 | equemene | numpy.uint64(iterationsCL), |
422 | 57 | equemene | numpy.uint32(nprnd(2**30/jobs)), |
423 | 57 | equemene | numpy.uint32(nprnd(2**30/jobs)), |
424 | 57 | equemene | grid=(1,1), |
425 | 57 | equemene | block=(jobs,1,1)) |
426 | 307 | equemene | print("%s with (WorkItems/Threads)=(%i,%i) %s method done" % \
|
427 | 307 | equemene | (Alu,1,jobs,ParaStyle))
|
428 | 57 | equemene | stop.record() |
429 | 57 | equemene | stop.synchronize() |
430 | 57 | equemene | |
431 | 202 | equemene | # elapsed = start.time_till(stop)*1e-3
|
432 | 202 | equemene | elapsed = time.time()-start_time |
433 | 57 | equemene | |
434 | 307 | equemene | print(Splutter,sum(Splutter))
|
435 | 57 | equemene | MySplutter[i]=numpy.median(Splutter) |
436 | 307 | equemene | print(numpy.mean(Splutter),MySplutter[i],numpy.std(Splutter)) |
437 | 57 | equemene | |
438 | 57 | equemene | MyDuration[i]=elapsed |
439 | 57 | equemene | |
440 | 57 | equemene | #AllPi=4./numpy.float32(iterationsCL)*circle.astype(numpy.float32)
|
441 | 57 | equemene | #MyPi[i]=numpy.median(AllPi)
|
442 | 57 | equemene | #print MyPi[i],numpy.std(AllPi),MyDuration[i]
|
443 | 57 | equemene | |
444 | 57 | equemene | |
445 | 307 | equemene | print(jobs,numpy.mean(MyDuration),numpy.median(MyDuration),numpy.std(MyDuration)) |
446 | 57 | equemene | |
447 | 57 | equemene | return(numpy.mean(MyDuration),numpy.median(MyDuration),numpy.std(MyDuration))
|
448 | 57 | equemene | |
449 | 57 | equemene | |
450 | 66 | equemene | def MetropolisOpenCL(circle,iterations,steps,jobs, |
451 | 68 | equemene | ParaStyle,Alu,Device,Memory): |
452 | 57 | equemene | |
453 | 57 | equemene | # Initialisation des variables en les CASTant correctement
|
454 | 57 | equemene | |
455 | 61 | equemene | MaxMemoryXPU=0
|
456 | 61 | equemene | MinMemoryXPU=0
|
457 | 61 | equemene | |
458 | 57 | equemene | if Device==0: |
459 | 307 | equemene | print("Enter XPU selector based on ALU type: first selected")
|
460 | 57 | equemene | HasXPU=False
|
461 | 57 | equemene | # Default Device selection based on ALU Type
|
462 | 57 | equemene | for platform in cl.get_platforms(): |
463 | 57 | equemene | for device in platform.get_devices(): |
464 | 202 | equemene | #deviceType=cl.device_type.to_string(device.type)
|
465 | 57 | equemene | deviceMemory=device.max_mem_alloc_size |
466 | 61 | equemene | if deviceMemory>MaxMemoryXPU:
|
467 | 61 | equemene | MaxMemoryXPU=deviceMemory |
468 | 61 | equemene | if deviceMemory<MinMemoryXPU or MinMemoryXPU==0: |
469 | 61 | equemene | MinMemoryXPU=deviceMemory |
470 | 202 | equemene | if not HasXPU: |
471 | 57 | equemene | XPU=device |
472 | 307 | equemene | print("XPU selected with Allocable Memory %i: %s" % (deviceMemory,device.name))
|
473 | 57 | equemene | HasXPU=True
|
474 | 57 | equemene | MemoryXPU=deviceMemory |
475 | 61 | equemene | |
476 | 57 | equemene | else:
|
477 | 307 | equemene | print("Enter XPU selector based on device number & ALU type")
|
478 | 57 | equemene | Id=1
|
479 | 57 | equemene | HasXPU=False
|
480 | 57 | equemene | # Primary Device selection based on Device Id
|
481 | 57 | equemene | for platform in cl.get_platforms(): |
482 | 57 | equemene | for device in platform.get_devices(): |
483 | 202 | equemene | #deviceType=cl.device_type.to_string(device.type)
|
484 | 57 | equemene | deviceMemory=device.max_mem_alloc_size |
485 | 61 | equemene | if deviceMemory>MaxMemoryXPU:
|
486 | 61 | equemene | MaxMemoryXPU=deviceMemory |
487 | 61 | equemene | if deviceMemory<MinMemoryXPU or MinMemoryXPU==0: |
488 | 61 | equemene | MinMemoryXPU=deviceMemory |
489 | 202 | equemene | if Id==Device and HasXPU==False: |
490 | 57 | equemene | XPU=device |
491 | 307 | equemene | print("CPU/GPU selected with Allocable Memory %i: %s" % (deviceMemory,device.name))
|
492 | 57 | equemene | HasXPU=True
|
493 | 57 | equemene | MemoryXPU=deviceMemory |
494 | 57 | equemene | Id=Id+1
|
495 | 57 | equemene | if HasXPU==False: |
496 | 307 | equemene | print("No XPU #%i of type %s found in all of %i devices, sorry..." % \
|
497 | 307 | equemene | (Device,Alu,Id-1))
|
498 | 57 | equemene | return(0,0,0) |
499 | 57 | equemene | |
500 | 307 | equemene | print("Allocable Memory is %i, between %i and %i " % (MemoryXPU,MinMemoryXPU,MaxMemoryXPU))
|
501 | 61 | equemene | |
502 | 57 | equemene | # Je cree le contexte et la queue pour son execution
|
503 | 57 | equemene | ctx = cl.Context([XPU]) |
504 | 63 | equemene | queue = cl.CommandQueue(ctx,properties=cl.command_queue_properties.PROFILING_ENABLE) |
505 | 63 | equemene | |
506 | 57 | equemene | # Je recupere les flag possibles pour les buffers
|
507 | 57 | equemene | mf = cl.mem_flags |
508 | 63 | equemene | |
509 | 57 | equemene | MetropolisCL = cl.Program(ctx,KERNEL_CODE_OPENCL).build(options = "-cl-mad-enable -cl-fast-relaxed-math")
|
510 | 63 | equemene | |
511 | 57 | equemene | MyDuration=numpy.zeros(steps) |
512 | 57 | equemene | |
513 | 57 | equemene | if iterations%jobs==0: |
514 | 57 | equemene | iterationsCL=numpy.uint64(iterations/jobs) |
515 | 57 | equemene | else:
|
516 | 57 | equemene | iterationsCL=numpy.uint64(iterations/jobs+1)
|
517 | 63 | equemene | |
518 | 57 | equemene | iterationsNew=numpy.uint64(iterationsCL*jobs) |
519 | 57 | equemene | |
520 | 57 | equemene | MySplutter=numpy.zeros(steps) |
521 | 57 | equemene | |
522 | 61 | equemene | MaxWorks=2**(int)(numpy.log2(MinMemoryXPU/4)) |
523 | 307 | equemene | print(MaxWorks,2**(int)(numpy.log2(MemoryXPU))) |
524 | 61 | equemene | |
525 | 62 | equemene | #Splutter=numpy.zeros((MaxWorks/jobs)*jobs).astype(numpy.uint32)
|
526 | 68 | equemene | #Splutter=numpy.zeros(jobs*16).astype(numpy.uint32)
|
527 | 68 | equemene | Splutter=numpy.zeros(Memory).astype(numpy.uint32) |
528 | 61 | equemene | |
529 | 57 | equemene | for i in range(steps): |
530 | 57 | equemene | |
531 | 57 | equemene | #Splutter=numpy.zeros(2**(int)(numpy.log2(MemoryXPU/4))).astype(numpy.uint32)
|
532 | 57 | equemene | #Splutter=numpy.zeros(1024).astype(numpy.uint32)
|
533 | 57 | equemene | |
534 | 57 | equemene | #Splutter=numpy.zeros(jobs).astype(numpy.uint32)
|
535 | 57 | equemene | |
536 | 62 | equemene | Splutter[:]=0
|
537 | 62 | equemene | |
538 | 307 | equemene | print(Splutter,len(Splutter))
|
539 | 57 | equemene | |
540 | 202 | equemene | h2d_time=time.time() |
541 | 57 | equemene | SplutterCL = cl.Buffer(ctx, mf.WRITE_ONLY|mf.COPY_HOST_PTR,hostbuf=Splutter) |
542 | 202 | equemene | print('From Host to Device time %f' % (time.time()-h2d_time))
|
543 | 57 | equemene | |
544 | 202 | equemene | start_time=time.time() |
545 | 57 | equemene | if ParaStyle=='Blocks': |
546 | 57 | equemene | # Call OpenCL kernel
|
547 | 57 | equemene | # (1,) is Global work size (only 1 work size)
|
548 | 57 | equemene | # (1,) is local work size
|
549 | 57 | equemene | # circleCL is lattice translated in CL format
|
550 | 57 | equemene | # SeedZCL is lattice translated in CL format
|
551 | 57 | equemene | # SeedWCL is lattice translated in CL format
|
552 | 57 | equemene | # step is number of iterations
|
553 | 57 | equemene | # CLLaunch=MetropolisCL.MainLoopGlobal(queue,(jobs,),None,
|
554 | 57 | equemene | # SplutterCL,
|
555 | 57 | equemene | # numpy.uint32(len(Splutter)),
|
556 | 57 | equemene | # numpy.uint64(iterationsCL),
|
557 | 57 | equemene | # numpy.uint32(nprnd(2**30/jobs)),
|
558 | 57 | equemene | # numpy.uint32(nprnd(2**30/jobs)))
|
559 | 68 | equemene | CLLaunch=MetropolisCL.SplutterGlobal(queue,(jobs,),None,
|
560 | 68 | equemene | SplutterCL, |
561 | 68 | equemene | numpy.uint32(len(Splutter)),
|
562 | 68 | equemene | numpy.uint64(iterationsCL), |
563 | 68 | equemene | numpy.uint32(nprnd(2**30/jobs)), |
564 | 68 | equemene | numpy.uint32(nprnd(2**30/jobs))) |
565 | 63 | equemene | |
566 | 307 | equemene | print("%s with (WorkItems/Threads)=(%i,%i) %s method done" % \
|
567 | 307 | equemene | (Alu,jobs,1,ParaStyle))
|
568 | 57 | equemene | elif ParaStyle=='Hybrid': |
569 | 68 | equemene | #threads=BestThreadsNumber(jobs)
|
570 | 68 | equemene | threads=BestThreadsNumber(256)
|
571 | 307 | equemene | print("print",threads)
|
572 | 57 | equemene | # en OpenCL, necessaire de mettre un Global_id identique au local_id
|
573 | 68 | equemene | CLLaunch=MetropolisCL.SplutterHybrid(queue,(jobs,),(threads,), |
574 | 68 | equemene | SplutterCL, |
575 | 68 | equemene | numpy.uint32(len(Splutter)),
|
576 | 68 | equemene | numpy.uint64(iterationsCL), |
577 | 68 | equemene | numpy.uint32(nprnd(2**30/jobs)), |
578 | 68 | equemene | numpy.uint32(nprnd(2**30/jobs))) |
579 | 57 | equemene | |
580 | 307 | equemene | print("%s with (WorkItems/Threads)=(%i,%i) %s method done" % \
|
581 | 307 | equemene | (Alu,jobs/threads,threads,ParaStyle)) |
582 | 57 | equemene | else:
|
583 | 66 | equemene | # en OpenCL, necessaire de mettre un global_id identique au local_id
|
584 | 68 | equemene | CLLaunch=MetropolisCL.SplutterLocal(queue,(jobs,),(jobs,), |
585 | 68 | equemene | SplutterCL, |
586 | 68 | equemene | numpy.uint32(len(Splutter)),
|
587 | 68 | equemene | numpy.uint64(iterationsCL), |
588 | 68 | equemene | numpy.uint32(nprnd(2**30/jobs)), |
589 | 68 | equemene | numpy.uint32(nprnd(2**30/jobs))) |
590 | 63 | equemene | |
591 | 66 | equemene | |
592 | 307 | equemene | print("%s with %i %s done" % (Alu,jobs,ParaStyle))
|
593 | 57 | equemene | |
594 | 57 | equemene | CLLaunch.wait() |
595 | 202 | equemene | d2h_time=time.time() |
596 | 57 | equemene | cl.enqueue_copy(queue, Splutter, SplutterCL).wait() |
597 | 202 | equemene | print('From Device to Host %f' % (time.time()-d2h_time))
|
598 | 202 | equemene | |
599 | 202 | equemene | # elapsed = 1e-9*(CLLaunch.profile.end - CLLaunch.profile.start)
|
600 | 202 | equemene | elapsed = time.time()-start_time |
601 | 202 | equemene | print('Elapsed compute time %f' % elapsed)
|
602 | 57 | equemene | |
603 | 57 | equemene | MyDuration[i]=elapsed |
604 | 307 | equemene | print(Splutter,sum(Splutter))
|
605 | 61 | equemene | #MySplutter[i]=numpy.median(Splutter)
|
606 | 307 | equemene | #print(numpy.mean(Splutter)*len(Splutter),MySplutter[i]*len(Splutter),numpy.std(Splutter))
|
607 | 68 | equemene | |
608 | 68 | equemene | SplutterCL.release() |
609 | 57 | equemene | |
610 | 307 | equemene | print(jobs,numpy.mean(MyDuration),numpy.median(MyDuration),numpy.std(MyDuration)) |
611 | 57 | equemene | |
612 | 57 | equemene | return(numpy.mean(MyDuration),numpy.median(MyDuration),numpy.std(MyDuration))
|
613 | 57 | equemene | |
614 | 57 | equemene | |
615 | 57 | equemene | def FitAndPrint(N,D,Curves): |
616 | 57 | equemene | |
617 | 57 | equemene | from scipy.optimize import curve_fit |
618 | 57 | equemene | import matplotlib.pyplot as plt |
619 | 57 | equemene | |
620 | 57 | equemene | try:
|
621 | 57 | equemene | coeffs_Amdahl, matcov_Amdahl = curve_fit(Amdahl, N, D) |
622 | 57 | equemene | |
623 | 57 | equemene | D_Amdahl=Amdahl(N,coeffs_Amdahl[0],coeffs_Amdahl[1],coeffs_Amdahl[2]) |
624 | 57 | equemene | coeffs_Amdahl[1]=coeffs_Amdahl[1]*coeffs_Amdahl[0]/D[0] |
625 | 57 | equemene | coeffs_Amdahl[2]=coeffs_Amdahl[2]*coeffs_Amdahl[0]/D[0] |
626 | 57 | equemene | coeffs_Amdahl[0]=D[0] |
627 | 307 | equemene | print("Amdahl Normalized: T=%.2f(%.6f+%.6f/N)" % \
|
628 | 307 | equemene | (coeffs_Amdahl[0],coeffs_Amdahl[1],coeffs_Amdahl[2])) |
629 | 57 | equemene | except:
|
630 | 307 | equemene | print("Impossible to fit for Amdahl law : only %i elements" % len(D)) |
631 | 57 | equemene | |
632 | 57 | equemene | try:
|
633 | 57 | equemene | coeffs_AmdahlR, matcov_AmdahlR = curve_fit(AmdahlR, N, D) |
634 | 57 | equemene | |
635 | 57 | equemene | D_AmdahlR=AmdahlR(N,coeffs_AmdahlR[0],coeffs_AmdahlR[1]) |
636 | 57 | equemene | coeffs_AmdahlR[1]=coeffs_AmdahlR[1]*coeffs_AmdahlR[0]/D[0] |
637 | 57 | equemene | coeffs_AmdahlR[0]=D[0] |
638 | 307 | equemene | print("Amdahl Reduced Normalized: T=%.2f(%.6f+%.6f/N)" % \
|
639 | 307 | equemene | (coeffs_AmdahlR[0],1-coeffs_AmdahlR[1],coeffs_AmdahlR[1])) |
640 | 57 | equemene | |
641 | 57 | equemene | except:
|
642 | 307 | equemene | print("Impossible to fit for Reduced Amdahl law : only %i elements" % len(D)) |
643 | 57 | equemene | |
644 | 57 | equemene | try:
|
645 | 57 | equemene | coeffs_Mylq, matcov_Mylq = curve_fit(Mylq, N, D) |
646 | 57 | equemene | |
647 | 57 | equemene | coeffs_Mylq[1]=coeffs_Mylq[1]*coeffs_Mylq[0]/D[0] |
648 | 57 | equemene | # coeffs_Mylq[2]=coeffs_Mylq[2]*coeffs_Mylq[0]/D[0]
|
649 | 57 | equemene | coeffs_Mylq[3]=coeffs_Mylq[3]*coeffs_Mylq[0]/D[0] |
650 | 57 | equemene | coeffs_Mylq[0]=D[0] |
651 | 307 | equemene | print("Mylq Normalized : T=%.2f(%.6f+%.6f/N)+%.6f*N" % (coeffs_Mylq[0], |
652 | 57 | equemene | coeffs_Mylq[1],
|
653 | 57 | equemene | coeffs_Mylq[3],
|
654 | 307 | equemene | coeffs_Mylq[2]))
|
655 | 57 | equemene | D_Mylq=Mylq(N,coeffs_Mylq[0],coeffs_Mylq[1],coeffs_Mylq[2], |
656 | 57 | equemene | coeffs_Mylq[3])
|
657 | 57 | equemene | except:
|
658 | 307 | equemene | print("Impossible to fit for Mylq law : only %i elements" % len(D)) |
659 | 57 | equemene | |
660 | 57 | equemene | try:
|
661 | 57 | equemene | coeffs_Mylq2, matcov_Mylq2 = curve_fit(Mylq2, N, D) |
662 | 57 | equemene | |
663 | 57 | equemene | coeffs_Mylq2[1]=coeffs_Mylq2[1]*coeffs_Mylq2[0]/D[0] |
664 | 57 | equemene | # coeffs_Mylq2[2]=coeffs_Mylq2[2]*coeffs_Mylq2[0]/D[0]
|
665 | 57 | equemene | # coeffs_Mylq2[3]=coeffs_Mylq2[3]*coeffs_Mylq2[0]/D[0]
|
666 | 57 | equemene | coeffs_Mylq2[4]=coeffs_Mylq2[4]*coeffs_Mylq2[0]/D[0] |
667 | 57 | equemene | coeffs_Mylq2[0]=D[0] |
668 | 307 | equemene | print("Mylq 2nd order Normalized: T=%.2f(%.6f+%.6f/N)+%.6f*N+%.6f*N^2" % \
|
669 | 307 | equemene | (coeffs_Mylq2[0],coeffs_Mylq2[1], |
670 | 307 | equemene | coeffs_Mylq2[4],coeffs_Mylq2[2],coeffs_Mylq2[3])) |
671 | 57 | equemene | |
672 | 57 | equemene | except:
|
673 | 307 | equemene | print("Impossible to fit for 2nd order Mylq law : only %i elements" % len(D) ) |
674 | 57 | equemene | |
675 | 57 | equemene | if Curves:
|
676 | 57 | equemene | plt.xlabel("Number of Threads/work Items")
|
677 | 57 | equemene | plt.ylabel("Total Elapsed Time")
|
678 | 57 | equemene | |
679 | 57 | equemene | Experience,=plt.plot(N,D,'ro')
|
680 | 57 | equemene | try:
|
681 | 57 | equemene | pAmdahl,=plt.plot(N,D_Amdahl,label="Loi de Amdahl")
|
682 | 57 | equemene | pMylq,=plt.plot(N,D_Mylq,label="Loi de Mylq")
|
683 | 57 | equemene | except:
|
684 | 307 | equemene | print("Fit curves seem not to be available")
|
685 | 57 | equemene | |
686 | 57 | equemene | plt.legend() |
687 | 57 | equemene | plt.show() |
688 | 57 | equemene | |
689 | 57 | equemene | if __name__=='__main__': |
690 | 57 | equemene | |
691 | 57 | equemene | # Set defaults values
|
692 | 57 | equemene | |
693 | 57 | equemene | # Alu can be CPU, GPU or ACCELERATOR
|
694 | 57 | equemene | Alu='CPU'
|
695 | 57 | equemene | # Id of GPU : 1 is for first find !
|
696 | 57 | equemene | Device=0
|
697 | 57 | equemene | # GPU style can be Cuda (Nvidia implementation) or OpenCL
|
698 | 57 | equemene | GpuStyle='OpenCL'
|
699 | 57 | equemene | # Parallel distribution can be on Threads or Blocks
|
700 | 57 | equemene | ParaStyle='Blocks'
|
701 | 57 | equemene | # Iterations is integer
|
702 | 66 | equemene | Iterations=10000000
|
703 | 57 | equemene | # JobStart in first number of Jobs to explore
|
704 | 57 | equemene | JobStart=1
|
705 | 57 | equemene | # JobEnd is last number of Jobs to explore
|
706 | 57 | equemene | JobEnd=16
|
707 | 57 | equemene | # JobStep is the step of Jobs to explore
|
708 | 57 | equemene | JobStep=1
|
709 | 57 | equemene | # Redo is the times to redo the test to improve metrology
|
710 | 57 | equemene | Redo=1
|
711 | 57 | equemene | # OutMetrology is method for duration estimation : False is GPU inside
|
712 | 57 | equemene | OutMetrology=False
|
713 | 57 | equemene | Metrology='InMetro'
|
714 | 57 | equemene | # Curves is True to print the curves
|
715 | 57 | equemene | Curves=False
|
716 | 57 | equemene | # Fit is True to print the curves
|
717 | 57 | equemene | Fit=False
|
718 | 68 | equemene | # Memory of vector explored
|
719 | 68 | equemene | Memory=1024
|
720 | 57 | equemene | |
721 | 57 | equemene | try:
|
722 | 68 | equemene | opts, args = getopt.getopt(sys.argv[1:],"hocfa:g:p:i:s:e:t:r:d:m:",["alu=","gpustyle=","parastyle=","iterations=","jobstart=","jobend=","jobstep=","redo=","device="]) |
723 | 57 | equemene | except getopt.GetoptError:
|
724 | 307 | equemene | print('%s -o (Out of Core Metrology) -c (Print Curves) -f (Fit to Amdahl Law) -a <CPU/GPU/ACCELERATOR> -d <DeviceId> -g <CUDA/OpenCL> -p <Threads/Hybrid/Blocks> -i <Iterations> -s <JobStart> -e <JobEnd> -t <JobStep> -r <RedoToImproveStats> -m <MemoryRaw>' % sys.argv[0]) |
725 | 57 | equemene | sys.exit(2)
|
726 | 57 | equemene | |
727 | 57 | equemene | for opt, arg in opts: |
728 | 57 | equemene | if opt == '-h': |
729 | 307 | equemene | print('%s -o (Out of Core Metrology) -c (Print Curves) -f (Fit to Amdahl Law) -a <CPU/GPU/ACCELERATOR> -d <DeviceId> -g <CUDA/OpenCL> -p <Threads/Hybrid/Blocks> -i <Iterations> -s <JobStart> -e <JobEnd> -t <JobStep> -r <RedoToImproveStats> -m <MemoryRaw>' % sys.argv[0]) |
730 | 57 | equemene | |
731 | 307 | equemene | print("\nInformations about devices detected under OpenCL:")
|
732 | 57 | equemene | # For PyOpenCL import
|
733 | 57 | equemene | try:
|
734 | 57 | equemene | import pyopencl as cl |
735 | 57 | equemene | Id=1
|
736 | 57 | equemene | for platform in cl.get_platforms(): |
737 | 57 | equemene | for device in platform.get_devices(): |
738 | 202 | equemene | #deviceType=cl.device_type.to_string(device.type)
|
739 | 57 | equemene | deviceMemory=device.max_mem_alloc_size |
740 | 307 | equemene | print("Device #%i from %s with memory %i : %s" % (Id,platform.vendor,deviceMemory,device.name.lstrip()))
|
741 | 57 | equemene | Id=Id+1
|
742 | 57 | equemene | |
743 | 307 | equemene | print() |
744 | 57 | equemene | sys.exit() |
745 | 57 | equemene | except ImportError: |
746 | 307 | equemene | print("Your platform does not seem to support OpenCL")
|
747 | 57 | equemene | |
748 | 57 | equemene | elif opt == '-o': |
749 | 57 | equemene | OutMetrology=True
|
750 | 57 | equemene | Metrology='OutMetro'
|
751 | 57 | equemene | elif opt == '-c': |
752 | 57 | equemene | Curves=True
|
753 | 57 | equemene | elif opt == '-f': |
754 | 57 | equemene | Fit=True
|
755 | 57 | equemene | elif opt in ("-a", "--alu"): |
756 | 57 | equemene | Alu = arg |
757 | 57 | equemene | elif opt in ("-d", "--device"): |
758 | 57 | equemene | Device = int(arg)
|
759 | 57 | equemene | elif opt in ("-g", "--gpustyle"): |
760 | 57 | equemene | GpuStyle = arg |
761 | 57 | equemene | elif opt in ("-p", "--parastyle"): |
762 | 57 | equemene | ParaStyle = arg |
763 | 57 | equemene | elif opt in ("-i", "--iterations"): |
764 | 57 | equemene | Iterations = numpy.uint64(arg) |
765 | 57 | equemene | elif opt in ("-s", "--jobstart"): |
766 | 57 | equemene | JobStart = int(arg)
|
767 | 57 | equemene | elif opt in ("-e", "--jobend"): |
768 | 57 | equemene | JobEnd = int(arg)
|
769 | 57 | equemene | elif opt in ("-t", "--jobstep"): |
770 | 57 | equemene | JobStep = int(arg)
|
771 | 57 | equemene | elif opt in ("-r", "--redo"): |
772 | 57 | equemene | Redo = int(arg)
|
773 | 68 | equemene | elif opt in ("-m", "--memory"): |
774 | 68 | equemene | Memory = int(arg)
|
775 | 57 | equemene | |
776 | 57 | equemene | if Alu=='CPU' and GpuStyle=='CUDA': |
777 | 307 | equemene | print("Alu can't be CPU for CUDA, set Alu to GPU")
|
778 | 57 | equemene | Alu='GPU'
|
779 | 57 | equemene | |
780 | 57 | equemene | if ParaStyle not in ('Blocks','Threads','Hybrid'): |
781 | 307 | equemene | print("%s not exists, ParaStyle set as Threads !" % ParaStyle)
|
782 | 66 | equemene | ParaStyle='Blocks'
|
783 | 57 | equemene | |
784 | 307 | equemene | print("Compute unit : %s" % Alu)
|
785 | 307 | equemene | print("Device Identification : %s" % Device)
|
786 | 307 | equemene | print("GpuStyle used : %s" % GpuStyle)
|
787 | 307 | equemene | print("Parallel Style used : %s" % ParaStyle)
|
788 | 307 | equemene | print("Iterations : %s" % Iterations)
|
789 | 307 | equemene | print("Number of threads on start : %s" % JobStart)
|
790 | 307 | equemene | print("Number of threads on end : %s" % JobEnd)
|
791 | 307 | equemene | print("Number of redo : %s" % Redo)
|
792 | 307 | equemene | print("Memory : %s" % Memory)
|
793 | 307 | equemene | print("Metrology done out of CPU/GPU : %r" % OutMetrology)
|
794 | 57 | equemene | |
795 | 57 | equemene | if GpuStyle=='CUDA': |
796 | 57 | equemene | try:
|
797 | 57 | equemene | # For PyCUDA import
|
798 | 57 | equemene | import pycuda.driver as cuda |
799 | 57 | equemene | import pycuda.gpuarray as gpuarray |
800 | 57 | equemene | import pycuda.autoinit |
801 | 57 | equemene | from pycuda.compiler import SourceModule |
802 | 57 | equemene | except ImportError: |
803 | 307 | equemene | print("Platform does not seem to support CUDA")
|
804 | 57 | equemene | |
805 | 57 | equemene | if GpuStyle=='OpenCL': |
806 | 57 | equemene | try:
|
807 | 57 | equemene | # For PyOpenCL import
|
808 | 57 | equemene | import pyopencl as cl |
809 | 57 | equemene | Id=1
|
810 | 57 | equemene | for platform in cl.get_platforms(): |
811 | 57 | equemene | for device in platform.get_devices(): |
812 | 202 | equemene | #deviceType=cl.device_type.to_string(device.type)
|
813 | 307 | equemene | print("Device #%i : %s" % (Id,device.name))
|
814 | 57 | equemene | if Id == Device:
|
815 | 57 | equemene | # Set the Alu as detected Device Type
|
816 | 202 | equemene | Alu='xPU'
|
817 | 57 | equemene | Id=Id+1
|
818 | 57 | equemene | except ImportError: |
819 | 307 | equemene | print("Platform does not seem to support CUDA")
|
820 | 57 | equemene | |
821 | 57 | equemene | average=numpy.array([]).astype(numpy.float32) |
822 | 57 | equemene | median=numpy.array([]).astype(numpy.float32) |
823 | 57 | equemene | stddev=numpy.array([]).astype(numpy.float32) |
824 | 57 | equemene | |
825 | 57 | equemene | ExploredJobs=numpy.array([]).astype(numpy.uint32) |
826 | 57 | equemene | |
827 | 57 | equemene | Jobs=JobStart |
828 | 57 | equemene | |
829 | 57 | equemene | while Jobs <= JobEnd:
|
830 | 57 | equemene | avg,med,std=0,0,0 |
831 | 57 | equemene | ExploredJobs=numpy.append(ExploredJobs,Jobs) |
832 | 57 | equemene | circle=numpy.zeros(Jobs).astype(numpy.uint64) |
833 | 57 | equemene | |
834 | 57 | equemene | if OutMetrology:
|
835 | 57 | equemene | duration=numpy.array([]).astype(numpy.float32) |
836 | 57 | equemene | for i in range(Redo): |
837 | 57 | equemene | start=time.time() |
838 | 57 | equemene | if GpuStyle=='CUDA': |
839 | 57 | equemene | try:
|
840 | 68 | equemene | a,m,s=MetropolisCuda(circle,Iterations,1,Jobs,ParaStyle,
|
841 | 68 | equemene | Memory) |
842 | 57 | equemene | except:
|
843 | 307 | equemene | print("Problem with %i // computations on Cuda" % Jobs)
|
844 | 57 | equemene | elif GpuStyle=='OpenCL': |
845 | 57 | equemene | try:
|
846 | 57 | equemene | a,m,s=MetropolisOpenCL(circle,Iterations,1,Jobs,ParaStyle,
|
847 | 68 | equemene | Alu,Device,Memory) |
848 | 57 | equemene | except:
|
849 | 307 | equemene | print("Problem with %i // computations on OpenCL" % Jobs)
|
850 | 57 | equemene | duration=numpy.append(duration,time.time()-start) |
851 | 57 | equemene | if (a,m,s) != (0,0,0): |
852 | 57 | equemene | avg=numpy.mean(duration) |
853 | 57 | equemene | med=numpy.median(duration) |
854 | 57 | equemene | std=numpy.std(duration) |
855 | 57 | equemene | else:
|
856 | 307 | equemene | print("Values seem to be wrong...")
|
857 | 57 | equemene | else:
|
858 | 57 | equemene | if GpuStyle=='CUDA': |
859 | 57 | equemene | try:
|
860 | 66 | equemene | avg,med,std=MetropolisCuda(circle,Iterations,Redo, |
861 | 68 | equemene | Jobs,ParaStyle,Memory) |
862 | 57 | equemene | except:
|
863 | 307 | equemene | print("Problem with %i // computations on Cuda" % Jobs)
|
864 | 57 | equemene | elif GpuStyle=='OpenCL': |
865 | 57 | equemene | try:
|
866 | 68 | equemene | avg,med,std=MetropolisOpenCL(circle,Iterations,Redo,Jobs, |
867 | 68 | equemene | ParaStyle,Alu,Device,Memory) |
868 | 57 | equemene | except:
|
869 | 307 | equemene | print("Problem with %i // computations on OpenCL" % Jobs)
|
870 | 57 | equemene | |
871 | 57 | equemene | if (avg,med,std) != (0,0,0): |
872 | 307 | equemene | print("jobs,avg,med,std",Jobs,avg,med,std)
|
873 | 57 | equemene | average=numpy.append(average,avg) |
874 | 57 | equemene | median=numpy.append(median,med) |
875 | 57 | equemene | stddev=numpy.append(stddev,std) |
876 | 57 | equemene | else:
|
877 | 307 | equemene | print("Values seem to be wrong...")
|
878 | 57 | equemene | #THREADS*=2
|
879 | 57 | equemene | if len(average)!=0: |
880 | 60 | equemene | numpy.savez("Splutter_%s_%s_%s_%i_%i_%.8i_Device%i_%s_%s" % (Alu,GpuStyle,ParaStyle,JobStart,JobEnd,Iterations,Device,Metrology,gethostname()),(ExploredJobs,average,median,stddev))
|
881 | 57 | equemene | ToSave=[ ExploredJobs,average,median,stddev ] |
882 | 60 | equemene | numpy.savetxt("Splutter_%s_%s_%s_%i_%i_%.8i_Device%i_%s_%s" % (Alu,GpuStyle,ParaStyle,JobStart,JobEnd,Iterations,Device,Metrology,gethostname()),numpy.transpose(ToSave))
|
883 | 57 | equemene | Jobs+=JobStep |
884 | 57 | equemene | |
885 | 57 | equemene | if Fit:
|
886 | 57 | equemene | FitAndPrint(ExploredJobs,median,Curves) |