root / ETSN / MyDFT_10.py @ 302
Historique | Voir | Annoter | Télécharger (16,99 ko)
1 |
#!/usr/bin/env python3
|
---|---|
2 |
|
3 |
import numpy as np |
4 |
import pyopencl as cl |
5 |
from numpy import pi,cos,sin |
6 |
|
7 |
#
|
8 |
def NumpyFFT(x,y): |
9 |
xy=np.csingle(x+1.j*y)
|
10 |
XY=np.fft.fft(xy) |
11 |
print(XY) |
12 |
return(XY.real,XY.imag)
|
13 |
|
14 |
#
|
15 |
def OpenCLFFT(x,y,device): |
16 |
import pyopencl as cl |
17 |
import pyopencl.array as cla |
18 |
import time |
19 |
import gpyfft |
20 |
from gpyfft.fft import FFT |
21 |
|
22 |
TimeIn=time.time() |
23 |
Id=0
|
24 |
HasXPU=False
|
25 |
for platform in cl.get_platforms(): |
26 |
for device in platform.get_devices(): |
27 |
if Id==Device:
|
28 |
XPU=device |
29 |
print("CPU/GPU selected: ",device.name.lstrip())
|
30 |
HasXPU=True
|
31 |
Id+=1
|
32 |
# print(Id)
|
33 |
|
34 |
if HasXPU==False: |
35 |
print("No XPU #%i found in all of %i devices, sorry..." % (Device,Id-1)) |
36 |
sys.exit() |
37 |
Elapsed=time.time()-TimeIn |
38 |
print("Selection of device : %.3f" % Elapsed)
|
39 |
|
40 |
TimeIn=time.time() |
41 |
try:
|
42 |
ctx = cl.Context(devices=[XPU]) |
43 |
queue = cl.CommandQueue(ctx,properties=cl.command_queue_properties.PROFILING_ENABLE) |
44 |
except:
|
45 |
print("Crash during context creation")
|
46 |
Elapsed=time.time()-TimeIn |
47 |
print("Context initialisation : %.3f" % Elapsed)
|
48 |
|
49 |
TimeIn=time.time() |
50 |
XY_gpu = cla.to_device(queue, np.csingle(x+1.j*y))
|
51 |
Elapsed=time.time()-TimeIn |
52 |
print("Copy from Host to Device : %.3f" % Elapsed)
|
53 |
|
54 |
TimeIn=time.time() |
55 |
transform = FFT(ctx, queue, XY_gpu) |
56 |
event, = transform.enqueue() |
57 |
event.wait() |
58 |
Elapsed=time.time()-TimeIn |
59 |
print("Compute FFT : %.3f" % Elapsed)
|
60 |
TimeIn=time.time() |
61 |
XY = XY_gpu.get() |
62 |
Elapsed=time.time()-TimeIn |
63 |
print("Copy from Device to Host : %.3f" % Elapsed)
|
64 |
print(XY) |
65 |
return(XY.real,XY.imag)
|
66 |
|
67 |
# Naive Discrete Fourier Transform
|
68 |
def MyDFT(x,y): |
69 |
size=x.shape[0]
|
70 |
X=np.zeros(size).astype(np.float32) |
71 |
Y=np.zeros(size).astype(np.float32) |
72 |
for i in range(size): |
73 |
for j in range(size): |
74 |
X[i]=X[i]+x[j]*cos(2.*pi*i*j/size)+y[j]*sin(2.*pi*i*j/size) |
75 |
Y[i]=Y[i]-x[j]*sin(2.*pi*i*j/size)+y[j]*cos(2.*pi*i*j/size) |
76 |
return(X,Y)
|
77 |
|
78 |
# Numpy Discrete Fourier Transform
|
79 |
def NumpyDFT(x,y): |
80 |
size=x.shape[0]
|
81 |
X=np.zeros(size).astype(np.float32) |
82 |
Y=np.zeros(size).astype(np.float32) |
83 |
nj=np.multiply(2.0*np.pi/size,np.arange(size)).astype(np.float32)
|
84 |
for i in range(size): |
85 |
X[i]=np.sum(np.add(np.multiply(np.cos(i*nj),x),np.multiply(np.sin(i*nj),y))) |
86 |
Y[i]=np.sum(-np.subtract(np.multiply(np.sin(i*nj),x),np.multiply(np.cos(i*nj),y))) |
87 |
return(X,Y)
|
88 |
|
89 |
# Numba Discrete Fourier Transform
|
90 |
import numba |
91 |
@numba.njit(parallel=True) |
92 |
def NumbaDFT(x,y): |
93 |
size=x.shape[0]
|
94 |
X=np.zeros(size).astype(np.float32) |
95 |
Y=np.zeros(size).astype(np.float32) |
96 |
nj=np.multiply(2.0*np.pi/size,np.arange(size)).astype(np.float32)
|
97 |
for i in numba.prange(size): |
98 |
X[i]=np.sum(np.add(np.multiply(np.cos(i*nj),x),np.multiply(np.sin(i*nj),y))) |
99 |
Y[i]=np.sum(-np.subtract(np.multiply(np.sin(i*nj),x),np.multiply(np.cos(i*nj),y))) |
100 |
return(X,Y)
|
101 |
|
102 |
# OpenCL complete operation
|
103 |
def OpenCLDFT(a_np,b_np,Device): |
104 |
|
105 |
Id=0
|
106 |
HasXPU=False
|
107 |
for platform in cl.get_platforms(): |
108 |
for device in platform.get_devices(): |
109 |
if Id==Device:
|
110 |
XPU=device |
111 |
print("CPU/GPU selected: ",device.name.lstrip())
|
112 |
HasXPU=True
|
113 |
Id+=1
|
114 |
# print(Id)
|
115 |
|
116 |
if HasXPU==False: |
117 |
print("No XPU #%i found in all of %i devices, sorry..." % (Device,Id-1)) |
118 |
sys.exit() |
119 |
|
120 |
try:
|
121 |
ctx = cl.Context(devices=[XPU]) |
122 |
queue = cl.CommandQueue(ctx,properties=cl.command_queue_properties.PROFILING_ENABLE) |
123 |
except:
|
124 |
print("Crash during context creation")
|
125 |
|
126 |
TimeIn=time.time() |
127 |
# Copy from Host to Device using pointers
|
128 |
mf = cl.mem_flags |
129 |
a_g = cl.Buffer(ctx, mf.READ_ONLY | mf.COPY_HOST_PTR, hostbuf=a_np) |
130 |
b_g = cl.Buffer(ctx, mf.READ_ONLY | mf.COPY_HOST_PTR, hostbuf=b_np) |
131 |
Elapsed=time.time()-TimeIn |
132 |
print("Copy from Host 2 Device : %.3f" % Elapsed)
|
133 |
|
134 |
TimeIn=time.time() |
135 |
# Definition of kernel under OpenCL
|
136 |
prg = cl.Program(ctx, """
|
137 |
|
138 |
#define PI 3.141592653589793
|
139 |
|
140 |
__kernel void MyDFT(
|
141 |
__global const float *a_g, __global const float *b_g, __global float *A_g, __global float *B_g)
|
142 |
{
|
143 |
int gid = get_global_id(0);
|
144 |
uint size = get_global_size(0);
|
145 |
float A=0.,B=0.;
|
146 |
for (uint i=0; i<size;i++)
|
147 |
{
|
148 |
A+=a_g[i]*cos(2.*PI*(float)(gid*i)/(float)size)+b_g[i]*sin(2.*PI*(float)(gid*i)/(float)size);
|
149 |
B+=-a_g[i]*sin(2.*PI*(float)(gid*i)/(float)size)+b_g[i]*cos(2.*PI*(float)(gid*i)/(float)size);
|
150 |
}
|
151 |
A_g[gid]=A;
|
152 |
B_g[gid]=B;
|
153 |
}
|
154 |
""").build()
|
155 |
Elapsed=time.time()-TimeIn |
156 |
print("Building kernels : %.3f" % Elapsed)
|
157 |
|
158 |
TimeIn=time.time() |
159 |
# Memory allocation on Device for result
|
160 |
A_ocl = np.empty_like(a_np) |
161 |
B_ocl = np.empty_like(a_np) |
162 |
Elapsed=time.time()-TimeIn |
163 |
print("Allocation on Host for results : %.3f" % Elapsed)
|
164 |
|
165 |
A_g = cl.Buffer(ctx, mf.WRITE_ONLY, A_ocl.nbytes) |
166 |
B_g = cl.Buffer(ctx, mf.WRITE_ONLY, B_ocl.nbytes) |
167 |
Elapsed=time.time()-TimeIn |
168 |
print("Allocation on Device for results : %.3f" % Elapsed)
|
169 |
|
170 |
TimeIn=time.time() |
171 |
# Synthesis of function "sillysum" inside Kernel Sources
|
172 |
knl = prg.MyDFT # Use this Kernel object for repeated calls
|
173 |
Elapsed=time.time()-TimeIn |
174 |
print("Synthesis of kernel : %.3f" % Elapsed)
|
175 |
|
176 |
TimeIn=time.time() |
177 |
# Call of kernel previously defined
|
178 |
CallCL=knl(queue, a_np.shape, None, a_g, b_g, A_g, B_g)
|
179 |
#
|
180 |
CallCL.wait() |
181 |
Elapsed=time.time()-TimeIn |
182 |
print("Execution of kernel : %.3f" % Elapsed)
|
183 |
|
184 |
TimeIn=time.time() |
185 |
# Copy from Device to Host
|
186 |
cl.enqueue_copy(queue, A_ocl, A_g) |
187 |
cl.enqueue_copy(queue, B_ocl, B_g) |
188 |
Elapsed=time.time()-TimeIn |
189 |
print("Copy from Device 2 Host : %.3f" % Elapsed)
|
190 |
|
191 |
# Liberation of memory
|
192 |
a_g.release() |
193 |
b_g.release() |
194 |
A_g.release() |
195 |
B_g.release() |
196 |
|
197 |
return(A_ocl,B_ocl)
|
198 |
|
199 |
# CUDA complete operation
|
200 |
def CUDADFT(a_np,b_np,Device,Threads): |
201 |
# import pycuda.autoinit
|
202 |
import pycuda.driver as drv |
203 |
from pycuda.compiler import SourceModule |
204 |
|
205 |
try:
|
206 |
# For PyCUDA import
|
207 |
import pycuda.driver as cuda |
208 |
from pycuda.compiler import SourceModule |
209 |
|
210 |
cuda.init() |
211 |
for Id in range(cuda.Device.count()): |
212 |
if Id==Device:
|
213 |
XPU=cuda.Device(Id) |
214 |
print("GPU selected %s" % XPU.name())
|
215 |
print
|
216 |
|
217 |
except ImportError: |
218 |
print("Platform does not seem to support CUDA")
|
219 |
|
220 |
Context=XPU.make_context() |
221 |
|
222 |
TimeIn=time.time() |
223 |
mod = SourceModule("""
|
224 |
|
225 |
#define PI 3.141592653589793
|
226 |
|
227 |
__global__ void MyDFT(float *A_g, float *B_g, const float *a_g,const float *b_g)
|
228 |
{
|
229 |
const int gid = blockIdx.x*blockDim.x+threadIdx.x;
|
230 |
uint size = gridDim.x*blockDim.x;
|
231 |
float A=0.,B=0.;
|
232 |
for (uint i=0; i<size;i++)
|
233 |
{
|
234 |
A+=a_g[i]*cos(2.*PI*(float)(gid*i)/(float)size)+b_g[i]*sin(2.*PI*(float)(gid*i)/(float)size);
|
235 |
B+=-a_g[i]*sin(2.*PI*(float)(gid*i)/(float)size)+b_g[i]*cos(2.*PI*(float)(gid*i)/(float)size);
|
236 |
}
|
237 |
A_g[gid]=A;
|
238 |
B_g[gid]=B;
|
239 |
}
|
240 |
|
241 |
""")
|
242 |
Elapsed=time.time()-TimeIn |
243 |
print("Definition of kernel : %.3f" % Elapsed)
|
244 |
|
245 |
TimeIn=time.time() |
246 |
MyDFT = mod.get_function("MyDFT")
|
247 |
Elapsed=time.time()-TimeIn |
248 |
print("Synthesis of kernel : %.3f" % Elapsed)
|
249 |
|
250 |
TimeIn=time.time() |
251 |
A_np = np.zeros_like(a_np) |
252 |
B_np = np.zeros_like(a_np) |
253 |
Elapsed=time.time()-TimeIn |
254 |
print("Allocation on Host for results : %.3f" % Elapsed)
|
255 |
|
256 |
Size=a_np.size |
257 |
if (Size % Threads != 0): |
258 |
print("Impossible : %i not multiple of %i..." % (Threads,Size) )
|
259 |
TimeIn=time.time() |
260 |
MyDFT(drv.Out(A_np), drv.Out(B_np), drv.In(a_np), drv.In(b_np), |
261 |
block=(1,1,1), grid=(a_np.size,1)) |
262 |
Elapsed=time.time()-TimeIn |
263 |
print("Execution of kernel : %.3f" % Elapsed)
|
264 |
else:
|
265 |
Blocks=int(Size/Threads)
|
266 |
TimeIn=time.time() |
267 |
MyDFT(drv.Out(A_np), drv.Out(B_np), drv.In(a_np), drv.In(b_np), |
268 |
block=(Threads,1,1), grid=(Blocks,1)) |
269 |
Elapsed=time.time()-TimeIn |
270 |
print("Execution of kernel : %.3f" % Elapsed)
|
271 |
|
272 |
Context.pop() |
273 |
Context.detach() |
274 |
|
275 |
return(A_np,B_np)
|
276 |
|
277 |
import sys |
278 |
import time |
279 |
|
280 |
if __name__=='__main__': |
281 |
|
282 |
SIZE=1024
|
283 |
Device=0
|
284 |
NaiveMethod=False
|
285 |
NumpyFFTMethod=True
|
286 |
OpenCLFFTMethod=False
|
287 |
NumpyMethod=False
|
288 |
NumbaMethod=False
|
289 |
OpenCLMethod=False
|
290 |
CUDAMethod=True
|
291 |
Threads=1
|
292 |
|
293 |
import getopt |
294 |
|
295 |
HowToUse='%s -n [Naive] -y [numpY] -a [numbA] -o [OpenCL] -c [CUDA] -s <SizeOfVector> -d <DeviceId> -t <threads>'
|
296 |
|
297 |
try:
|
298 |
opts, args = getopt.getopt(sys.argv[1:],"nyaochs:d:t:",["size=","device="]) |
299 |
except getopt.GetoptError:
|
300 |
print(HowToUse % sys.argv[0])
|
301 |
sys.exit(2)
|
302 |
|
303 |
# List of Devices
|
304 |
Devices=[] |
305 |
Alu={} |
306 |
|
307 |
for opt, arg in opts: |
308 |
if opt == '-h': |
309 |
print(HowToUse % sys.argv[0])
|
310 |
|
311 |
print("\nInformations about devices detected under OpenCL API:")
|
312 |
# For PyOpenCL import
|
313 |
try:
|
314 |
import pyopencl as cl |
315 |
Id=0
|
316 |
for platform in cl.get_platforms(): |
317 |
for device in platform.get_devices(): |
318 |
#deviceType=cl.device_type.to_string(device.type)
|
319 |
deviceType="xPU"
|
320 |
print("Device #%i from %s of type %s : %s" % (Id,platform.vendor.lstrip(),deviceType,device.name.lstrip()))
|
321 |
Id=Id+1
|
322 |
|
323 |
except:
|
324 |
print("Your platform does not seem to support OpenCL")
|
325 |
|
326 |
print("\nInformations about devices detected under CUDA API:")
|
327 |
# For PyCUDA import
|
328 |
try:
|
329 |
import pycuda.driver as cuda |
330 |
cuda.init() |
331 |
for Id in range(cuda.Device.count()): |
332 |
device=cuda.Device(Id) |
333 |
print("Device #%i of type GPU : %s" % (Id,device.name()))
|
334 |
print
|
335 |
except:
|
336 |
print("Your platform does not seem to support CUDA")
|
337 |
|
338 |
sys.exit() |
339 |
|
340 |
elif opt in ("-d", "--device"): |
341 |
Device=int(arg)
|
342 |
elif opt in ("-s", "--size"): |
343 |
SIZE = int(arg)
|
344 |
elif opt in ("-t", "--threads"): |
345 |
Threads = int(arg)
|
346 |
elif opt in ("-n"): |
347 |
NaiveMethod=True
|
348 |
elif opt in ("-y"): |
349 |
NumpyMethod=True
|
350 |
elif opt in ("-a"): |
351 |
NumbaMethod=True
|
352 |
elif opt in ("-o"): |
353 |
OpenCLMethod=True
|
354 |
elif opt in ("-c"): |
355 |
CUDAMethod=True
|
356 |
|
357 |
print("Device Selection : %i" % Device)
|
358 |
print("Size of complex vector : %i" % SIZE)
|
359 |
print("DFT Naive computation %s " % NaiveMethod )
|
360 |
print("DFT Numpy computation %s " % NumpyMethod )
|
361 |
print("FFT Numpy computation %s " % NumpyFFTMethod )
|
362 |
print("DFT Numba computation %s " % NumbaMethod )
|
363 |
print("DFT OpenCL computation %s " % OpenCLMethod )
|
364 |
print("DFT CUDA computation %s " % CUDAMethod )
|
365 |
|
366 |
if CUDAMethod:
|
367 |
try:
|
368 |
# For PyCUDA import
|
369 |
import pycuda.driver as cuda |
370 |
|
371 |
cuda.init() |
372 |
for Id in range(cuda.Device.count()): |
373 |
device=cuda.Device(Id) |
374 |
print("Device #%i of type GPU : %s" % (Id,device.name()))
|
375 |
if Id in Devices: |
376 |
Alu[Id]='GPU'
|
377 |
|
378 |
except ImportError: |
379 |
print("Platform does not seem to support CUDA")
|
380 |
|
381 |
if OpenCLMethod:
|
382 |
try:
|
383 |
# For PyOpenCL import
|
384 |
import pyopencl as cl |
385 |
Id=0
|
386 |
for platform in cl.get_platforms(): |
387 |
for device in platform.get_devices(): |
388 |
#deviceType=cl.device_type.to_string(device.type)
|
389 |
deviceType="xPU"
|
390 |
print("Device #%i from %s of type %s : %s" % (Id,platform.vendor.lstrip().rstrip(),deviceType,device.name.lstrip().rstrip()))
|
391 |
|
392 |
if Id in Devices: |
393 |
# Set the Alu as detected Device Type
|
394 |
Alu[Id]=deviceType |
395 |
Id=Id+1
|
396 |
except ImportError: |
397 |
print("Platform does not seem to support OpenCL")
|
398 |
|
399 |
|
400 |
|
401 |
a_np = np.ones(SIZE).astype(np.float32) |
402 |
b_np = np.ones(SIZE).astype(np.float32) |
403 |
# a_np = np.random.rand(SIZE).astype(np.float32)
|
404 |
# b_np = np.random.rand(SIZE).astype(np.float32)
|
405 |
|
406 |
C_np = np.zeros(SIZE).astype(np.float32) |
407 |
D_np = np.zeros(SIZE).astype(np.float32) |
408 |
C_np[0] = np.float32(SIZE)
|
409 |
D_np[0] = np.float32(SIZE)
|
410 |
|
411 |
# Native & Naive Implementation
|
412 |
if NaiveMethod:
|
413 |
print("Performing naive implementation")
|
414 |
TimeIn=time.time() |
415 |
c_np,d_np=MyDFT(a_np,b_np) |
416 |
NativeElapsed=time.time()-TimeIn |
417 |
NativeRate=int(SIZE/NativeElapsed)
|
418 |
print("NativeRate: %i" % NativeRate)
|
419 |
print("Precision: ",np.linalg.norm(c_np-C_np),
|
420 |
np.linalg.norm(d_np-D_np)) |
421 |
|
422 |
# Native & Numpy Implementation
|
423 |
if NumpyMethod:
|
424 |
print("Performing Numpy implementation")
|
425 |
TimeIn=time.time() |
426 |
e_np,f_np=NumpyDFT(a_np,b_np) |
427 |
NumpyElapsed=time.time()-TimeIn |
428 |
NumpyRate=int(SIZE/NumpyElapsed)
|
429 |
print("NumpyRate: %i" % NumpyRate)
|
430 |
print("Precision: ",np.linalg.norm(e_np-C_np),
|
431 |
np.linalg.norm(f_np-D_np)) |
432 |
|
433 |
# Native & Numba Implementation
|
434 |
if NumbaMethod:
|
435 |
print("Performing Numba implementation")
|
436 |
TimeIn=time.time() |
437 |
g_np,h_np=NumbaDFT(a_np,b_np) |
438 |
NumbaElapsed=time.time()-TimeIn |
439 |
NumbaRate=int(SIZE/NumbaElapsed)
|
440 |
print("NumbaRate: %i" % NumbaRate)
|
441 |
print("Precision: ",np.linalg.norm(g_np-C_np),
|
442 |
np.linalg.norm(h_np-D_np)) |
443 |
|
444 |
# OpenCL Implementation
|
445 |
if OpenCLMethod:
|
446 |
print("Performing OpenCL implementation")
|
447 |
TimeIn=time.time() |
448 |
i_np,j_np=OpenCLDFT(a_np,b_np,Device) |
449 |
OpenCLElapsed=time.time()-TimeIn |
450 |
OpenCLRate=int(SIZE/OpenCLElapsed)
|
451 |
print("OpenCLRate: %i" % OpenCLRate)
|
452 |
print("Precision: ",np.linalg.norm(i_np-C_np),
|
453 |
np.linalg.norm(j_np-D_np)) |
454 |
|
455 |
# CUDA Implementation
|
456 |
if CUDAMethod:
|
457 |
print("Performing CUDA implementation")
|
458 |
TimeIn=time.time() |
459 |
k_np,l_np=CUDADFT(a_np,b_np,Device,Threads) |
460 |
CUDAElapsed=time.time()-TimeIn |
461 |
CUDARate=int(SIZE/CUDAElapsed)
|
462 |
print("CUDARate: %i" % CUDARate)
|
463 |
print("Precision: ",np.linalg.norm(k_np-C_np),
|
464 |
np.linalg.norm(l_np-D_np)) |
465 |
|
466 |
if NumpyFFTMethod:
|
467 |
print("Performing NumpyFFT implementation")
|
468 |
TimeIn=time.time() |
469 |
m_np,n_np=NumpyFFT(a_np,b_np) |
470 |
NumpyFFTElapsed=time.time()-TimeIn |
471 |
NumpyFFTRate=int(SIZE/NumpyFFTElapsed)
|
472 |
print("NumpyFFTElapsed: %i" % NumpyFFTElapsed)
|
473 |
print("NumpyFFTRate: %i" % NumpyFFTRate)
|
474 |
print("Precision: ",np.linalg.norm(m_np-C_np),
|
475 |
np.linalg.norm(n_np-D_np)) |
476 |
|
477 |
# OpenCL Implementation
|
478 |
if OpenCLFFTMethod:
|
479 |
print("Performing OpenCL implementation")
|
480 |
TimeIn=time.time() |
481 |
i_np,j_np=OpenCLFFT(a_np,b_np,Device) |
482 |
OpenCLFFTElapsed=time.time()-TimeIn |
483 |
OpenCLFFTRate=int(SIZE/OpenCLFFTElapsed)
|
484 |
print("OpenCLElapsed: %i" % OpenCLFFTElapsed)
|
485 |
print("OpenCLRate: %i" % OpenCLFFTRate)
|
486 |
print("Precision: ",np.linalg.norm(i_np-C_np),
|
487 |
np.linalg.norm(j_np-D_np)) |
488 |
|
489 |
if OpenCLMethod and NumpyFFTMethod: |
490 |
print(OpenCLMethod,NumpyFFTMethod) |
491 |
print("Precision: ",np.linalg.norm(m_np-i_np),
|
492 |
np.linalg.norm(n_np-j_np)) |
493 |
print((m_np-i_np),(n_np-j_np)) |
494 |
print(i_np,j_np) |
495 |
print(m_np,n_np) |
496 |
print((i_np-m_np),(j_np-n_np)) |
497 |
|
498 |
if CUDAMethod and NumpyFFTMethod: |
499 |
print(CUDAMethod,NumpyFFTMethod) |
500 |
print("Precision: ",np.linalg.norm(m_np-k_np),
|
501 |
np.linalg.norm(n_np-l_np)) |
502 |
print((m_np-k_np),(n_np-l_np)) |
503 |
print(k_np,l_np) |
504 |
print(m_np,n_np) |
505 |
print((k_np-m_np),(l_np-n_np)) |
506 |
|
507 |
if OpenCLMethod and NumpyMethod: |
508 |
print(OpenCLMethod,NumpyMethod) |
509 |
print("Precision: ",np.linalg.norm(e_np-i_np),
|
510 |
np.linalg.norm(f_np-j_np)) |
511 |
print((e_np-i_np),(f_np-j_np)) |
512 |
|
513 |
if NumpyFFTMethod and NumpyMethod: |
514 |
print(NumpyFFTMethod,NumpyMethod) |
515 |
print("Precision: ",np.linalg.norm(e_np-m_np),
|
516 |
np.linalg.norm(f_np-n_np)) |
517 |
print(e_np,f_np) |
518 |
print(m_np,n_np) |
519 |
print((e_np-m_np),(f_np-n_np)) |
520 |
|
521 |
if NumpyFFTMethod and NaiveMethod: |
522 |
print(NumpyFFTMethod,NaiveMethod) |
523 |
print("Precision: ",np.linalg.norm(c_np-m_np),
|
524 |
np.linalg.norm(d_np-n_np)) |
525 |
print(c_np,d_np) |
526 |
print(m_np,n_np) |
527 |
print((c_np-m_np),(d_np-n_np)) |
528 |
|
529 |
if NumpyFFTMethod and NumbaMethod: |
530 |
print(NumpyFFTMethod,NumbaMethod) |
531 |
print("Precision: ",np.linalg.norm(g_np-m_np),
|
532 |
np.linalg.norm(h_np-n_np)) |
533 |
print(g_np,h_np) |
534 |
print(m_np,n_np) |
535 |
print((g_np-m_np),(h_np-n_np)) |
536 |
|
537 |
if OpenCLFFTMethod and NumpyFFTMethod: |
538 |
print("NumpyOpenCLRatio: %f" % (OpenCLFFTRate/NumpyFFTRate))
|