root / ETSN / MySteps_4.py @ 301
Historique | Voir | Annoter | Télécharger (7,12 ko)
1 | 269 | equemene | #!/usr/bin/env python3
|
---|---|---|---|
2 | 269 | equemene | |
3 | 269 | equemene | import numpy as np |
4 | 269 | equemene | import pyopencl as cl |
5 | 269 | equemene | |
6 | 269 | equemene | # piling 16 arithmetical functions
|
7 | 269 | equemene | def MySillyFunction(x): |
8 | 269 | equemene | return(np.power(np.sqrt(np.log(np.exp(np.arctanh(np.tanh(np.arcsinh(np.sinh(np.arccosh(np.cosh(np.arctan(np.tan(np.arcsin(np.sin(np.arccos(np.cos(x))))))))))))))),2)) |
9 | 269 | equemene | |
10 | 269 | equemene | # Native Operation under Numpy (for prototyping & tests
|
11 | 269 | equemene | def NativeAddition(a_np,b_np): |
12 | 269 | equemene | return(a_np+b_np)
|
13 | 269 | equemene | |
14 | 269 | equemene | # Native Operation with MySillyFunction under Numpy (for prototyping & tests
|
15 | 269 | equemene | def NativeSillyAddition(a_np,b_np): |
16 | 269 | equemene | return(MySillyFunction(a_np)+MySillyFunction(b_np))
|
17 | 269 | equemene | |
18 | 269 | equemene | # CUDA complete operation
|
19 | 269 | equemene | def CUDAAddition(a_np,b_np): |
20 | 269 | equemene | import pycuda.autoinit |
21 | 269 | equemene | import pycuda.driver as drv |
22 | 269 | equemene | import numpy |
23 | 269 | equemene | |
24 | 269 | equemene | from pycuda.compiler import SourceModule |
25 | 269 | equemene | mod = SourceModule("""
|
26 | 269 | equemene | __global__ void sum(float *dest, float *a, float *b)
|
27 | 269 | equemene | {
|
28 | 269 | equemene | // const int i = threadIdx.x;
|
29 | 269 | equemene | const int i = blockIdx.x;
|
30 | 269 | equemene | dest[i] = a[i] + b[i];
|
31 | 269 | equemene | }
|
32 | 269 | equemene | """)
|
33 | 269 | equemene | |
34 | 269 | equemene | sum = mod.get_function("sum")
|
35 | 269 | equemene | |
36 | 269 | equemene | res_np = numpy.zeros_like(a_np) |
37 | 269 | equemene | sum(drv.Out(res_np), drv.In(a_np), drv.In(b_np),
|
38 | 269 | equemene | block=(1,1,1), grid=(a_np.size,1)) |
39 | 269 | equemene | return(res_np)
|
40 | 269 | equemene | |
41 | 269 | equemene | # OpenCL complete operation
|
42 | 269 | equemene | def OpenCLAddition(a_np,b_np): |
43 | 269 | equemene | |
44 | 269 | equemene | # Context creation
|
45 | 269 | equemene | ctx = cl.create_some_context() |
46 | 269 | equemene | # Every process is stored in a queue
|
47 | 269 | equemene | queue = cl.CommandQueue(ctx) |
48 | 269 | equemene | |
49 | 269 | equemene | TimeIn=time.time() |
50 | 269 | equemene | # Copy from Host to Device using pointers
|
51 | 269 | equemene | mf = cl.mem_flags |
52 | 269 | equemene | a_g = cl.Buffer(ctx, mf.READ_ONLY | mf.COPY_HOST_PTR, hostbuf=a_np) |
53 | 269 | equemene | b_g = cl.Buffer(ctx, mf.READ_ONLY | mf.COPY_HOST_PTR, hostbuf=b_np) |
54 | 269 | equemene | Elapsed=time.time()-TimeIn |
55 | 269 | equemene | print("Copy from Host 2 Device : %.3f" % Elapsed)
|
56 | 269 | equemene | |
57 | 269 | equemene | TimeIn=time.time() |
58 | 269 | equemene | # Definition of kernel under OpenCL
|
59 | 269 | equemene | prg = cl.Program(ctx, """
|
60 | 269 | equemene | __kernel void sum(
|
61 | 269 | equemene | __global const float *a_g, __global const float *b_g, __global float *res_g)
|
62 | 269 | equemene | {
|
63 | 269 | equemene | int gid = get_global_id(0);
|
64 | 269 | equemene | res_g[gid] = a_g[gid] + b_g[gid];
|
65 | 269 | equemene | }
|
66 | 269 | equemene | """).build()
|
67 | 269 | equemene | Elapsed=time.time()-TimeIn |
68 | 269 | equemene | print("Building kernels : %.3f" % Elapsed)
|
69 | 269 | equemene | |
70 | 269 | equemene | TimeIn=time.time() |
71 | 269 | equemene | # Memory allocation on Device for result
|
72 | 269 | equemene | res_g = cl.Buffer(ctx, mf.WRITE_ONLY, a_np.nbytes) |
73 | 269 | equemene | Elapsed=time.time()-TimeIn |
74 | 269 | equemene | print("Allocation on Device for results : %.3f" % Elapsed)
|
75 | 269 | equemene | |
76 | 269 | equemene | TimeIn=time.time() |
77 | 269 | equemene | # Synthesis of function "sum" inside Kernel Sources
|
78 | 269 | equemene | knl = prg.sum # Use this Kernel object for repeated calls
|
79 | 269 | equemene | Elapsed=time.time()-TimeIn |
80 | 269 | equemene | print("Synthesis of kernel : %.3f" % Elapsed)
|
81 | 269 | equemene | |
82 | 269 | equemene | TimeIn=time.time() |
83 | 269 | equemene | # Call of kernel previously defined
|
84 | 269 | equemene | knl(queue, a_np.shape, None, a_g, b_g, res_g)
|
85 | 269 | equemene | Elapsed=time.time()-TimeIn |
86 | 269 | equemene | print("Execution of kernel : %.3f" % Elapsed)
|
87 | 269 | equemene | |
88 | 269 | equemene | TimeIn=time.time() |
89 | 269 | equemene | # Creation of vector for result with same size as input vectors
|
90 | 269 | equemene | res_np = np.empty_like(a_np) |
91 | 269 | equemene | Elapsed=time.time()-TimeIn |
92 | 269 | equemene | print("Allocation on Host for results: %.3f" % Elapsed)
|
93 | 269 | equemene | |
94 | 269 | equemene | TimeIn=time.time() |
95 | 269 | equemene | # Copy from Device to Host
|
96 | 269 | equemene | cl.enqueue_copy(queue, res_np, res_g) |
97 | 269 | equemene | Elapsed=time.time()-TimeIn |
98 | 269 | equemene | print("Copy from Device 2 Host : %.3f" % Elapsed)
|
99 | 269 | equemene | |
100 | 275 | equemene | # Liberation of memory
|
101 | 275 | equemene | a_g.release() |
102 | 275 | equemene | b_g.release() |
103 | 275 | equemene | res_g.release() |
104 | 275 | equemene | |
105 | 269 | equemene | return(res_np)
|
106 | 269 | equemene | |
107 | 269 | equemene | # OpenCL complete operation
|
108 | 269 | equemene | def OpenCLSillyAddition(a_np,b_np): |
109 | 269 | equemene | |
110 | 269 | equemene | # Context creation
|
111 | 269 | equemene | ctx = cl.create_some_context() |
112 | 269 | equemene | # Every process is stored in a queue
|
113 | 269 | equemene | queue = cl.CommandQueue(ctx) |
114 | 269 | equemene | |
115 | 269 | equemene | TimeIn=time.time() |
116 | 269 | equemene | # Copy from Host to Device using pointers
|
117 | 269 | equemene | mf = cl.mem_flags |
118 | 269 | equemene | a_g = cl.Buffer(ctx, mf.READ_ONLY | mf.COPY_HOST_PTR, hostbuf=a_np) |
119 | 269 | equemene | b_g = cl.Buffer(ctx, mf.READ_ONLY | mf.COPY_HOST_PTR, hostbuf=b_np) |
120 | 269 | equemene | Elapsed=time.time()-TimeIn |
121 | 269 | equemene | print("Copy from Host 2 Device : %.3f" % Elapsed)
|
122 | 269 | equemene | |
123 | 269 | equemene | TimeIn=time.time() |
124 | 269 | equemene | # Definition of kernel under OpenCL
|
125 | 269 | equemene | prg = cl.Program(ctx, """
|
126 | 269 | equemene |
|
127 | 269 | equemene | float MySillyFunction(float x)
|
128 | 269 | equemene | {
|
129 | 269 | equemene | return(pow(sqrt(log(exp(atanh(tanh(asinh(sinh(acosh(cosh(atan(tan(asin(sin(acos(cos(x))))))))))))))),2));
|
130 | 269 | equemene | }
|
131 | 269 | equemene |
|
132 | 269 | equemene | __kernel void sillysum(
|
133 | 269 | equemene | __global const float *a_g, __global const float *b_g, __global float *res_g)
|
134 | 269 | equemene | {
|
135 | 269 | equemene | int gid = get_global_id(0);
|
136 | 269 | equemene | res_g[gid] = MySillyFunction(a_g[gid]) + MySillyFunction(b_g[gid]);
|
137 | 269 | equemene | }
|
138 | 269 | equemene |
|
139 | 269 | equemene | __kernel void sum(
|
140 | 269 | equemene | __global const float *a_g, __global const float *b_g, __global float *res_g)
|
141 | 269 | equemene | {
|
142 | 269 | equemene | int gid = get_global_id(0);
|
143 | 269 | equemene | res_g[gid] = a_g[gid] + b_g[gid];
|
144 | 269 | equemene | }
|
145 | 269 | equemene | """).build()
|
146 | 269 | equemene | Elapsed=time.time()-TimeIn |
147 | 269 | equemene | print("Building kernels : %.3f" % Elapsed)
|
148 | 269 | equemene | |
149 | 269 | equemene | TimeIn=time.time() |
150 | 269 | equemene | # Memory allocation on Device for result
|
151 | 269 | equemene | res_g = cl.Buffer(ctx, mf.WRITE_ONLY, a_np.nbytes) |
152 | 269 | equemene | Elapsed=time.time()-TimeIn |
153 | 269 | equemene | print("Allocation on Device for results : %.3f" % Elapsed)
|
154 | 269 | equemene | |
155 | 269 | equemene | TimeIn=time.time() |
156 | 269 | equemene | # Synthesis of function "sillysum" inside Kernel Sources
|
157 | 269 | equemene | knl = prg.sillysum # Use this Kernel object for repeated calls
|
158 | 269 | equemene | Elapsed=time.time()-TimeIn |
159 | 269 | equemene | print("Synthesis of kernel : %.3f" % Elapsed)
|
160 | 269 | equemene | |
161 | 269 | equemene | TimeIn=time.time() |
162 | 269 | equemene | # Call of kernel previously defined
|
163 | 269 | equemene | CallCL=knl(queue, a_np.shape, None, a_g, b_g, res_g)
|
164 | 269 | equemene | #
|
165 | 269 | equemene | CallCL.wait() |
166 | 269 | equemene | Elapsed=time.time()-TimeIn |
167 | 269 | equemene | print("Execution of kernel : %.3f" % Elapsed)
|
168 | 269 | equemene | |
169 | 269 | equemene | TimeIn=time.time() |
170 | 269 | equemene | # Creation of vector for result with same size as input vectors
|
171 | 269 | equemene | res_np = np.empty_like(a_np) |
172 | 269 | equemene | Elapsed=time.time()-TimeIn |
173 | 269 | equemene | print("Allocation on Host for results: %.3f" % Elapsed)
|
174 | 269 | equemene | |
175 | 269 | equemene | TimeIn=time.time() |
176 | 269 | equemene | # Copy from Device to Host
|
177 | 269 | equemene | cl.enqueue_copy(queue, res_np, res_g) |
178 | 269 | equemene | Elapsed=time.time()-TimeIn |
179 | 269 | equemene | print("Copy from Device 2 Host : %.3f" % Elapsed)
|
180 | 269 | equemene | |
181 | 275 | equemene | # Liberation of memory
|
182 | 275 | equemene | a_g.release() |
183 | 275 | equemene | b_g.release() |
184 | 275 | equemene | res_g.release() |
185 | 275 | equemene | |
186 | 269 | equemene | return(res_np)
|
187 | 269 | equemene | |
188 | 269 | equemene | import sys |
189 | 269 | equemene | import time |
190 | 269 | equemene | |
191 | 269 | equemene | if __name__=='__main__': |
192 | 269 | equemene | |
193 | 269 | equemene | # Size of input vectors definition based on stdin
|
194 | 269 | equemene | import sys |
195 | 269 | equemene | try:
|
196 | 269 | equemene | SIZE=int(sys.argv[1]) |
197 | 269 | equemene | print("Size of vectors set to %i" % SIZE)
|
198 | 269 | equemene | except:
|
199 | 269 | equemene | SIZE=50000
|
200 | 269 | equemene | print("Size of vectors set to default size %i" % SIZE)
|
201 | 269 | equemene | |
202 | 269 | equemene | a_np = np.random.rand(SIZE).astype(np.float32) |
203 | 269 | equemene | b_np = np.random.rand(SIZE).astype(np.float32) |
204 | 269 | equemene | |
205 | 269 | equemene | # Native Implementation
|
206 | 269 | equemene | TimeIn=time.time() |
207 | 269 | equemene | # res_np=NativeSillyAddition(a_np,b_np)
|
208 | 269 | equemene | res_np=NativeAddition(a_np,b_np) |
209 | 269 | equemene | NativeElapsed=time.time()-TimeIn |
210 | 269 | equemene | NativeRate=int(SIZE/NativeElapsed)
|
211 | 269 | equemene | print("NativeRate: %i" % NativeRate)
|
212 | 269 | equemene | |
213 | 269 | equemene | # OpenCL Implementation
|
214 | 269 | equemene | TimeIn=time.time() |
215 | 269 | equemene | # res_cl=OpenCLSillyAddition(a_np,b_np)
|
216 | 269 | equemene | res_cl=OpenCLAddition(a_np,b_np) |
217 | 269 | equemene | OpenCLElapsed=time.time()-TimeIn |
218 | 269 | equemene | OpenCLRate=int(SIZE/OpenCLElapsed)
|
219 | 269 | equemene | print("OpenCLRate: %i" % OpenCLRate)
|
220 | 269 | equemene | |
221 | 269 | equemene | # CUDA Implementation
|
222 | 269 | equemene | TimeIn=time.time() |
223 | 269 | equemene | res_cuda=CUDAAddition(a_np,b_np) |
224 | 269 | equemene | CUDAElapsed=time.time()-TimeIn |
225 | 269 | equemene | CUDARate=int(SIZE/CUDAElapsed)
|
226 | 269 | equemene | print("CUDARate: %i" % CUDARate)
|
227 | 269 | equemene | |
228 | 269 | equemene | print("OpenCLvsNative ratio: %f" % (OpenCLRate/NativeRate))
|
229 | 269 | equemene | print("CUDAvsNative ratio: %f" % (CUDARate/NativeRate))
|
230 | 269 | equemene | |
231 | 269 | equemene | # Check on OpenCL with Numpy:
|
232 | 269 | equemene | print(res_cl - res_np) |
233 | 269 | equemene | print(np.linalg.norm(res_cl - res_np)) |
234 | 269 | equemene | try:
|
235 | 269 | equemene | assert np.allclose(res_np, res_cl)
|
236 | 269 | equemene | except:
|
237 | 269 | equemene | print("Results between Native & OpenCL seem to be too different!")
|
238 | 269 | equemene | |
239 | 269 | equemene | # Check on CUDA with Numpy:
|
240 | 269 | equemene | print(res_cuda - res_np) |
241 | 269 | equemene | print(np.linalg.norm(res_cuda - res_np)) |
242 | 269 | equemene | try:
|
243 | 269 | equemene | assert np.allclose(res_np, res_cuda)
|
244 | 269 | equemene | except:
|
245 | 269 | equemene | print("Results between Native & CUDA seem to be too different!")
|
246 | 269 | equemene |