Statistiques
| Révision :

root / ETSN / MySteps_2.py @ 301

Historique | Voir | Annoter | Télécharger (5,87 ko)

1 268 equemene
#!/usr/bin/env python3
2 268 equemene
3 268 equemene
import numpy as np
4 268 equemene
import pyopencl as cl
5 268 equemene
6 268 equemene
# piling 16 arithmetical functions
7 268 equemene
def MySillyFunction(x):
8 268 equemene
    return(np.power(np.sqrt(np.log(np.exp(np.arctanh(np.tanh(np.arcsinh(np.sinh(np.arccosh(np.cosh(np.arctan(np.tan(np.arcsin(np.sin(np.arccos(np.cos(x))))))))))))))),2))
9 268 equemene
10 268 equemene
# Native Operation under Numpy (for prototyping & tests
11 268 equemene
def NativeAddition(a_np,b_np):
12 268 equemene
    return(a_np+b_np)
13 268 equemene
14 268 equemene
# Native Operation with MySillyFunction under Numpy (for prototyping & tests
15 268 equemene
def NativeSillyAddition(a_np,b_np):
16 268 equemene
    return(MySillyFunction(a_np)+MySillyFunction(b_np))
17 268 equemene
18 268 equemene
# OpenCL complete operation
19 268 equemene
def OpenCLAddition(a_np,b_np):
20 268 equemene
21 268 equemene
    # Context creation
22 268 equemene
    ctx = cl.create_some_context()
23 268 equemene
    # Every process is stored in a queue
24 268 equemene
    queue = cl.CommandQueue(ctx)
25 268 equemene
26 268 equemene
    TimeIn=time.time()
27 268 equemene
    # Copy from Host to Device using pointers
28 268 equemene
    mf = cl.mem_flags
29 268 equemene
    a_g = cl.Buffer(ctx, mf.READ_ONLY | mf.COPY_HOST_PTR, hostbuf=a_np)
30 268 equemene
    b_g = cl.Buffer(ctx, mf.READ_ONLY | mf.COPY_HOST_PTR, hostbuf=b_np)
31 268 equemene
    Elapsed=time.time()-TimeIn
32 268 equemene
    print("Copy from Host 2 Device : %.3f" % Elapsed)
33 268 equemene
34 268 equemene
    TimeIn=time.time()
35 268 equemene
    # Definition of kernel under OpenCL
36 268 equemene
    prg = cl.Program(ctx, """
37 268 equemene
__kernel void sum(
38 268 equemene
    __global const float *a_g, __global const float *b_g, __global float *res_g)
39 268 equemene
{
40 268 equemene
  int gid = get_global_id(0);
41 268 equemene
  res_g[gid] = a_g[gid] + b_g[gid];
42 268 equemene
}
43 268 equemene
""").build()
44 268 equemene
    Elapsed=time.time()-TimeIn
45 268 equemene
    print("Building kernels : %.3f" % Elapsed)
46 268 equemene
47 268 equemene
    TimeIn=time.time()
48 268 equemene
    # Memory allocation on Device for result
49 268 equemene
    res_g = cl.Buffer(ctx, mf.WRITE_ONLY, a_np.nbytes)
50 268 equemene
    Elapsed=time.time()-TimeIn
51 268 equemene
    print("Allocation on Device for results : %.3f" % Elapsed)
52 268 equemene
53 268 equemene
    TimeIn=time.time()
54 268 equemene
    # Synthesis of function "sum" inside Kernel Sources
55 268 equemene
    knl = prg.sum  # Use this Kernel object for repeated calls
56 268 equemene
    Elapsed=time.time()-TimeIn
57 268 equemene
    print("Synthesis of kernel : %.3f" % Elapsed)
58 268 equemene
59 268 equemene
    TimeIn=time.time()
60 268 equemene
    # Call of kernel previously defined
61 268 equemene
    knl(queue, a_np.shape, None, a_g, b_g, res_g)
62 268 equemene
    Elapsed=time.time()-TimeIn
63 268 equemene
    print("Execution of kernel : %.3f" % Elapsed)
64 268 equemene
65 268 equemene
    TimeIn=time.time()
66 268 equemene
    # Creation of vector for result with same size as input vectors
67 268 equemene
    res_np = np.empty_like(a_np)
68 268 equemene
    Elapsed=time.time()-TimeIn
69 268 equemene
    print("Allocation on Host for results: %.3f" % Elapsed)
70 268 equemene
71 268 equemene
    TimeIn=time.time()
72 268 equemene
    # Copy from Device to Host
73 268 equemene
    cl.enqueue_copy(queue, res_np, res_g)
74 268 equemene
    Elapsed=time.time()-TimeIn
75 268 equemene
    print("Copy from Device 2 Host : %.3f" % Elapsed)
76 268 equemene
77 275 equemene
    # Liberation of memory
78 275 equemene
    a_g.release()
79 275 equemene
    b_g.release()
80 275 equemene
    res_g.release()
81 275 equemene
82 268 equemene
    return(res_np)
83 268 equemene
84 268 equemene
# OpenCL complete operation
85 268 equemene
def OpenCLSillyAddition(a_np,b_np):
86 268 equemene
87 268 equemene
    # Context creation
88 268 equemene
    ctx = cl.create_some_context()
89 268 equemene
    # Every process is stored in a queue
90 268 equemene
    queue = cl.CommandQueue(ctx)
91 268 equemene
92 268 equemene
    TimeIn=time.time()
93 268 equemene
    # Copy from Host to Device using pointers
94 268 equemene
    mf = cl.mem_flags
95 268 equemene
    a_g = cl.Buffer(ctx, mf.READ_ONLY | mf.COPY_HOST_PTR, hostbuf=a_np)
96 268 equemene
    b_g = cl.Buffer(ctx, mf.READ_ONLY | mf.COPY_HOST_PTR, hostbuf=b_np)
97 268 equemene
    Elapsed=time.time()-TimeIn
98 268 equemene
    print("Copy from Host 2 Device : %.3f" % Elapsed)
99 268 equemene
100 268 equemene
    TimeIn=time.time()
101 268 equemene
    # Definition of kernel under OpenCL
102 268 equemene
    prg = cl.Program(ctx, """
103 268 equemene

104 268 equemene
float MySillyFunction(float x)
105 268 equemene
{
106 268 equemene
    return(pow(sqrt(log(exp(atanh(tanh(asinh(sinh(acosh(cosh(atan(tan(asin(sin(acos(cos(x))))))))))))))),2));
107 268 equemene
}
108 268 equemene

109 268 equemene
__kernel void sillysum(
110 268 equemene
    __global const float *a_g, __global const float *b_g, __global float *res_g)
111 268 equemene
{
112 268 equemene
  int gid = get_global_id(0);
113 268 equemene
  res_g[gid] = MySillyFunction(a_g[gid]) + MySillyFunction(b_g[gid]);
114 268 equemene
}
115 268 equemene

116 268 equemene
__kernel void sum(
117 268 equemene
    __global const float *a_g, __global const float *b_g, __global float *res_g)
118 268 equemene
{
119 268 equemene
  int gid = get_global_id(0);
120 268 equemene
  res_g[gid] = a_g[gid] + b_g[gid];
121 268 equemene
}
122 268 equemene
""").build()
123 268 equemene
    Elapsed=time.time()-TimeIn
124 268 equemene
    print("Building kernels : %.3f" % Elapsed)
125 268 equemene
126 268 equemene
    TimeIn=time.time()
127 268 equemene
    # Memory allocation on Device for result
128 268 equemene
    res_g = cl.Buffer(ctx, mf.WRITE_ONLY, a_np.nbytes)
129 268 equemene
    Elapsed=time.time()-TimeIn
130 268 equemene
    print("Allocation on Device for results : %.3f" % Elapsed)
131 268 equemene
132 268 equemene
    TimeIn=time.time()
133 268 equemene
    # Synthesis of function "sillysum" inside Kernel Sources
134 268 equemene
    knl = prg.sillysum  # Use this Kernel object for repeated calls
135 268 equemene
    Elapsed=time.time()-TimeIn
136 268 equemene
    print("Synthesis of kernel : %.3f" % Elapsed)
137 268 equemene
138 268 equemene
    TimeIn=time.time()
139 268 equemene
    # Call of kernel previously defined
140 268 equemene
    CallCL=knl(queue, a_np.shape, None, a_g, b_g, res_g)
141 268 equemene
    #
142 268 equemene
    CallCL.wait()
143 268 equemene
    Elapsed=time.time()-TimeIn
144 268 equemene
    print("Execution of kernel : %.3f" % Elapsed)
145 268 equemene
146 268 equemene
    TimeIn=time.time()
147 268 equemene
    # Creation of vector for result with same size as input vectors
148 268 equemene
    res_np = np.empty_like(a_np)
149 268 equemene
    Elapsed=time.time()-TimeIn
150 268 equemene
    print("Allocation on Host for results: %.3f" % Elapsed)
151 268 equemene
152 268 equemene
    TimeIn=time.time()
153 268 equemene
    # Copy from Device to Host
154 268 equemene
    cl.enqueue_copy(queue, res_np, res_g)
155 268 equemene
    Elapsed=time.time()-TimeIn
156 268 equemene
    print("Copy from Device 2 Host : %.3f" % Elapsed)
157 268 equemene
158 275 equemene
    # Liberation of memory
159 275 equemene
    a_g.release()
160 275 equemene
    b_g.release()
161 275 equemene
    res_g.release()
162 275 equemene
163 268 equemene
    return(res_np)
164 268 equemene
165 268 equemene
import sys
166 268 equemene
import time
167 268 equemene
168 268 equemene
if __name__=='__main__':
169 268 equemene
170 268 equemene
    # Size of input vectors definition based on stdin
171 268 equemene
    import sys
172 268 equemene
    try:
173 268 equemene
        SIZE=int(sys.argv[1])
174 268 equemene
        print("Size of vectors set to %i" % SIZE)
175 268 equemene
    except:
176 268 equemene
        SIZE=50000
177 268 equemene
        print("Size of vectors set to default size %i" % SIZE)
178 268 equemene
179 268 equemene
    a_np = np.random.rand(SIZE).astype(np.float32)
180 268 equemene
    b_np = np.random.rand(SIZE).astype(np.float32)
181 268 equemene
182 268 equemene
    TimeIn=time.time()
183 268 equemene
    res_np=NativeSillyAddition(a_np,b_np)
184 268 equemene
    NativeElapsed=time.time()-TimeIn
185 268 equemene
    NativeRate=int(SIZE/NativeElapsed)
186 268 equemene
    print("NativeRate: %i" % NativeRate)
187 268 equemene
188 268 equemene
    TimeIn=time.time()
189 268 equemene
    res_cl=OpenCLSillyAddition(a_np,b_np)
190 268 equemene
    OpenCLElapsed=time.time()-TimeIn
191 268 equemene
    OpenCLRate=int(SIZE/OpenCLElapsed)
192 268 equemene
    print("OpenCLRate: %i" % OpenCLRate)
193 268 equemene
194 268 equemene
    print("OpenCLvsNative ratio: %f" % (OpenCLRate/NativeRate))
195 268 equemene
196 268 equemene
    # Check on CPU with Numpy:
197 268 equemene
    print(res_cl - res_np)
198 268 equemene
    print(np.linalg.norm(res_cl - res_np))
199 296 equemene
    assert np.allclose(res_cl, res_np,rtol=1e-4)