root / ETSN / MyDFT_10.py @ 301
Historique | Voir | Annoter | Télécharger (17,04 ko)
1 | 281 | equemene | #!/usr/bin/env python3
|
---|---|---|---|
2 | 281 | equemene | |
3 | 281 | equemene | import numpy as np |
4 | 281 | equemene | import pyopencl as cl |
5 | 281 | equemene | from numpy import pi,cos,sin |
6 | 281 | equemene | |
7 | 281 | equemene | #
|
8 | 281 | equemene | def NumpyFFT(x,y): |
9 | 296 | equemene | xy=np.csingle(x+1.j*y)
|
10 | 281 | equemene | XY=np.fft.fft(xy) |
11 | 296 | equemene | print(XY) |
12 | 281 | equemene | return(XY.real,XY.imag)
|
13 | 281 | equemene | |
14 | 281 | equemene | #
|
15 | 281 | equemene | def OpenCLFFT(x,y,device): |
16 | 281 | equemene | import pyopencl as cl |
17 | 281 | equemene | import pyopencl.array as cla |
18 | 281 | equemene | import time |
19 | 281 | equemene | import gpyfft |
20 | 281 | equemene | from gpyfft.fft import FFT |
21 | 281 | equemene | |
22 | 296 | equemene | TimeIn=time.time() |
23 | 281 | equemene | Id=0
|
24 | 281 | equemene | HasXPU=False
|
25 | 281 | equemene | for platform in cl.get_platforms(): |
26 | 281 | equemene | for device in platform.get_devices(): |
27 | 281 | equemene | if Id==Device:
|
28 | 281 | equemene | XPU=device |
29 | 281 | equemene | print("CPU/GPU selected: ",device.name.lstrip())
|
30 | 281 | equemene | HasXPU=True
|
31 | 281 | equemene | Id+=1
|
32 | 281 | equemene | # print(Id)
|
33 | 281 | equemene | |
34 | 281 | equemene | if HasXPU==False: |
35 | 281 | equemene | print("No XPU #%i found in all of %i devices, sorry..." % (Device,Id-1)) |
36 | 281 | equemene | sys.exit() |
37 | 296 | equemene | Elapsed=time.time()-TimeIn |
38 | 296 | equemene | print("Selection of device : %.3f" % Elapsed)
|
39 | 281 | equemene | |
40 | 296 | equemene | TimeIn=time.time() |
41 | 281 | equemene | try:
|
42 | 281 | equemene | ctx = cl.Context(devices=[XPU]) |
43 | 281 | equemene | queue = cl.CommandQueue(ctx,properties=cl.command_queue_properties.PROFILING_ENABLE) |
44 | 281 | equemene | except:
|
45 | 281 | equemene | print("Crash during context creation")
|
46 | 296 | equemene | Elapsed=time.time()-TimeIn |
47 | 296 | equemene | print("Context initialisation : %.3f" % Elapsed)
|
48 | 281 | equemene | |
49 | 296 | equemene | TimeIn=time.time() |
50 | 296 | equemene | XY_gpu = cla.to_device(queue, np.csingle(x+1.j*y))
|
51 | 296 | equemene | Elapsed=time.time()-TimeIn |
52 | 296 | equemene | print("Copy from Host to Device : %.3f" % Elapsed)
|
53 | 281 | equemene | |
54 | 296 | equemene | TimeIn=time.time() |
55 | 296 | equemene | transform = FFT(ctx, queue, XY_gpu) |
56 | 281 | equemene | event, = transform.enqueue() |
57 | 281 | equemene | event.wait() |
58 | 296 | equemene | Elapsed=time.time()-TimeIn |
59 | 296 | equemene | print("Compute FFT : %.3f" % Elapsed)
|
60 | 296 | equemene | TimeIn=time.time() |
61 | 281 | equemene | XY = XY_gpu.get() |
62 | 296 | equemene | Elapsed=time.time()-TimeIn |
63 | 296 | equemene | print("Copy from Device to Host : %.3f" % Elapsed)
|
64 | 296 | equemene | print(XY) |
65 | 281 | equemene | return(XY.real,XY.imag)
|
66 | 281 | equemene | |
67 | 281 | equemene | # Naive Discrete Fourier Transform
|
68 | 281 | equemene | def MyDFT(x,y): |
69 | 281 | equemene | size=x.shape[0]
|
70 | 281 | equemene | X=np.zeros(size).astype(np.float32) |
71 | 281 | equemene | Y=np.zeros(size).astype(np.float32) |
72 | 281 | equemene | for i in range(size): |
73 | 281 | equemene | for j in range(size): |
74 | 300 | equemene | X[i]=X[i]+x[j]*cos(2.*pi*i*j/size)+y[j]*sin(2.*pi*i*j/size) |
75 | 300 | equemene | Y[i]=Y[i]-x[j]*sin(2.*pi*i*j/size)+y[j]*cos(2.*pi*i*j/size) |
76 | 281 | equemene | return(X,Y)
|
77 | 281 | equemene | |
78 | 281 | equemene | # Numpy Discrete Fourier Transform
|
79 | 281 | equemene | def NumpyDFT(x,y): |
80 | 281 | equemene | size=x.shape[0]
|
81 | 281 | equemene | X=np.zeros(size).astype(np.float32) |
82 | 281 | equemene | Y=np.zeros(size).astype(np.float32) |
83 | 281 | equemene | nj=np.multiply(2.0*np.pi/size,np.arange(size)).astype(np.float32)
|
84 | 281 | equemene | for i in range(size): |
85 | 300 | equemene | X[i]=np.sum(np.add(np.multiply(np.cos(i*nj),x),np.multiply(np.sin(i*nj),y))) |
86 | 300 | equemene | Y[i]=np.sum(-np.subtract(np.multiply(np.sin(i*nj),x),np.multiply(np.cos(i*nj),y))) |
87 | 281 | equemene | return(X,Y)
|
88 | 281 | equemene | |
89 | 281 | equemene | # Numba Discrete Fourier Transform
|
90 | 281 | equemene | import numba |
91 | 281 | equemene | @numba.njit(parallel=True) |
92 | 281 | equemene | def NumbaDFT(x,y): |
93 | 281 | equemene | size=x.shape[0]
|
94 | 281 | equemene | X=np.zeros(size).astype(np.float32) |
95 | 281 | equemene | Y=np.zeros(size).astype(np.float32) |
96 | 281 | equemene | nj=np.multiply(2.0*np.pi/size,np.arange(size)).astype(np.float32)
|
97 | 281 | equemene | for i in numba.prange(size): |
98 | 300 | equemene | X[i]=np.sum(np.add(np.multiply(np.cos(i*nj),x),np.multiply(np.sin(i*nj),y))) |
99 | 300 | equemene | Y[i]=np.sum(-np.subtract(np.multiply(np.sin(i*nj),x),np.multiply(np.cos(i*nj),y))) |
100 | 281 | equemene | return(X,Y)
|
101 | 281 | equemene | |
102 | 281 | equemene | # OpenCL complete operation
|
103 | 281 | equemene | def OpenCLDFT(a_np,b_np,Device): |
104 | 281 | equemene | |
105 | 281 | equemene | Id=0
|
106 | 281 | equemene | HasXPU=False
|
107 | 281 | equemene | for platform in cl.get_platforms(): |
108 | 281 | equemene | for device in platform.get_devices(): |
109 | 281 | equemene | if Id==Device:
|
110 | 281 | equemene | XPU=device |
111 | 281 | equemene | print("CPU/GPU selected: ",device.name.lstrip())
|
112 | 281 | equemene | HasXPU=True
|
113 | 281 | equemene | Id+=1
|
114 | 281 | equemene | # print(Id)
|
115 | 281 | equemene | |
116 | 281 | equemene | if HasXPU==False: |
117 | 281 | equemene | print("No XPU #%i found in all of %i devices, sorry..." % (Device,Id-1)) |
118 | 281 | equemene | sys.exit() |
119 | 281 | equemene | |
120 | 281 | equemene | try:
|
121 | 281 | equemene | ctx = cl.Context(devices=[XPU]) |
122 | 281 | equemene | queue = cl.CommandQueue(ctx,properties=cl.command_queue_properties.PROFILING_ENABLE) |
123 | 281 | equemene | except:
|
124 | 281 | equemene | print("Crash during context creation")
|
125 | 281 | equemene | |
126 | 281 | equemene | TimeIn=time.time() |
127 | 281 | equemene | # Copy from Host to Device using pointers
|
128 | 281 | equemene | mf = cl.mem_flags |
129 | 281 | equemene | a_g = cl.Buffer(ctx, mf.READ_ONLY | mf.COPY_HOST_PTR, hostbuf=a_np) |
130 | 281 | equemene | b_g = cl.Buffer(ctx, mf.READ_ONLY | mf.COPY_HOST_PTR, hostbuf=b_np) |
131 | 281 | equemene | Elapsed=time.time()-TimeIn |
132 | 281 | equemene | print("Copy from Host 2 Device : %.3f" % Elapsed)
|
133 | 281 | equemene | |
134 | 281 | equemene | TimeIn=time.time() |
135 | 281 | equemene | # Definition of kernel under OpenCL
|
136 | 281 | equemene | prg = cl.Program(ctx, """
|
137 | 281 | equemene |
|
138 | 281 | equemene | #define PI 3.141592653589793
|
139 | 281 | equemene |
|
140 | 281 | equemene | __kernel void MyDFT(
|
141 | 281 | equemene | __global const float *a_g, __global const float *b_g, __global float *A_g, __global float *B_g)
|
142 | 281 | equemene | {
|
143 | 281 | equemene | int gid = get_global_id(0);
|
144 | 281 | equemene | uint size = get_global_size(0);
|
145 | 281 | equemene | float A=0.,B=0.;
|
146 | 281 | equemene | for (uint i=0; i<size;i++)
|
147 | 281 | equemene | {
|
148 | 300 | equemene | A+=a_g[i]*cos(2.*PI*(float)(gid*i)/(float)size)+b_g[i]*sin(2.*PI*(float)(gid*i)/(float)size);
|
149 | 300 | equemene | B+=-a_g[i]*sin(2.*PI*(float)(gid*i)/(float)size)+b_g[i]*cos(2.*PI*(float)(gid*i)/(float)size);
|
150 | 281 | equemene | }
|
151 | 281 | equemene | A_g[gid]=A;
|
152 | 281 | equemene | B_g[gid]=B;
|
153 | 281 | equemene | }
|
154 | 281 | equemene | """).build()
|
155 | 281 | equemene | Elapsed=time.time()-TimeIn |
156 | 281 | equemene | print("Building kernels : %.3f" % Elapsed)
|
157 | 281 | equemene | |
158 | 281 | equemene | TimeIn=time.time() |
159 | 281 | equemene | # Memory allocation on Device for result
|
160 | 281 | equemene | A_ocl = np.empty_like(a_np) |
161 | 281 | equemene | B_ocl = np.empty_like(a_np) |
162 | 281 | equemene | Elapsed=time.time()-TimeIn |
163 | 281 | equemene | print("Allocation on Host for results : %.3f" % Elapsed)
|
164 | 281 | equemene | |
165 | 281 | equemene | A_g = cl.Buffer(ctx, mf.WRITE_ONLY, A_ocl.nbytes) |
166 | 281 | equemene | B_g = cl.Buffer(ctx, mf.WRITE_ONLY, B_ocl.nbytes) |
167 | 281 | equemene | Elapsed=time.time()-TimeIn |
168 | 281 | equemene | print("Allocation on Device for results : %.3f" % Elapsed)
|
169 | 281 | equemene | |
170 | 281 | equemene | TimeIn=time.time() |
171 | 281 | equemene | # Synthesis of function "sillysum" inside Kernel Sources
|
172 | 281 | equemene | knl = prg.MyDFT # Use this Kernel object for repeated calls
|
173 | 281 | equemene | Elapsed=time.time()-TimeIn |
174 | 281 | equemene | print("Synthesis of kernel : %.3f" % Elapsed)
|
175 | 281 | equemene | |
176 | 281 | equemene | TimeIn=time.time() |
177 | 281 | equemene | # Call of kernel previously defined
|
178 | 281 | equemene | CallCL=knl(queue, a_np.shape, None, a_g, b_g, A_g, B_g)
|
179 | 281 | equemene | #
|
180 | 281 | equemene | CallCL.wait() |
181 | 281 | equemene | Elapsed=time.time()-TimeIn |
182 | 281 | equemene | print("Execution of kernel : %.3f" % Elapsed)
|
183 | 281 | equemene | |
184 | 281 | equemene | TimeIn=time.time() |
185 | 281 | equemene | # Copy from Device to Host
|
186 | 281 | equemene | cl.enqueue_copy(queue, A_ocl, A_g) |
187 | 281 | equemene | cl.enqueue_copy(queue, B_ocl, B_g) |
188 | 281 | equemene | Elapsed=time.time()-TimeIn |
189 | 281 | equemene | print("Copy from Device 2 Host : %.3f" % Elapsed)
|
190 | 281 | equemene | |
191 | 281 | equemene | # Liberation of memory
|
192 | 281 | equemene | a_g.release() |
193 | 281 | equemene | b_g.release() |
194 | 281 | equemene | A_g.release() |
195 | 281 | equemene | B_g.release() |
196 | 281 | equemene | |
197 | 281 | equemene | return(A_ocl,B_ocl)
|
198 | 281 | equemene | |
199 | 281 | equemene | # CUDA complete operation
|
200 | 281 | equemene | def CUDADFT(a_np,b_np,Device,Threads): |
201 | 281 | equemene | # import pycuda.autoinit
|
202 | 281 | equemene | import pycuda.driver as drv |
203 | 281 | equemene | from pycuda.compiler import SourceModule |
204 | 281 | equemene | |
205 | 281 | equemene | try:
|
206 | 281 | equemene | # For PyCUDA import
|
207 | 281 | equemene | import pycuda.driver as cuda |
208 | 281 | equemene | from pycuda.compiler import SourceModule |
209 | 281 | equemene | |
210 | 281 | equemene | cuda.init() |
211 | 281 | equemene | for Id in range(cuda.Device.count()): |
212 | 281 | equemene | if Id==Device:
|
213 | 281 | equemene | XPU=cuda.Device(Id) |
214 | 281 | equemene | print("GPU selected %s" % XPU.name())
|
215 | 281 | equemene | print
|
216 | 281 | equemene | |
217 | 281 | equemene | except ImportError: |
218 | 281 | equemene | print("Platform does not seem to support CUDA")
|
219 | 281 | equemene | |
220 | 281 | equemene | Context=XPU.make_context() |
221 | 281 | equemene | |
222 | 281 | equemene | TimeIn=time.time() |
223 | 281 | equemene | mod = SourceModule("""
|
224 | 281 | equemene |
|
225 | 281 | equemene | #define PI 3.141592653589793
|
226 | 281 | equemene |
|
227 | 281 | equemene | __global__ void MyDFT(float *A_g, float *B_g, const float *a_g,const float *b_g)
|
228 | 281 | equemene | {
|
229 | 281 | equemene | const int gid = blockIdx.x*blockDim.x+threadIdx.x;
|
230 | 281 | equemene | uint size = gridDim.x*blockDim.x;
|
231 | 281 | equemene | float A=0.,B=0.;
|
232 | 281 | equemene | for (uint i=0; i<size;i++)
|
233 | 281 | equemene | {
|
234 | 300 | equemene | A+=a_g[i]*cos(2.*PI*(float)(gid*i)/(float)size)+b_g[i]*sin(2.*PI*(float)(gid*i)/(float)size);
|
235 | 300 | equemene | B+=-a_g[i]*sin(2.*PI*(float)(gid*i)/(float)size)+b_g[i]*cos(2.*PI*(float)(gid*i)/(float)size);
|
236 | 281 | equemene | }
|
237 | 281 | equemene | A_g[gid]=A;
|
238 | 281 | equemene | B_g[gid]=B;
|
239 | 281 | equemene | }
|
240 | 281 | equemene |
|
241 | 281 | equemene | """)
|
242 | 281 | equemene | Elapsed=time.time()-TimeIn |
243 | 281 | equemene | print("Definition of kernel : %.3f" % Elapsed)
|
244 | 281 | equemene | |
245 | 281 | equemene | TimeIn=time.time() |
246 | 281 | equemene | MyDFT = mod.get_function("MyDFT")
|
247 | 281 | equemene | Elapsed=time.time()-TimeIn |
248 | 281 | equemene | print("Synthesis of kernel : %.3f" % Elapsed)
|
249 | 281 | equemene | |
250 | 281 | equemene | TimeIn=time.time() |
251 | 281 | equemene | A_np = np.zeros_like(a_np) |
252 | 281 | equemene | B_np = np.zeros_like(a_np) |
253 | 281 | equemene | Elapsed=time.time()-TimeIn |
254 | 281 | equemene | print("Allocation on Host for results : %.3f" % Elapsed)
|
255 | 281 | equemene | |
256 | 281 | equemene | Size=a_np.size |
257 | 281 | equemene | if (Size % Threads != 0): |
258 | 281 | equemene | print("Impossible : %i not multiple of %i..." % (Threads,Size) )
|
259 | 281 | equemene | TimeIn=time.time() |
260 | 281 | equemene | MyDFT(drv.Out(A_np), drv.Out(B_np), drv.In(a_np), drv.In(b_np), |
261 | 281 | equemene | block=(1,1,1), grid=(a_np.size,1)) |
262 | 281 | equemene | Elapsed=time.time()-TimeIn |
263 | 281 | equemene | print("Execution of kernel : %.3f" % Elapsed)
|
264 | 281 | equemene | else:
|
265 | 281 | equemene | Blocks=int(Size/Threads)
|
266 | 281 | equemene | TimeIn=time.time() |
267 | 281 | equemene | MyDFT(drv.Out(A_np), drv.Out(B_np), drv.In(a_np), drv.In(b_np), |
268 | 281 | equemene | block=(Threads,1,1), grid=(Blocks,1)) |
269 | 281 | equemene | Elapsed=time.time()-TimeIn |
270 | 281 | equemene | print("Execution of kernel : %.3f" % Elapsed)
|
271 | 281 | equemene | |
272 | 281 | equemene | Context.pop() |
273 | 281 | equemene | Context.detach() |
274 | 281 | equemene | |
275 | 281 | equemene | return(A_np,B_np)
|
276 | 281 | equemene | |
277 | 281 | equemene | import sys |
278 | 281 | equemene | import time |
279 | 281 | equemene | |
280 | 281 | equemene | if __name__=='__main__': |
281 | 281 | equemene | |
282 | 281 | equemene | SIZE=1024
|
283 | 281 | equemene | Device=0
|
284 | 281 | equemene | NaiveMethod=False
|
285 | 281 | equemene | NumpyFFTMethod=True
|
286 | 300 | equemene | OpenCLFFTMethod=False
|
287 | 281 | equemene | NumpyMethod=False
|
288 | 281 | equemene | NumbaMethod=False
|
289 | 281 | equemene | OpenCLMethod=False
|
290 | 300 | equemene | CUDAMethod=True
|
291 | 281 | equemene | Threads=1
|
292 | 281 | equemene | |
293 | 281 | equemene | import getopt |
294 | 281 | equemene | |
295 | 281 | equemene | HowToUse='%s -n [Naive] -y [numpY] -a [numbA] -o [OpenCL] -c [CUDA] -s <SizeOfVector> -d <DeviceId> -t <threads>'
|
296 | 281 | equemene | |
297 | 281 | equemene | try:
|
298 | 281 | equemene | opts, args = getopt.getopt(sys.argv[1:],"nyaochs:d:t:",["size=","device="]) |
299 | 281 | equemene | except getopt.GetoptError:
|
300 | 281 | equemene | print(HowToUse % sys.argv[0])
|
301 | 281 | equemene | sys.exit(2)
|
302 | 281 | equemene | |
303 | 281 | equemene | # List of Devices
|
304 | 281 | equemene | Devices=[] |
305 | 281 | equemene | Alu={} |
306 | 281 | equemene | |
307 | 281 | equemene | for opt, arg in opts: |
308 | 281 | equemene | if opt == '-h': |
309 | 281 | equemene | print(HowToUse % sys.argv[0])
|
310 | 281 | equemene | |
311 | 281 | equemene | print("\nInformations about devices detected under OpenCL API:")
|
312 | 281 | equemene | # For PyOpenCL import
|
313 | 281 | equemene | try:
|
314 | 281 | equemene | import pyopencl as cl |
315 | 281 | equemene | Id=0
|
316 | 281 | equemene | for platform in cl.get_platforms(): |
317 | 281 | equemene | for device in platform.get_devices(): |
318 | 281 | equemene | #deviceType=cl.device_type.to_string(device.type)
|
319 | 281 | equemene | deviceType="xPU"
|
320 | 281 | equemene | print("Device #%i from %s of type %s : %s" % (Id,platform.vendor.lstrip(),deviceType,device.name.lstrip()))
|
321 | 281 | equemene | Id=Id+1
|
322 | 281 | equemene | |
323 | 281 | equemene | except:
|
324 | 281 | equemene | print("Your platform does not seem to support OpenCL")
|
325 | 281 | equemene | |
326 | 281 | equemene | print("\nInformations about devices detected under CUDA API:")
|
327 | 281 | equemene | # For PyCUDA import
|
328 | 281 | equemene | try:
|
329 | 281 | equemene | import pycuda.driver as cuda |
330 | 281 | equemene | cuda.init() |
331 | 281 | equemene | for Id in range(cuda.Device.count()): |
332 | 281 | equemene | device=cuda.Device(Id) |
333 | 281 | equemene | print("Device #%i of type GPU : %s" % (Id,device.name()))
|
334 | 281 | equemene | print
|
335 | 281 | equemene | except:
|
336 | 281 | equemene | print("Your platform does not seem to support CUDA")
|
337 | 281 | equemene | |
338 | 281 | equemene | sys.exit() |
339 | 281 | equemene | |
340 | 281 | equemene | elif opt in ("-d", "--device"): |
341 | 281 | equemene | Device=int(arg)
|
342 | 281 | equemene | elif opt in ("-s", "--size"): |
343 | 281 | equemene | SIZE = int(arg)
|
344 | 281 | equemene | elif opt in ("-t", "--threads"): |
345 | 281 | equemene | Threads = int(arg)
|
346 | 281 | equemene | elif opt in ("-n"): |
347 | 281 | equemene | NaiveMethod=True
|
348 | 281 | equemene | elif opt in ("-y"): |
349 | 281 | equemene | NumpyMethod=True
|
350 | 281 | equemene | elif opt in ("-a"): |
351 | 281 | equemene | NumbaMethod=True
|
352 | 281 | equemene | elif opt in ("-o"): |
353 | 281 | equemene | OpenCLMethod=True
|
354 | 281 | equemene | elif opt in ("-c"): |
355 | 281 | equemene | CUDAMethod=True
|
356 | 281 | equemene | |
357 | 281 | equemene | print("Device Selection : %i" % Device)
|
358 | 281 | equemene | print("Size of complex vector : %i" % SIZE)
|
359 | 281 | equemene | print("DFT Naive computation %s " % NaiveMethod )
|
360 | 281 | equemene | print("DFT Numpy computation %s " % NumpyMethod )
|
361 | 300 | equemene | print("FFT Numpy computation %s " % NumpyFFTMethod )
|
362 | 281 | equemene | print("DFT Numba computation %s " % NumbaMethod )
|
363 | 281 | equemene | print("DFT OpenCL computation %s " % OpenCLMethod )
|
364 | 281 | equemene | print("DFT CUDA computation %s " % CUDAMethod )
|
365 | 281 | equemene | |
366 | 281 | equemene | if CUDAMethod:
|
367 | 281 | equemene | try:
|
368 | 281 | equemene | # For PyCUDA import
|
369 | 281 | equemene | import pycuda.driver as cuda |
370 | 281 | equemene | |
371 | 281 | equemene | cuda.init() |
372 | 281 | equemene | for Id in range(cuda.Device.count()): |
373 | 281 | equemene | device=cuda.Device(Id) |
374 | 281 | equemene | print("Device #%i of type GPU : %s" % (Id,device.name()))
|
375 | 281 | equemene | if Id in Devices: |
376 | 281 | equemene | Alu[Id]='GPU'
|
377 | 281 | equemene | |
378 | 281 | equemene | except ImportError: |
379 | 281 | equemene | print("Platform does not seem to support CUDA")
|
380 | 281 | equemene | |
381 | 281 | equemene | if OpenCLMethod:
|
382 | 281 | equemene | try:
|
383 | 281 | equemene | # For PyOpenCL import
|
384 | 281 | equemene | import pyopencl as cl |
385 | 281 | equemene | Id=0
|
386 | 281 | equemene | for platform in cl.get_platforms(): |
387 | 281 | equemene | for device in platform.get_devices(): |
388 | 281 | equemene | #deviceType=cl.device_type.to_string(device.type)
|
389 | 281 | equemene | deviceType="xPU"
|
390 | 281 | equemene | print("Device #%i from %s of type %s : %s" % (Id,platform.vendor.lstrip().rstrip(),deviceType,device.name.lstrip().rstrip()))
|
391 | 281 | equemene | |
392 | 281 | equemene | if Id in Devices: |
393 | 281 | equemene | # Set the Alu as detected Device Type
|
394 | 281 | equemene | Alu[Id]=deviceType |
395 | 281 | equemene | Id=Id+1
|
396 | 281 | equemene | except ImportError: |
397 | 281 | equemene | print("Platform does not seem to support OpenCL")
|
398 | 281 | equemene | |
399 | 281 | equemene | |
400 | 281 | equemene | |
401 | 300 | equemene | # a_np = np.ones(SIZE).astype(np.float32)
|
402 | 300 | equemene | # b_np = np.ones(SIZE).astype(np.float32)
|
403 | 300 | equemene | a_np = np.random.rand(SIZE).astype(np.float32) |
404 | 300 | equemene | b_np = np.random.rand(SIZE).astype(np.float32) |
405 | 281 | equemene | |
406 | 281 | equemene | C_np = np.zeros(SIZE).astype(np.float32) |
407 | 281 | equemene | D_np = np.zeros(SIZE).astype(np.float32) |
408 | 281 | equemene | C_np[0] = np.float32(SIZE)
|
409 | 281 | equemene | D_np[0] = np.float32(SIZE)
|
410 | 281 | equemene | |
411 | 281 | equemene | # Native & Naive Implementation
|
412 | 281 | equemene | if NaiveMethod:
|
413 | 281 | equemene | print("Performing naive implementation")
|
414 | 281 | equemene | TimeIn=time.time() |
415 | 281 | equemene | c_np,d_np=MyDFT(a_np,b_np) |
416 | 281 | equemene | NativeElapsed=time.time()-TimeIn |
417 | 281 | equemene | NativeRate=int(SIZE/NativeElapsed)
|
418 | 281 | equemene | print("NativeRate: %i" % NativeRate)
|
419 | 281 | equemene | print("Precision: ",np.linalg.norm(c_np-C_np),
|
420 | 281 | equemene | np.linalg.norm(d_np-D_np)) |
421 | 281 | equemene | |
422 | 281 | equemene | # Native & Numpy Implementation
|
423 | 281 | equemene | if NumpyMethod:
|
424 | 281 | equemene | print("Performing Numpy implementation")
|
425 | 281 | equemene | TimeIn=time.time() |
426 | 281 | equemene | e_np,f_np=NumpyDFT(a_np,b_np) |
427 | 281 | equemene | NumpyElapsed=time.time()-TimeIn |
428 | 281 | equemene | NumpyRate=int(SIZE/NumpyElapsed)
|
429 | 281 | equemene | print("NumpyRate: %i" % NumpyRate)
|
430 | 281 | equemene | print("Precision: ",np.linalg.norm(e_np-C_np),
|
431 | 281 | equemene | np.linalg.norm(f_np-D_np)) |
432 | 281 | equemene | |
433 | 281 | equemene | # Native & Numba Implementation
|
434 | 281 | equemene | if NumbaMethod:
|
435 | 281 | equemene | print("Performing Numba implementation")
|
436 | 281 | equemene | TimeIn=time.time() |
437 | 281 | equemene | g_np,h_np=NumbaDFT(a_np,b_np) |
438 | 281 | equemene | NumbaElapsed=time.time()-TimeIn |
439 | 281 | equemene | NumbaRate=int(SIZE/NumbaElapsed)
|
440 | 281 | equemene | print("NumbaRate: %i" % NumbaRate)
|
441 | 281 | equemene | print("Precision: ",np.linalg.norm(g_np-C_np),
|
442 | 281 | equemene | np.linalg.norm(h_np-D_np)) |
443 | 281 | equemene | |
444 | 281 | equemene | # OpenCL Implementation
|
445 | 281 | equemene | if OpenCLMethod:
|
446 | 281 | equemene | print("Performing OpenCL implementation")
|
447 | 281 | equemene | TimeIn=time.time() |
448 | 281 | equemene | i_np,j_np=OpenCLDFT(a_np,b_np,Device) |
449 | 281 | equemene | OpenCLElapsed=time.time()-TimeIn |
450 | 281 | equemene | OpenCLRate=int(SIZE/OpenCLElapsed)
|
451 | 281 | equemene | print("OpenCLRate: %i" % OpenCLRate)
|
452 | 281 | equemene | print("Precision: ",np.linalg.norm(i_np-C_np),
|
453 | 281 | equemene | np.linalg.norm(j_np-D_np)) |
454 | 281 | equemene | |
455 | 281 | equemene | # CUDA Implementation
|
456 | 281 | equemene | if CUDAMethod:
|
457 | 281 | equemene | print("Performing CUDA implementation")
|
458 | 281 | equemene | TimeIn=time.time() |
459 | 281 | equemene | k_np,l_np=CUDADFT(a_np,b_np,Device,Threads) |
460 | 281 | equemene | CUDAElapsed=time.time()-TimeIn |
461 | 281 | equemene | CUDARate=int(SIZE/CUDAElapsed)
|
462 | 281 | equemene | print("CUDARate: %i" % CUDARate)
|
463 | 281 | equemene | print("Precision: ",np.linalg.norm(k_np-C_np),
|
464 | 281 | equemene | np.linalg.norm(l_np-D_np)) |
465 | 281 | equemene | |
466 | 281 | equemene | if NumpyFFTMethod:
|
467 | 281 | equemene | print("Performing NumpyFFT implementation")
|
468 | 281 | equemene | TimeIn=time.time() |
469 | 281 | equemene | m_np,n_np=NumpyFFT(a_np,b_np) |
470 | 281 | equemene | NumpyFFTElapsed=time.time()-TimeIn |
471 | 281 | equemene | NumpyFFTRate=int(SIZE/NumpyFFTElapsed)
|
472 | 296 | equemene | print("NumpyFFTElapsed: %i" % NumpyFFTElapsed)
|
473 | 281 | equemene | print("NumpyFFTRate: %i" % NumpyFFTRate)
|
474 | 281 | equemene | print("Precision: ",np.linalg.norm(m_np-C_np),
|
475 | 281 | equemene | np.linalg.norm(n_np-D_np)) |
476 | 281 | equemene | |
477 | 281 | equemene | # OpenCL Implementation
|
478 | 281 | equemene | if OpenCLFFTMethod:
|
479 | 281 | equemene | print("Performing OpenCL implementation")
|
480 | 281 | equemene | TimeIn=time.time() |
481 | 281 | equemene | i_np,j_np=OpenCLFFT(a_np,b_np,Device) |
482 | 281 | equemene | OpenCLFFTElapsed=time.time()-TimeIn |
483 | 281 | equemene | OpenCLFFTRate=int(SIZE/OpenCLFFTElapsed)
|
484 | 296 | equemene | print("OpenCLElapsed: %i" % OpenCLFFTElapsed)
|
485 | 281 | equemene | print("OpenCLRate: %i" % OpenCLFFTRate)
|
486 | 281 | equemene | print("Precision: ",np.linalg.norm(i_np-C_np),
|
487 | 281 | equemene | np.linalg.norm(j_np-D_np)) |
488 | 281 | equemene | |
489 | 300 | equemene | <<<<<<< .mine |
490 | 300 | equemene | if OpenCLMethod and NumpyFFTMethod: |
491 | 300 | equemene | print(OpenCLMethod,NumpyFFTMethod) |
492 | 300 | equemene | print("Precision: ",np.linalg.norm(m_np-i_np),
|
493 | 300 | equemene | np.linalg.norm(n_np-j_np)) |
494 | 300 | equemene | print((m_np-i_np),(n_np-j_np)) |
495 | 300 | equemene | print(i_np,j_np) |
496 | 300 | equemene | print(m_np,n_np) |
497 | 300 | equemene | print((i_np-m_np),(j_np-n_np)) |
498 | 300 | equemene | |
499 | 300 | equemene | if CUDAMethod and NumpyFFTMethod: |
500 | 300 | equemene | print(CUDAMethod,NumpyFFTMethod) |
501 | 300 | equemene | print("Precision: ",np.linalg.norm(m_np-k_np),
|
502 | 300 | equemene | np.linalg.norm(n_np-l_np)) |
503 | 300 | equemene | print((m_np-k_np),(n_np-l_np)) |
504 | 300 | equemene | print(k_np,l_np) |
505 | 300 | equemene | print(m_np,n_np) |
506 | 300 | equemene | print((k_np-m_np),(l_np-n_np)) |
507 | 300 | equemene | |
508 | 300 | equemene | if OpenCLMethod and NumpyMethod: |
509 | 300 | equemene | print(OpenCLMethod,NumpyMethod) |
510 | 300 | equemene | print("Precision: ",np.linalg.norm(e_np-i_np),
|
511 | 300 | equemene | np.linalg.norm(f_np-j_np)) |
512 | 300 | equemene | print((e_np-i_np),(f_np-j_np)) |
513 | 300 | equemene | |
514 | 300 | equemene | if NumpyFFTMethod and NumpyMethod: |
515 | 300 | equemene | print(NumpyFFTMethod,NumpyMethod) |
516 | 300 | equemene | print("Precision: ",np.linalg.norm(e_np-m_np),
|
517 | 300 | equemene | np.linalg.norm(f_np-n_np)) |
518 | 300 | equemene | print(e_np,f_np) |
519 | 300 | equemene | print(m_np,n_np) |
520 | 300 | equemene | print((e_np-m_np),(f_np-n_np)) |
521 | 300 | equemene | |
522 | 300 | equemene | if NumpyFFTMethod and NaiveMethod: |
523 | 300 | equemene | print(NumpyFFTMethod,NaiveMethod) |
524 | 300 | equemene | print("Precision: ",np.linalg.norm(c_np-m_np),
|
525 | 300 | equemene | np.linalg.norm(d_np-n_np)) |
526 | 300 | equemene | print(c_np,d_np) |
527 | 300 | equemene | print(m_np,n_np) |
528 | 300 | equemene | print((c_np-m_np),(d_np-n_np)) |
529 | 300 | equemene | |
530 | 300 | equemene | if NumpyFFTMethod and NumbaMethod: |
531 | 300 | equemene | print(NumpyFFTMethod,NumbaMethod) |
532 | 300 | equemene | print("Precision: ",np.linalg.norm(g_np-m_np),
|
533 | 300 | equemene | np.linalg.norm(h_np-n_np)) |
534 | 300 | equemene | print(g_np,h_np) |
535 | 300 | equemene | print(m_np,n_np) |
536 | 300 | equemene | print((g_np-m_np),(h_np-n_np)) |
537 | 300 | equemene | |
538 | 300 | equemene | ||||||| .r292 |
539 | 300 | equemene | ======= |
540 | 296 | equemene | if OpenCLFFTMethod and NumpyFFTMethod: |
541 | 296 | equemene | print("NumpyOpenCLRatio: %f" % (OpenCLFFTRate/NumpyFFTRate))
|
542 | 300 | equemene | >>>>>>> .r299 |