root / NBody / NBody.py @ 298
Historique | Voir | Annoter | Télécharger (29,1 ko)
1 |
#!/usr/bin/env python3
|
---|---|
2 |
# -*- coding: utf-8 -*-
|
3 |
"""
|
4 |
NBody Demonstrator implemented in OpenCL, rendering OpenGL
|
5 |
|
6 |
By default, rendering in OpenGL is disabled. Add -g option to activate.
|
7 |
|
8 |
Part of matrix programs from: https://forge.cbp.ens-lyon.fr/svn/bench4gpu/
|
9 |
|
10 |
CC BY-NC-SA 2011 : Emmanuel QUEMENER <emmanuel.quemener@ens-lyon.fr>
|
11 |
|
12 |
Thanks to Andreas Klockner for PyOpenCL:
|
13 |
http://mathema.tician.de/software/pyopencl
|
14 |
|
15 |
"""
|
16 |
import getopt |
17 |
import sys |
18 |
import time |
19 |
import numpy as np |
20 |
import pyopencl as cl |
21 |
import pyopencl.array as cl_array |
22 |
from numpy.random import randint as nprnd |
23 |
import string, sys |
24 |
from OpenGL.GL import * |
25 |
from OpenGL.GLUT import * |
26 |
|
27 |
def DictionariesAPI(): |
28 |
Marsaglia={'CONG':0,'SHR3':1,'MWC':2,'KISS':3} |
29 |
Computing={'FP32':0,'FP64':1} |
30 |
Interaction={'Force':0,'Potential':1} |
31 |
Artevasion={'None':0,'NegExp':1,'CorRad':2} |
32 |
return(Marsaglia,Computing,Interaction,Artevasion)
|
33 |
|
34 |
BlobOpenCL= """
|
35 |
#define TFP32 0
|
36 |
#define TFP64 1
|
37 |
|
38 |
#define TFORCE 0
|
39 |
#define TPOTENTIAL 1
|
40 |
|
41 |
#define NONE 0
|
42 |
#define NEGEXP 1
|
43 |
#define CORRAD 2
|
44 |
|
45 |
#if TYPE == TFP32
|
46 |
#define MYFLOAT4 float4
|
47 |
#define MYFLOAT8 float8
|
48 |
#define MYFLOAT float
|
49 |
#define DISTANCE fast_distance
|
50 |
#else
|
51 |
#define MYFLOAT4 double4
|
52 |
#define MYFLOAT8 double8
|
53 |
#define MYFLOAT double
|
54 |
#define DISTANCE distance
|
55 |
#if defined(cl_khr_fp64) // Khronos extension available?
|
56 |
#pragma OPENCL EXTENSION cl_khr_fp64 : enable
|
57 |
#endif
|
58 |
#endif
|
59 |
|
60 |
#define znew ((zmwc=36969*(zmwc&65535)+(zmwc>>16))<<16)
|
61 |
#define wnew ((wmwc=18000*(wmwc&65535)+(wmwc>>16))&65535)
|
62 |
#define MWC (znew+wnew)
|
63 |
#define SHR3 (jsr=(jsr=(jsr=jsr^(jsr<<17))^(jsr>>13))^(jsr<<5))
|
64 |
#define CONG (jcong=69069*jcong+1234567)
|
65 |
#define KISS ((MWC^CONG)+SHR3)
|
66 |
|
67 |
#define MWCfp (MYFLOAT)(MWC * 2.3283064365386963e-10f)
|
68 |
#define KISSfp (MYFLOAT)(KISS * 2.3283064365386963e-10f)
|
69 |
#define SHR3fp (MYFLOAT)(SHR3 * 2.3283064365386963e-10f)
|
70 |
#define CONGfp (MYFLOAT)(CONG * 2.3283064365386963e-10f)
|
71 |
|
72 |
#define PI (MYFLOAT)3.141592653589793238e0f
|
73 |
|
74 |
#define SMALL_NUM (MYFLOAT)1.e-9f
|
75 |
|
76 |
#define CoreRadius (MYFLOAT)(1.e0f)
|
77 |
|
78 |
// Create my own Distance implementation: distance buggy on Oland AMD chipset
|
79 |
|
80 |
MYFLOAT MyDistance(MYFLOAT4 n,MYFLOAT4 m)
|
81 |
{
|
82 |
private MYFLOAT x2,y2,z2;
|
83 |
x2=n.s0-m.s0;
|
84 |
x2*=x2;
|
85 |
y2=n.s1-m.s1;
|
86 |
y2*=y2;
|
87 |
z2=n.s2-m.s2;
|
88 |
z2*=z2;
|
89 |
return(sqrt(x2+y2+z2));
|
90 |
}
|
91 |
|
92 |
// Potential between 2 m,n bodies
|
93 |
MYFLOAT PairPotential(MYFLOAT4 m,MYFLOAT4 n)
|
94 |
#if ARTEVASION == NEGEXP
|
95 |
// Add exp(-r) to numerator to avoid divergence for low distances
|
96 |
{
|
97 |
MYFLOAT r=DISTANCE(n,m);
|
98 |
return((-1.e0f+exp(-r))/r);
|
99 |
}
|
100 |
#elif ARTEVASION == CORRAD
|
101 |
// Add Core Radius to avoid divergence for low distances
|
102 |
{
|
103 |
MYFLOAT r=DISTANCE(n,m);
|
104 |
return(-1.e0f/sqrt(r*r+CoreRadius*CoreRadius));
|
105 |
}
|
106 |
#else
|
107 |
// Classical potential in 1/r
|
108 |
{
|
109 |
// return((MYFLOAT)(-1.e0f)/(MyDistance(m,n)));
|
110 |
return((MYFLOAT)(-1.e0f)/(DISTANCE(n,m)));
|
111 |
}
|
112 |
#endif
|
113 |
|
114 |
// Interaction based of Force as gradient of Potential
|
115 |
MYFLOAT4 Interaction(MYFLOAT4 m,MYFLOAT4 n)
|
116 |
#if INTERACTION == TFORCE
|
117 |
#if ARTEVASION == NEGEXP
|
118 |
// Force gradient of potential, set as (1-exp(-r))/r
|
119 |
{
|
120 |
private MYFLOAT r=MyDistance(n,m);
|
121 |
private MYFLOAT num=1.e0f+exp(-r)*(r-1.e0f);
|
122 |
return((n-m)*num/(MYFLOAT)(r*r*r));
|
123 |
}
|
124 |
#elif ARTEVASION == CORRAD
|
125 |
// Force gradient of potential, (Core Radius) set as 1/sqrt(r**2+CoreRadius**2)
|
126 |
{
|
127 |
private MYFLOAT r=MyDistance(n,m);
|
128 |
private MYFLOAT den=sqrt(r*r+CoreRadius*CoreRadius);
|
129 |
return((n-m)/(MYFLOAT)(den*den*den));
|
130 |
}
|
131 |
#else
|
132 |
// Simplest implementation of force (equals to acceleration)
|
133 |
// seems to bo bad (numerous artevasions)
|
134 |
// MYFLOAT4 InteractionForce(MYFLOAT4 m,MYFLOAT4 n)
|
135 |
{
|
136 |
private MYFLOAT r=MyDistance(n,m);
|
137 |
return((n-m)/(MYFLOAT)(r*r*r));
|
138 |
}
|
139 |
#endif
|
140 |
#else
|
141 |
// Force definited as gradient of potential
|
142 |
// Estimate potential and proximate potential to estimate force
|
143 |
{
|
144 |
// 1/1024 seems to be a good factor: larger one provides bad results
|
145 |
private MYFLOAT epsilon=(MYFLOAT)(1.e0f/1024);
|
146 |
private MYFLOAT4 er=normalize(n-m);
|
147 |
private MYFLOAT4 dr=er*(MYFLOAT)epsilon;
|
148 |
|
149 |
return(er/epsilon*(PairPotential(m,n)-PairPotential(m+dr,n)));
|
150 |
}
|
151 |
#endif
|
152 |
|
153 |
MYFLOAT AtomicPotential(__global MYFLOAT4* clDataX,int gid)
|
154 |
{
|
155 |
private MYFLOAT potential=(MYFLOAT)0.e0f;
|
156 |
private MYFLOAT4 x=clDataX[gid];
|
157 |
|
158 |
for (int i=0;i<get_global_size(0);i++)
|
159 |
{
|
160 |
if (gid != i)
|
161 |
potential+=PairPotential(x,clDataX[i]);
|
162 |
}
|
163 |
|
164 |
barrier(CLK_GLOBAL_MEM_FENCE);
|
165 |
return(potential);
|
166 |
}
|
167 |
|
168 |
MYFLOAT AtomicPotentialCoM(__global MYFLOAT4* clDataX,__global MYFLOAT4* clCoM,int gid)
|
169 |
{
|
170 |
return(PairPotential(clDataX[gid],clCoM[0]));
|
171 |
}
|
172 |
|
173 |
// Elements from : http://doswa.com/2009/01/02/fourth-order-runge-kutta-numerical-integration.html
|
174 |
|
175 |
MYFLOAT8 AtomicRungeKutta(__global MYFLOAT4* clDataInX,__global MYFLOAT4* clDataInV,int gid,MYFLOAT dt)
|
176 |
{
|
177 |
private MYFLOAT4 a0,v0,x0,a1,v1,x1,a2,v2,x2,a3,v3,x3,a4,v4,x4,xf,vf;
|
178 |
MYFLOAT4 DT=dt*(MYFLOAT4)(1.e0f,1.e0f,1.e0f,1.e0f);
|
179 |
|
180 |
a0=(MYFLOAT4)(0.e0f,0.e0f,0.e0f,0.e0f);
|
181 |
v0=(MYFLOAT4)clDataInV[gid];
|
182 |
x0=(MYFLOAT4)clDataInX[gid];
|
183 |
int N = get_global_size(0);
|
184 |
|
185 |
for (private int i=0;i<N;i++)
|
186 |
{
|
187 |
if (gid != i)
|
188 |
a0+=Interaction(x0,clDataInX[i]);
|
189 |
}
|
190 |
|
191 |
a1=(MYFLOAT4)(0.e0f,0.e0f,0.e0f,0.e0f);
|
192 |
v1=a0*dt+v0;
|
193 |
x1=v0*dt+x0;
|
194 |
for (private int j=0;j<N;j++)
|
195 |
{
|
196 |
if (gid != j)
|
197 |
a1+=Interaction(x1,clDataInX[j]);
|
198 |
}
|
199 |
|
200 |
a2=(MYFLOAT4)(0.e0f,0.e0f,0.e0f,0.e0f);
|
201 |
v2=a1*(MYFLOAT)(dt/2.e0f)+v0;
|
202 |
x2=v1*(MYFLOAT)(dt/2.e0f)+x0;
|
203 |
for (private int k=0;k<N;k++)
|
204 |
{
|
205 |
if (gid != k)
|
206 |
a2+=Interaction(x2,clDataInX[k]);
|
207 |
}
|
208 |
|
209 |
a3=(MYFLOAT4)(0.e0f,0.e0f,0.e0f,0.e0f);
|
210 |
v3=a2*(MYFLOAT)(dt/2.e0f)+v0;
|
211 |
x3=v2*(MYFLOAT)(dt/2.e0f)+x0;
|
212 |
for (private int l=0;l<N;l++)
|
213 |
{
|
214 |
if (gid != l)
|
215 |
a3+=Interaction(x3,clDataInX[l]);
|
216 |
}
|
217 |
|
218 |
a4=(MYFLOAT4)(0.e0f,0.e0f,0.e0f,0.e0f);
|
219 |
v4=a3*dt+v0;
|
220 |
x4=v3*dt+x0;
|
221 |
for (private int m=0;m<N;m++)
|
222 |
{
|
223 |
if (gid != m)
|
224 |
a4+=Interaction(x4,clDataInX[m]);
|
225 |
}
|
226 |
|
227 |
xf=x0+dt*(v1+(MYFLOAT)2.e0f*(v2+v3)+v4)/(MYFLOAT)6.e0f;
|
228 |
vf=v0+dt*(a1+(MYFLOAT)2.e0f*(a2+a3)+a4)/(MYFLOAT)6.e0f;
|
229 |
|
230 |
return((MYFLOAT8)(xf.s0,xf.s1,xf.s2,0.e0f,vf.s0,vf.s1,vf.s2,0.e0f));
|
231 |
}
|
232 |
|
233 |
MYFLOAT8 AtomicHeun(__global MYFLOAT4* clDataInX,__global MYFLOAT4* clDataInV,int gid,MYFLOAT dt)
|
234 |
{
|
235 |
private MYFLOAT4 x0,v0,a0,x1,v1,a1,xf,vf;
|
236 |
MYFLOAT4 Dt=dt*(MYFLOAT4)(1.e0f,1.e0f,1.e0f,1.e0f);
|
237 |
|
238 |
x0=(MYFLOAT4)clDataInX[gid];
|
239 |
v0=(MYFLOAT4)clDataInV[gid];
|
240 |
a0=(MYFLOAT4)(0.e0f,0.e0f,0.e0f,0.e0f);
|
241 |
|
242 |
for (private int i=0;i<get_global_size(0);i++)
|
243 |
{
|
244 |
if (gid != i)
|
245 |
a0+=Interaction(x0,clDataInX[i]);
|
246 |
}
|
247 |
|
248 |
a1=(MYFLOAT4)(0.e0f,0.e0f,0.e0f,0.e0f);
|
249 |
//v1=v0+dt*a0;
|
250 |
//x1=x0+dt*v0;
|
251 |
v1=dt*a0+v0;
|
252 |
x1=dt*v0+x0;
|
253 |
|
254 |
for (private int j=0;j<get_global_size(0);j++)
|
255 |
{
|
256 |
if (gid != j)
|
257 |
a1+=Interaction(x1,clDataInX[j]);
|
258 |
}
|
259 |
|
260 |
vf=v0+dt*(a0+a1)/(MYFLOAT)2.e0f;
|
261 |
xf=x0+dt*(v0+v1)/(MYFLOAT)2.e0f;
|
262 |
|
263 |
return((MYFLOAT8)(xf.s0,xf.s1,xf.s2,0.e0f,vf.s0,vf.s1,vf.s2,0.e0f));
|
264 |
}
|
265 |
|
266 |
MYFLOAT8 AtomicImplicitEuler(__global MYFLOAT4* clDataInX,__global MYFLOAT4* clDataInV,int gid,MYFLOAT dt)
|
267 |
{
|
268 |
MYFLOAT4 x0,v0,a,xf,vf;
|
269 |
|
270 |
x0=(MYFLOAT4)clDataInX[gid];
|
271 |
v0=(MYFLOAT4)clDataInV[gid];
|
272 |
a=(MYFLOAT4)(0.e0f,0.e0f,0.e0f,0.e0f);
|
273 |
|
274 |
for (private int i=0;i<get_global_size(0);i++)
|
275 |
{
|
276 |
if (gid != i)
|
277 |
a+=Interaction(x0,clDataInX[i]);
|
278 |
}
|
279 |
|
280 |
vf=v0+dt*a;
|
281 |
xf=x0+dt*vf;
|
282 |
|
283 |
return((MYFLOAT8)(xf.s0,xf.s1,xf.s2,0.e0f,vf.s0,vf.s1,vf.s2,0.e0f));
|
284 |
}
|
285 |
|
286 |
MYFLOAT8 AtomicExplicitEuler(__global MYFLOAT4* clDataInX,__global MYFLOAT4* clDataInV,int gid,MYFLOAT dt)
|
287 |
{
|
288 |
MYFLOAT4 x0,v0,a,xf,vf;
|
289 |
|
290 |
x0=(MYFLOAT4)clDataInX[gid];
|
291 |
v0=(MYFLOAT4)clDataInV[gid];
|
292 |
a=(MYFLOAT4)(0.e0f,0.e0f,0.e0f,0.e0f);
|
293 |
|
294 |
for (private int i=0;i<get_global_size(0);i++)
|
295 |
{
|
296 |
if (gid != i)
|
297 |
a+=Interaction(x0,clDataInX[i]);
|
298 |
}
|
299 |
|
300 |
vf=v0+dt*a;
|
301 |
xf=x0+dt*v0;
|
302 |
|
303 |
return((MYFLOAT8)(xf.s0,xf.s1,xf.s2,0.e0f,vf.s0,vf.s1,vf.s2,0.e0f));
|
304 |
}
|
305 |
|
306 |
__kernel void InBallSplutterPoints(__global MYFLOAT4* clDataX,
|
307 |
MYFLOAT diameter,uint seed_z,uint seed_w)
|
308 |
{
|
309 |
private int gid=get_global_id(0);
|
310 |
private uint zmwc=seed_z+gid;
|
311 |
private uint wmwc=seed_w+(gid+1)%2;
|
312 |
private MYFLOAT Heat;
|
313 |
|
314 |
for (int i=0;i<gid;i++)
|
315 |
{
|
316 |
Heat=MWCfp;
|
317 |
}
|
318 |
|
319 |
// More accurate distribution based on spherical coordonates
|
320 |
// Disactivated because of AMD Oland GPU crash on launch
|
321 |
// private MYFLOAT Radius,Theta,Phi,PosX,PosY,PosZ,SinTheta;
|
322 |
// Radius=MWCfp*diameter/2.e0f;
|
323 |
// Theta=(MYFLOAT)acos((float)(-2.e0f*MWCfp+1.0e0f));
|
324 |
// Phi=(MYFLOAT)(2.e0f*PI*MWCfp);
|
325 |
// SinTheta=sin((float)Theta);
|
326 |
// PosX=cos((float)Phi)*Radius*SinTheta;
|
327 |
// PosY=sin((float)Phi)*Radius*SinTheta;
|
328 |
// PosZ=cos((float)Theta)*Radius;
|
329 |
// clDataX[gid]=(MYFLOAT4)(PosX,PosY,PosZ,0.e0f);
|
330 |
|
331 |
private MYFLOAT Radius=diameter/2.e0f;
|
332 |
private MYFLOAT Length=diameter;
|
333 |
private MYFLOAT4 Position;
|
334 |
while (Length>Radius) {
|
335 |
Position=(MYFLOAT4)((MWCfp-0.5e0f)*diameter,(MWCfp-0.5e0f)*diameter,(MWCfp-0.5e0f)*diameter,0.e0f);
|
336 |
Length=(MYFLOAT)length((MYFLOAT4)Position);
|
337 |
}
|
338 |
|
339 |
clDataX[gid]=Position;
|
340 |
|
341 |
barrier(CLK_GLOBAL_MEM_FENCE);
|
342 |
}
|
343 |
|
344 |
__kernel void InBoxSplutterPoints(__global MYFLOAT4* clDataX, MYFLOAT box,
|
345 |
uint seed_z,uint seed_w)
|
346 |
{
|
347 |
int gid=get_global_id(0);
|
348 |
uint zmwc=seed_z+gid;
|
349 |
uint wmwc=seed_w-gid;
|
350 |
private MYFLOAT Heat;
|
351 |
|
352 |
for (int i=0;i<gid;i++)
|
353 |
{
|
354 |
Heat=MWCfp;
|
355 |
}
|
356 |
|
357 |
clDataX[gid]=(MYFLOAT4)((MWCfp-0.5e0f)*box,(MWCfp-0.5e0f)*box,(MWCfp-0.5e0f)*box,0.e0f);
|
358 |
|
359 |
barrier(CLK_GLOBAL_MEM_FENCE);
|
360 |
}
|
361 |
|
362 |
__kernel void SplutterStress(__global MYFLOAT4* clDataX,__global MYFLOAT4* clDataV,__global MYFLOAT4* clCoM, MYFLOAT velocity,uint seed_z,uint seed_w)
|
363 |
{
|
364 |
int gid = get_global_id(0);
|
365 |
MYFLOAT N = (MYFLOAT)get_global_size(0);
|
366 |
uint zmwc=seed_z+(uint)gid;
|
367 |
uint wmwc=seed_w-(uint)gid;
|
368 |
MYFLOAT4 CrossVector,SpeedVector,FromCoM;
|
369 |
MYFLOAT Heat,ThetaA,PhiA,ThetaB,PhiB,Length,tA,tB,Polar;
|
370 |
|
371 |
for (int i=0;i<gid;i++)
|
372 |
{
|
373 |
Heat=MWCfp;
|
374 |
}
|
375 |
|
376 |
// cast to float for sin,cos are NEEDED by Mesa FP64 implementation!
|
377 |
// Implemention on AMD Oland are probably broken in float
|
378 |
|
379 |
FromCoM=(MYFLOAT4)(clDataX[gid]-clCoM[0]);
|
380 |
Length=length(FromCoM);
|
381 |
//Theta=acos(FromCoM.z/Length);
|
382 |
//Phi=atan(FromCoM.y/FromCoM.x);
|
383 |
// First tangential vector to sphere of length radius
|
384 |
ThetaA=acos(FromCoM.x/Length)+5.e-1f*PI;
|
385 |
PhiA=atan(FromCoM.y/FromCoM.z);
|
386 |
// Second tangential vector to sphere of length radius
|
387 |
ThetaB=acos((float)(FromCoM.x/Length));
|
388 |
PhiB=atan((float)(FromCoM.y/FromCoM.z))+5.e-1f*PI;
|
389 |
// (x,y) random coordonates to plane tangential to sphere
|
390 |
Polar=MWCfp*2.e0f*PI;
|
391 |
tA=cos((float)Polar);
|
392 |
tB=sin((float)Polar);
|
393 |
|
394 |
// Exception for 2 particules to ovoid shifting
|
395 |
if (get_global_size(0)==2) {
|
396 |
CrossVector=(MYFLOAT4)(1.e0f,1.e0f,1.e0f,0.e0f);
|
397 |
} else {
|
398 |
CrossVector.s0=tA*cos((float)ThetaA)+tB*cos((float)ThetaB);
|
399 |
CrossVector.s1=tA*sin((float)ThetaA)*sin((float)PhiA)+tB*sin((float)ThetaB)*sin((float)PhiB);
|
400 |
CrossVector.s2=tA*sin((float)ThetaA)*cos((float)PhiA)+tB*sin((float)ThetaB)*cos((float)PhiB);
|
401 |
CrossVector.s3=0.e0f;
|
402 |
}
|
403 |
|
404 |
if (velocity<SMALL_NUM) {
|
405 |
SpeedVector=(MYFLOAT4)normalize(cross(FromCoM,CrossVector))*sqrt((-AtomicPotential(clDataX,gid)/(MYFLOAT)2.e0f));
|
406 |
}
|
407 |
else
|
408 |
{
|
409 |
|
410 |
SpeedVector=(MYFLOAT4)((MWCfp-5e-1f)*velocity,(MWCfp-5e-1f)*velocity,
|
411 |
(MWCfp-5e-1f)*velocity,0.e0f);
|
412 |
}
|
413 |
clDataV[gid]=SpeedVector;
|
414 |
barrier(CLK_GLOBAL_MEM_FENCE);
|
415 |
}
|
416 |
|
417 |
__kernel void RungeKutta(__global MYFLOAT4* clDataX,__global MYFLOAT4* clDataV,MYFLOAT h)
|
418 |
{
|
419 |
private int gid = get_global_id(0);
|
420 |
private MYFLOAT8 clDataGid;
|
421 |
|
422 |
clDataGid=AtomicRungeKutta(clDataX,clDataV,gid,h);
|
423 |
barrier(CLK_GLOBAL_MEM_FENCE);
|
424 |
clDataX[gid]=clDataGid.s0123;
|
425 |
clDataV[gid]=clDataGid.s4567;
|
426 |
}
|
427 |
|
428 |
__kernel void Heun(__global MYFLOAT4* clDataX,__global MYFLOAT4* clDataV,MYFLOAT h)
|
429 |
{
|
430 |
private int gid = get_global_id(0);
|
431 |
private MYFLOAT8 clDataGid;
|
432 |
|
433 |
clDataGid=AtomicHeun(clDataX,clDataV,gid,h);
|
434 |
barrier(CLK_GLOBAL_MEM_FENCE);
|
435 |
clDataX[gid]=clDataGid.s0123;
|
436 |
clDataV[gid]=clDataGid.s4567;
|
437 |
}
|
438 |
|
439 |
__kernel void ImplicitEuler(__global MYFLOAT4* clDataX,__global MYFLOAT4* clDataV,MYFLOAT h)
|
440 |
{
|
441 |
private int gid = get_global_id(0);
|
442 |
private MYFLOAT8 clDataGid;
|
443 |
|
444 |
clDataGid=AtomicImplicitEuler(clDataX,clDataV,gid,h);
|
445 |
barrier(CLK_GLOBAL_MEM_FENCE);
|
446 |
clDataX[gid]=clDataGid.s0123;
|
447 |
clDataV[gid]=clDataGid.s4567;
|
448 |
}
|
449 |
|
450 |
__kernel void ExplicitEuler(__global MYFLOAT4* clDataX,__global MYFLOAT4* clDataV,MYFLOAT h)
|
451 |
{
|
452 |
private int gid = get_global_id(0);
|
453 |
private MYFLOAT8 clDataGid;
|
454 |
|
455 |
clDataGid=AtomicExplicitEuler(clDataX,clDataV,gid,h);
|
456 |
barrier(CLK_GLOBAL_MEM_FENCE);
|
457 |
clDataX[gid]=clDataGid.s0123;
|
458 |
clDataV[gid]=clDataGid.s4567;
|
459 |
}
|
460 |
|
461 |
__kernel void CoMPotential(__global MYFLOAT4* clDataX,__global MYFLOAT4* clCoM,__global MYFLOAT* clPotential)
|
462 |
{
|
463 |
int gid = get_global_id(0);
|
464 |
|
465 |
clPotential[gid]=PairPotential(clDataX[gid],clCoM[0]);
|
466 |
}
|
467 |
|
468 |
__kernel void Potential(__global MYFLOAT4* clDataX,__global MYFLOAT* clPotential)
|
469 |
{
|
470 |
int gid = get_global_id(0);
|
471 |
|
472 |
MYFLOAT potential=(MYFLOAT)0.e0f;
|
473 |
MYFLOAT4 x=clDataX[gid];
|
474 |
|
475 |
for (int i=0;i<get_global_size(0);i++)
|
476 |
{
|
477 |
if (gid != i)
|
478 |
potential+=PairPotential(x,clDataX[i]);
|
479 |
}
|
480 |
|
481 |
barrier(CLK_GLOBAL_MEM_FENCE);
|
482 |
clPotential[gid]=potential*(MYFLOAT)5.e-1f;
|
483 |
}
|
484 |
|
485 |
__kernel void CenterOfMass(__global MYFLOAT4* clDataX,__global MYFLOAT4* clCoM,int Size)
|
486 |
{
|
487 |
MYFLOAT4 CoM=clDataX[0];
|
488 |
|
489 |
for (int i=1;i<Size;i++)
|
490 |
{
|
491 |
CoM+=clDataX[i];
|
492 |
}
|
493 |
|
494 |
barrier(CLK_GLOBAL_MEM_FENCE);
|
495 |
clCoM[0]=(MYFLOAT4)(CoM.s0,CoM.s1,CoM.s2,0.e0f)/(MYFLOAT)Size;
|
496 |
}
|
497 |
|
498 |
__kernel void Kinetic(__global MYFLOAT4* clDataV,__global MYFLOAT* clKinetic)
|
499 |
{
|
500 |
int gid = get_global_id(0);
|
501 |
|
502 |
barrier(CLK_GLOBAL_MEM_FENCE);
|
503 |
MYFLOAT d=(MYFLOAT)length(clDataV[gid]);
|
504 |
clKinetic[gid]=(MYFLOAT)5.e-1f*(MYFLOAT)(d*d);
|
505 |
}
|
506 |
|
507 |
"""
|
508 |
|
509 |
def MainOpenCL(clDataX,clDataV,Step,Method): |
510 |
time_start=time.time() |
511 |
if Method=="RungeKutta": |
512 |
CLLaunch=MyRoutines.RungeKutta(queue,(Number,1),None,clDataX,clDataV,Step) |
513 |
elif Method=="ExplicitEuler": |
514 |
CLLaunch=MyRoutines.ExplicitEuler(queue,(Number,1),None,clDataX,clDataV,Step) |
515 |
elif Method=="Heun": |
516 |
CLLaunch=MyRoutines.Heun(queue,(Number,1),None,clDataX,clDataV,Step) |
517 |
else:
|
518 |
CLLaunch=MyRoutines.ImplicitEuler(queue,(Number,1),None,clDataX,clDataV,Step) |
519 |
CLLaunch.wait() |
520 |
Elapsed=time.time()-time_start |
521 |
return(Elapsed)
|
522 |
|
523 |
def display(*args): |
524 |
|
525 |
global MyDataX,MyDataV,clDataX,clDataV,Step,Method,Number,Iterations,Durations,Verbose,SpeedRendering
|
526 |
|
527 |
glClearColor(0.0, 0.0, 0.0, 0.0) |
528 |
glClear(GL_COLOR_BUFFER_BIT) |
529 |
glColor3f(1.0,1.0,1.0) |
530 |
|
531 |
Elapsed=MainOpenCL(clDataX,clDataV,Step,Method) |
532 |
if SpeedRendering:
|
533 |
cl.enqueue_copy(queue, MyDataV, clDataV) |
534 |
MyDataV.reshape(Number,4)[:,3]=1 |
535 |
glVertexPointerf(MyDataV.reshape(Number,4))
|
536 |
else:
|
537 |
cl.enqueue_copy(queue, MyDataX, clDataX) |
538 |
MyDataX.reshape(Number,4)[:,3]=1 |
539 |
glVertexPointerf(MyDataX.reshape(Number,4))
|
540 |
|
541 |
if Verbose:
|
542 |
print("Positions for #%s iteration: %s" % (Iterations,MyDataX))
|
543 |
else:
|
544 |
sys.stdout.write('.')
|
545 |
sys.stdout.flush() |
546 |
Durations=np.append(Durations,MainOpenCL(clDataX,clDataV,Step,Method)) |
547 |
glEnableClientState(GL_VERTEX_ARRAY) |
548 |
glDrawArrays(GL_POINTS, 0, Number)
|
549 |
glDisableClientState(GL_VERTEX_ARRAY) |
550 |
glFlush() |
551 |
Iterations+=1
|
552 |
glutSwapBuffers() |
553 |
|
554 |
def halt(): |
555 |
pass
|
556 |
|
557 |
def keyboard(k,x,y): |
558 |
global ViewRZ,SpeedRendering
|
559 |
LC_Z = as_8_bit( 'z' )
|
560 |
UC_Z = as_8_bit( 'Z' )
|
561 |
Plus = as_8_bit( '+' )
|
562 |
Minus = as_8_bit( '-' )
|
563 |
Switch = as_8_bit( 's' )
|
564 |
|
565 |
Zoom=1
|
566 |
if k == LC_Z:
|
567 |
ViewRZ += 1.0
|
568 |
elif k == UC_Z:
|
569 |
ViewRZ -= 1.0
|
570 |
elif k == Plus:
|
571 |
Zoom *= 2.0
|
572 |
elif k == Minus:
|
573 |
Zoom /= 2.0
|
574 |
elif k == Switch:
|
575 |
if SpeedRendering:
|
576 |
SpeedRendering=False
|
577 |
else:
|
578 |
SpeedRendering=True
|
579 |
elif ord(k) == 27: # Escape |
580 |
glutLeaveMainLoop() |
581 |
return(False) |
582 |
else:
|
583 |
return
|
584 |
glRotatef(ViewRZ, 0.0, 0.0, 1.0) |
585 |
glScalef(Zoom,Zoom,Zoom) |
586 |
glutPostRedisplay() |
587 |
|
588 |
def special(k,x,y): |
589 |
global ViewRX, ViewRY
|
590 |
|
591 |
Step=1.
|
592 |
if k == GLUT_KEY_UP:
|
593 |
ViewRX += Step |
594 |
elif k == GLUT_KEY_DOWN:
|
595 |
ViewRX -= Step |
596 |
elif k == GLUT_KEY_LEFT:
|
597 |
ViewRY += Step |
598 |
elif k == GLUT_KEY_RIGHT:
|
599 |
ViewRY -= Step |
600 |
else:
|
601 |
return
|
602 |
glRotatef(ViewRX, 1.0, 0.0, 0.0) |
603 |
glRotatef(ViewRY, 0.0, 1.0, 0.0) |
604 |
glutPostRedisplay() |
605 |
|
606 |
def setup_viewport(): |
607 |
global SizeOfBox
|
608 |
glMatrixMode(GL_PROJECTION) |
609 |
glLoadIdentity() |
610 |
glOrtho(-SizeOfBox, SizeOfBox, -SizeOfBox, SizeOfBox, -SizeOfBox, SizeOfBox) |
611 |
glutPostRedisplay() |
612 |
|
613 |
def reshape(w, h): |
614 |
glViewport(0, 0, w, h) |
615 |
setup_viewport() |
616 |
|
617 |
if __name__=='__main__': |
618 |
|
619 |
global Number,Step,clDataX,clDataV,MyDataX,MyDataV,Method,SizeOfBox,Iterations,Verbose,Durations
|
620 |
|
621 |
# ValueType
|
622 |
ValueType='FP32'
|
623 |
class MyFloat(np.float32):pass |
624 |
# clType8=cl_array.vec.float8
|
625 |
# Set defaults values
|
626 |
np.set_printoptions(precision=2)
|
627 |
# Id of Device : 1 is for first find !
|
628 |
Device=0
|
629 |
# Number of bodies is integer
|
630 |
Number=2
|
631 |
# Number of iterations (for standalone execution)
|
632 |
Iterations=10
|
633 |
# Size of shape
|
634 |
SizeOfShape=MyFloat(1.)
|
635 |
# Initial velocity of particules
|
636 |
Velocity=MyFloat(1.)
|
637 |
# Step
|
638 |
Step=MyFloat(1./32) |
639 |
# Method of integration
|
640 |
Method='ImplicitEuler'
|
641 |
# InitialRandom
|
642 |
InitialRandom=False
|
643 |
# RNG Marsaglia Method
|
644 |
RNG='MWC'
|
645 |
# Viriel Distribution of stress
|
646 |
VirielStress=True
|
647 |
# Verbose
|
648 |
Verbose=False
|
649 |
# OpenGL real time rendering
|
650 |
OpenGL=False
|
651 |
# Speed rendering
|
652 |
SpeedRendering=False
|
653 |
# Counter ArtEvasions Measures (artefact evasion)
|
654 |
CoArEv='None'
|
655 |
# Shape to distribute
|
656 |
Shape='Ball'
|
657 |
# Type of Interaction
|
658 |
InterType='Force'
|
659 |
|
660 |
HowToUse='%s -h [Help] -r [InitialRandom] -g [OpenGL] -e [VirielStress] -o [Verbose] -p [Potential] -x <None|NegExp|CorRad> -d <DeviceId> -n <NumberOfParticules> -i <Iterations> -z <SizeOfBoxOrBall> -v <Velocity> -s <Step> -b <Ball|Box> -m <ImplicitEuler|RungeKutta|ExplicitEuler|Heun> -t <FP32|FP64>'
|
661 |
|
662 |
try:
|
663 |
opts, args = getopt.getopt(sys.argv[1:],"rpgehod:n:i:z:v:s:m:t:b:x:",["random","potential","coarev","opengl","viriel","verbose","device=","number=","iterations=","size=","velocity=","step=","method=","valuetype=","shape="]) |
664 |
except getopt.GetoptError:
|
665 |
print(HowToUse % sys.argv[0])
|
666 |
sys.exit(2)
|
667 |
|
668 |
for opt, arg in opts: |
669 |
if opt == '-h': |
670 |
print(HowToUse % sys.argv[0])
|
671 |
|
672 |
print("\nInformations about devices detected under OpenCL:")
|
673 |
try:
|
674 |
Id=0
|
675 |
for platform in cl.get_platforms(): |
676 |
for device in platform.get_devices(): |
677 |
# Failed now because of POCL implementation
|
678 |
#deviceType=cl.device_type.to_string(device.type)
|
679 |
deviceType="xPU"
|
680 |
print("Device #%i from %s of type %s : %s" % (Id,platform.vendor.lstrip(),deviceType,device.name.lstrip()))
|
681 |
Id=Id+1
|
682 |
sys.exit() |
683 |
except ImportError: |
684 |
print("Your platform does not seem to support OpenCL")
|
685 |
sys.exit() |
686 |
|
687 |
elif opt in ("-t", "--valuetype"): |
688 |
if arg=='FP64': |
689 |
class MyFloat(np.float64): pass |
690 |
else:
|
691 |
class MyFloat(np.float32):pass |
692 |
ValueType = arg |
693 |
elif opt in ("-d", "--device"): |
694 |
Device=int(arg)
|
695 |
elif opt in ("-m", "--method"): |
696 |
Method=arg |
697 |
elif opt in ("-b", "--shape"): |
698 |
Shape=arg |
699 |
if Shape!='Ball' or Shape!='Box': |
700 |
print('Wrong argument: set to Ball')
|
701 |
elif opt in ("-n", "--number"): |
702 |
Number=int(arg)
|
703 |
elif opt in ("-i", "--iterations"): |
704 |
Iterations=int(arg)
|
705 |
elif opt in ("-z", "--size"): |
706 |
SizeOfShape=MyFloat(arg) |
707 |
elif opt in ("-v", "--velocity"): |
708 |
Velocity=MyFloat(arg) |
709 |
VirielStress=False
|
710 |
elif opt in ("-s", "--step"): |
711 |
Step=MyFloat(arg) |
712 |
elif opt in ("-r", "--random"): |
713 |
InitialRandom=True
|
714 |
elif opt in ("-c", "--check"): |
715 |
CheckEnergies=True
|
716 |
elif opt in ("-e", "--viriel"): |
717 |
VirielStress=True
|
718 |
elif opt in ("-g", "--opengl"): |
719 |
OpenGL=True
|
720 |
elif opt in ("-p", "--potential"): |
721 |
InterType='Potential'
|
722 |
elif opt in ("-x", "--coarev"): |
723 |
CoArEv=arg |
724 |
elif opt in ("-o", "--verbose"): |
725 |
Verbose=True
|
726 |
|
727 |
SizeOfShape=np.sqrt(MyFloat(SizeOfShape*Number)) |
728 |
Velocity=MyFloat(Velocity) |
729 |
Step=MyFloat(Step) |
730 |
|
731 |
print("Device choosed : %s" % Device)
|
732 |
print("Number of particules : %s" % Number)
|
733 |
print("Size of Shape : %s" % SizeOfShape)
|
734 |
print("Initial velocity : %s" % Velocity)
|
735 |
print("Step of iteration : %s" % Step)
|
736 |
print("Number of iterations : %s" % Iterations)
|
737 |
print("Method of resolution : %s" % Method)
|
738 |
print("Initial Random for RNG Seed : %s" % InitialRandom)
|
739 |
print("ValueType is : %s" % ValueType)
|
740 |
print("Viriel distribution of stress : %s" % VirielStress)
|
741 |
print("OpenGL real time rendering : %s" % OpenGL)
|
742 |
print("Speed rendering : %s" % SpeedRendering)
|
743 |
print("Interaction type : %s" % InterType)
|
744 |
print("Counter Artevasion type : %s" % CoArEv)
|
745 |
|
746 |
# Create Numpy array of CL vector with 8 FP32
|
747 |
MyCoM = np.zeros(4,dtype=MyFloat)
|
748 |
MyDataX = np.zeros(Number*4, dtype=MyFloat)
|
749 |
MyDataV = np.zeros(Number*4, dtype=MyFloat)
|
750 |
MyPotential = np.zeros(Number, dtype=MyFloat) |
751 |
MyKinetic = np.zeros(Number, dtype=MyFloat) |
752 |
|
753 |
Marsaglia,Computing,Interaction,Artevasion=DictionariesAPI() |
754 |
|
755 |
# Scan the OpenCL arrays
|
756 |
Id=0
|
757 |
HasXPU=False
|
758 |
for platform in cl.get_platforms(): |
759 |
for device in platform.get_devices(): |
760 |
if Id==Device:
|
761 |
PlatForm=platform |
762 |
XPU=device |
763 |
print("CPU/GPU selected: ",device.name.lstrip())
|
764 |
print("Platform selected: ",platform.name)
|
765 |
HasXPU=True
|
766 |
Id+=1
|
767 |
|
768 |
if HasXPU==False: |
769 |
print("No XPU #%i found in all of %i devices, sorry..." % (Device,Id-1)) |
770 |
sys.exit() |
771 |
|
772 |
# Create Context
|
773 |
try:
|
774 |
ctx = cl.Context([XPU]) |
775 |
queue = cl.CommandQueue(ctx,properties=cl.command_queue_properties.PROFILING_ENABLE) |
776 |
except:
|
777 |
print("Crash during context creation")
|
778 |
|
779 |
# Build all routines used for the computing
|
780 |
|
781 |
#BuildOptions="-cl-mad-enable -cl-kernel-arg-info -cl-fast-relaxed-math -cl-std=CL1.2 -DTRNG=%i -DTYPE=%i" % (Marsaglia[RNG],Computing[ValueType])
|
782 |
BuildOptions="-cl-mad-enable -cl-fast-relaxed-math -DTRNG=%i -DTYPE=%i -DINTERACTION=%i -DARTEVASION=%i" % (Marsaglia[RNG],Computing[ValueType],Interaction[InterType],Artevasion[CoArEv])
|
783 |
|
784 |
if 'Intel' in PlatForm.name or 'Experimental' in PlatForm.name or 'Clover' in PlatForm.name or 'Portable' in PlatForm.name : |
785 |
MyRoutines = cl.Program(ctx, BlobOpenCL).build(options = BuildOptions) |
786 |
else:
|
787 |
MyRoutines = cl.Program(ctx, BlobOpenCL).build(options = BuildOptions+" -cl-strict-aliasing")
|
788 |
|
789 |
mf = cl.mem_flags |
790 |
# Read/Write approach for buffering
|
791 |
clDataX = cl.Buffer(ctx, mf.READ_WRITE, MyDataX.nbytes) |
792 |
clDataV = cl.Buffer(ctx, mf.READ_WRITE, MyDataV.nbytes) |
793 |
clPotential = cl.Buffer(ctx, mf.READ_WRITE, MyPotential.nbytes) |
794 |
clKinetic = cl.Buffer(ctx, mf.READ_WRITE, MyKinetic.nbytes) |
795 |
clCoM = cl.Buffer(ctx, mf.READ_WRITE, MyCoM.nbytes) |
796 |
|
797 |
# Write/HostPointer approach for buffering
|
798 |
# clDataX = cl.Buffer(ctx, mf.WRITE_ONLY|mf.COPY_HOST_PTR,hostbuf=MyDataX)
|
799 |
# clDataV = cl.Buffer(ctx, mf.WRITE_ONLY|mf.COPY_HOST_PTR,hostbuf=MyDataV)
|
800 |
# clPotential = cl.Buffer(ctx, mf.WRITE_ONLY|mf.COPY_HOST_PTR,hostbuf=MyPotential)
|
801 |
# clKinetic = cl.Buffer(ctx, mf.WRITE_ONLY|mf.COPY_HOST_PTR,hostbuf=MyKinetic)
|
802 |
# clCoM = cl.Buffer(ctx, mf.WRITE_ONLY|mf.COPY_HOST_PTR,hostbuf=MyCoM)
|
803 |
|
804 |
print('All particles superimposed.')
|
805 |
|
806 |
# Set particles to RNG points
|
807 |
if InitialRandom:
|
808 |
seed_w=np.uint32(nprnd(2**32)) |
809 |
seed_z=np.uint32(nprnd(2**32)) |
810 |
else:
|
811 |
seed_w=np.uint32(19710211)
|
812 |
seed_z=np.uint32(20081010)
|
813 |
|
814 |
if Shape=='Ball': |
815 |
MyRoutines.InBallSplutterPoints(queue,(Number,1),None,clDataX,SizeOfShape,seed_w,seed_z) |
816 |
else:
|
817 |
MyRoutines.InBoxSplutterPoints(queue,(Number,1),None,clDataX,SizeOfShape,seed_w,seed_z) |
818 |
|
819 |
print('All particules distributed')
|
820 |
|
821 |
CLLaunch=MyRoutines.CenterOfMass(queue,(1,1),None,clDataX,clCoM,np.int32(Number)) |
822 |
CLLaunch.wait() |
823 |
cl.enqueue_copy(queue,MyCoM,clCoM) |
824 |
print('Center Of Mass estimated: (%s,%s,%s)' % (MyCoM[0],MyCoM[1],MyCoM[2])) |
825 |
|
826 |
if VirielStress:
|
827 |
CLLaunch=MyRoutines.SplutterStress(queue,(Number,1),None,clDataX,clDataV,clCoM,MyFloat(0.),np.uint32(110271),np.uint32(250173)) |
828 |
else:
|
829 |
CLLaunch=MyRoutines.SplutterStress(queue,(Number,1),None,clDataX,clDataV,clCoM,Velocity,np.uint32(110271),np.uint32(250173)) |
830 |
CLLaunch.wait() |
831 |
|
832 |
print('All particules stressed')
|
833 |
|
834 |
CLLaunch=MyRoutines.Potential(queue,(Number,1),None,clDataX,clPotential) |
835 |
CLLaunch=MyRoutines.Kinetic(queue,(Number,1),None,clDataV,clKinetic) |
836 |
CLLaunch.wait() |
837 |
cl.enqueue_copy(queue,MyPotential,clPotential) |
838 |
cl.enqueue_copy(queue,MyKinetic,clKinetic) |
839 |
print('Energy estimated: Viriel=%s Potential=%s Kinetic=%s\n'% (np.sum(MyPotential)+2*np.sum(MyKinetic),np.sum(MyPotential),np.sum(MyKinetic))) |
840 |
|
841 |
if SpeedRendering:
|
842 |
SizeOfBox=max(2*MyKinetic) |
843 |
else:
|
844 |
SizeOfBox=SizeOfShape |
845 |
|
846 |
if OpenGL:
|
847 |
print('\tTiny documentation to interact OpenGL rendering:\n')
|
848 |
print('\t<Left|Right> Rotate around X axis')
|
849 |
print('\t <Up|Down> Rotate around Y axis')
|
850 |
print('\t <z|Z> Rotate around Z axis')
|
851 |
print('\t <-|+> Unzoom/Zoom')
|
852 |
print('\t <s> Toggle to display Positions or Velocities')
|
853 |
print('\t <Esc> Quit\n')
|
854 |
|
855 |
wall_time_start=time.time() |
856 |
|
857 |
Durations=np.array([],dtype=MyFloat) |
858 |
print('Starting!')
|
859 |
if OpenGL:
|
860 |
global ViewRX,ViewRY,ViewRZ
|
861 |
Iterations=0
|
862 |
ViewRX,ViewRY,ViewRZ = 0.,0.,0. |
863 |
# Launch OpenGL Loop
|
864 |
glutInit(sys.argv) |
865 |
glutInitDisplayMode(GLUT_DOUBLE | GLUT_RGB) |
866 |
glutSetOption(GLUT_ACTION_ON_WINDOW_CLOSE,GLUT_ACTION_CONTINUE_EXECUTION) |
867 |
glutInitWindowSize(512,512) |
868 |
glutCreateWindow(b'NBodyGL')
|
869 |
setup_viewport() |
870 |
glutReshapeFunc(reshape) |
871 |
glutDisplayFunc(display) |
872 |
glutIdleFunc(display) |
873 |
# glutMouseFunc(mouse)
|
874 |
glutSpecialFunc(special) |
875 |
glutKeyboardFunc(keyboard) |
876 |
glutMainLoop() |
877 |
else:
|
878 |
for iteration in range(Iterations): |
879 |
Elapsed=MainOpenCL(clDataX,clDataV,Step,Method) |
880 |
if Verbose:
|
881 |
# print("Duration of #%s iteration: %s" % (iteration,Elapsed))
|
882 |
cl.enqueue_copy(queue, MyDataX, clDataX) |
883 |
print("Positions for #%s iteration: %s" % (iteration,MyDataX))
|
884 |
else:
|
885 |
sys.stdout.write('.')
|
886 |
sys.stdout.flush() |
887 |
Durations=np.append(Durations,Elapsed) |
888 |
|
889 |
print('\nEnding!')
|
890 |
|
891 |
MyRoutines.CenterOfMass(queue,(1,1),None,clDataX,clCoM,np.int32(Number)) |
892 |
CLLaunch=MyRoutines.Potential(queue,(Number,1),None,clDataX,clPotential) |
893 |
CLLaunch=MyRoutines.Kinetic(queue,(Number,1),None,clDataV,clKinetic) |
894 |
CLLaunch.wait() |
895 |
cl.enqueue_copy(queue,MyCoM,clCoM) |
896 |
cl.enqueue_copy(queue,MyPotential,clPotential) |
897 |
cl.enqueue_copy(queue,MyKinetic,clKinetic) |
898 |
print('\nCenter Of Mass estimated: (%s,%s,%s)' % (MyCoM[0],MyCoM[1],MyCoM[2])) |
899 |
print('Energy estimated: Viriel=%s Potential=%s Kinetic=%s\n'% (np.sum(MyPotential)+2.*np.sum(MyKinetic),np.sum(MyPotential),np.sum(MyKinetic))) |
900 |
|
901 |
print("Duration stats on device %s with %s iterations :\n\tMean:\t%s\n\tMedian:\t%s\n\tStddev:\t%s\n\tMin:\t%s\n\tMax:\t%s\n\n\tVariability:\t%s\n" % (Device,Iterations,np.mean(Durations),np.median(Durations),np.std(Durations),np.min(Durations),np.max(Durations),np.std(Durations)/np.median(Durations)))
|
902 |
|
903 |
# FPS: 1/Elapsed
|
904 |
FPS=np.ones(len(Durations))
|
905 |
FPS/=Durations |
906 |
|
907 |
print("FPS stats on device %s with %s iterations :\n\tMean:\t%s\n\tMedian:\t%s\n\tStddev:\t%s\n\tMin:\t%s\n\tMax:\t%s\n" % (Device,Iterations,np.mean(FPS),np.median(FPS),np.std(FPS),np.min(FPS),np.max(FPS)))
|
908 |
|
909 |
# Contraction of Square*Size*Hertz: Size*Size/Elapsed
|
910 |
Squertz=np.ones(len(Durations))
|
911 |
Squertz*=Number*Number |
912 |
Squertz/=Durations |
913 |
|
914 |
print("Squertz in log10 & complete stats on device %s with %s iterations :\n\tMean:\t%s\t%s\n\tMedian:\t%s\t%s\n\tStddev:\t%s\t%s\n\tMin:\t%s\t%s\n\tMax:\t%s\t%s\n" % (Device,Iterations,np.log10(np.mean(Squertz)),np.mean(Squertz),np.log10(np.median(Squertz)),np.median(Squertz),np.log10(np.std(Squertz)),np.std(Squertz),np.log10(np.min(Squertz)),np.min(Squertz),np.log10(np.max(Squertz)),np.max(Squertz)))
|
915 |
|
916 |
clDataX.release() |
917 |
clDataV.release() |
918 |
clKinetic.release() |
919 |
clPotential.release() |
920 |
|