root / TrouNoir / TrouNoir.py @ 291
Historique | Voir | Annoter | Télécharger (53,9 ko)
1 |
#!/usr/bin/env python3
|
---|---|
2 |
#
|
3 |
# TrouNoir model using PyOpenCL or PyCUDA
|
4 |
#
|
5 |
# CC BY-NC-SA 2019 : <emmanuel.quemener@ens-lyon.fr>
|
6 |
#
|
7 |
# Part of matrix programs from: https://forge.cbp.ens-lyon.fr/svn/bench4gpu/
|
8 |
#
|
9 |
# Thanks to Andreas Klockner for PyOpenCL and PyCUDA:
|
10 |
# http://mathema.tician.de/software/pyopencl
|
11 |
#
|
12 |
# Original code programmed in Fortran 77 in mars 1994
|
13 |
# for Practical Work of Numerical Simulation
|
14 |
# DEA (old Master2) in astrophysics and spatial techniques in Meudon
|
15 |
# by Herve Aussel & Emmanuel Quemener
|
16 |
#
|
17 |
# Conversion in C done by Emmanuel Quemener in august 1997
|
18 |
# GPUfication in OpenCL under Python in july 2019
|
19 |
# GPUfication in CUDA under Python in august 2019
|
20 |
#
|
21 |
# Thanks to :
|
22 |
#
|
23 |
# - Herve Aussel for his part of code of black body spectrum
|
24 |
# - Didier Pelat for his help to perform this work
|
25 |
# - Jean-Pierre Luminet for his article published in 1979
|
26 |
# - Numerical Recipies for Runge Kutta recipies
|
27 |
# - Luc Blanchet for his disponibility about my questions in General Relativity
|
28 |
# - Pierre Lena for his passion about science and vulgarisation
|
29 |
|
30 |
# If crash on OpenCL Intel implementation, add following options and force
|
31 |
#export PYOPENCL_COMPILER_OUTPUT=1
|
32 |
#export CL_CONFIG_USE_VECTORIZER=True
|
33 |
#export CL_CONFIG_CPU_VECTORIZER_MODE=16
|
34 |
|
35 |
import pyopencl as cl |
36 |
import numpy |
37 |
import time,string |
38 |
from numpy.random import randint as nprnd |
39 |
import sys |
40 |
import getopt |
41 |
import matplotlib.pyplot as plt |
42 |
from socket import gethostname |
43 |
|
44 |
def DictionariesAPI(): |
45 |
PhysicsList={'Einstein':0,'Newton':1} |
46 |
return(PhysicsList)
|
47 |
|
48 |
#
|
49 |
# Blank space below to simplify debugging on OpenCL code
|
50 |
#
|
51 |
|
52 |
|
53 |
|
54 |
|
55 |
|
56 |
|
57 |
|
58 |
|
59 |
|
60 |
|
61 |
|
62 |
|
63 |
|
64 |
|
65 |
|
66 |
|
67 |
|
68 |
|
69 |
|
70 |
|
71 |
|
72 |
|
73 |
|
74 |
|
75 |
|
76 |
|
77 |
|
78 |
|
79 |
|
80 |
|
81 |
|
82 |
|
83 |
|
84 |
|
85 |
|
86 |
|
87 |
|
88 |
|
89 |
|
90 |
|
91 |
|
92 |
|
93 |
|
94 |
|
95 |
|
96 |
|
97 |
|
98 |
|
99 |
|
100 |
|
101 |
|
102 |
|
103 |
|
104 |
|
105 |
BlobOpenCL= """
|
106 |
|
107 |
#define PI (float)3.14159265359e0f
|
108 |
#define nbr 256
|
109 |
|
110 |
#define EINSTEIN 0
|
111 |
#define NEWTON 1
|
112 |
|
113 |
#ifdef SETTRACKPOINTS
|
114 |
#define TRACKPOINTS SETTRACKPOINTS
|
115 |
#else
|
116 |
#define TRACKPOINTS 2048
|
117 |
#endif
|
118 |
|
119 |
float atanp(float x,float y)
|
120 |
{
|
121 |
float angle;
|
122 |
|
123 |
angle=atan2(y,x);
|
124 |
|
125 |
if (angle<0.e0f)
|
126 |
{
|
127 |
angle+=(float)2.e0f*PI;
|
128 |
}
|
129 |
|
130 |
return angle;
|
131 |
}
|
132 |
|
133 |
float f(float v)
|
134 |
{
|
135 |
return v;
|
136 |
}
|
137 |
|
138 |
#if PHYSICS == NEWTON
|
139 |
float g(float u,float m,float b)
|
140 |
{
|
141 |
return (-u);
|
142 |
}
|
143 |
#else
|
144 |
float g(float u,float m,float b)
|
145 |
{
|
146 |
return (3.e0f*m/b*pow(u,2)-u);
|
147 |
}
|
148 |
#endif
|
149 |
|
150 |
void calcul(float *us,float *vs,float up,float vp,
|
151 |
float h,float m,float b)
|
152 |
{
|
153 |
float c0,c1,c2,c3,d0,d1,d2,d3;
|
154 |
|
155 |
c0=h*f(vp);
|
156 |
c1=h*f(vp+c0/2.e0f);
|
157 |
c2=h*f(vp+c1/2.e0f);
|
158 |
c3=h*f(vp+c2);
|
159 |
d0=h*g(up,m,b);
|
160 |
d1=h*g(up+d0/2.e0f,m,b);
|
161 |
d2=h*g(up+d1/2.e0f,m,b);
|
162 |
d3=h*g(up+d2,m,b);
|
163 |
|
164 |
*us=up+(c0+2.e0f*c1+2.e0f*c2+c3)/6.e0f;
|
165 |
*vs=vp+(d0+2.e0f*d1+2.e0f*d2+d3)/6.e0f;
|
166 |
}
|
167 |
|
168 |
void rungekutta(float *ps,float *us,float *vs,
|
169 |
float pp,float up,float vp,
|
170 |
float h,float m,float b)
|
171 |
{
|
172 |
calcul(us,vs,up,vp,h,m,b);
|
173 |
*ps=pp+h;
|
174 |
}
|
175 |
|
176 |
float decalage_spectral(float r,float b,float phi,
|
177 |
float tho,float m)
|
178 |
{
|
179 |
return (sqrt(1-3*m/r)/(1+sqrt(m/pow(r,3))*b*sin(tho)*sin(phi)));
|
180 |
}
|
181 |
|
182 |
float spectre(float rf,int q,float b,float db,
|
183 |
float h,float r,float m,float bss)
|
184 |
{
|
185 |
float flx;
|
186 |
|
187 |
// flx=exp(q*log(r/m))*pow(rf,4)*b*db*h;
|
188 |
flx=exp(q*log(r/m)+4.e0f*log(rf))*b*db*h;
|
189 |
return(flx);
|
190 |
}
|
191 |
|
192 |
float spectre_cn(float rf32,float b32,float db32,
|
193 |
float h32,float r32,float m32,float bss32)
|
194 |
{
|
195 |
|
196 |
#define MYFLOAT float
|
197 |
|
198 |
MYFLOAT rf=(MYFLOAT)(rf32);
|
199 |
MYFLOAT b=(MYFLOAT)(b32);
|
200 |
MYFLOAT db=(MYFLOAT)(db32);
|
201 |
MYFLOAT h=(MYFLOAT)(h32);
|
202 |
MYFLOAT r=(MYFLOAT)(r32);
|
203 |
MYFLOAT m=(MYFLOAT)(m32);
|
204 |
MYFLOAT bss=(MYFLOAT)(bss32);
|
205 |
|
206 |
MYFLOAT flx;
|
207 |
MYFLOAT nu_rec,nu_em,qu,temp_em,flux_int;
|
208 |
int fi,posfreq;
|
209 |
|
210 |
#define planck 6.62e-34f
|
211 |
#define k 1.38e-23f
|
212 |
#define c2 9.e16f
|
213 |
#define temp 3.e7f
|
214 |
#define m_point 1.e0f
|
215 |
|
216 |
#define lplanck (log(6.62e0f)-34.e0f*log(10.e0f))
|
217 |
#define lk (log(1.38e0f)-23.e0f*log(10.e0f))
|
218 |
#define lc2 (log(9.e0f)+16.e0f*log(10.e0f))
|
219 |
|
220 |
MYFLOAT v=1.e0f-3.e0f/r;
|
221 |
|
222 |
qu=1.e0f/sqrt((1.e0f-3.e0f/r)*r)*(sqrt(r)-sqrt(6.e0f)+sqrt(3.e0f)/2.e0f*log((sqrt(r)+sqrt(3.e0f))/(sqrt(r)-sqrt(3.e0f))* 0.17157287525380988e0f ));
|
223 |
|
224 |
temp_em=temp*sqrt(m)*exp(0.25e0f*log(m_point)-0.75e0f*log(r)-0.125e0f*log(v)+0.25e0f*log(fabs(qu)));
|
225 |
|
226 |
flux_int=0.e0f;
|
227 |
flx=0.e0f;
|
228 |
|
229 |
for (fi=0;fi<nbr;fi++)
|
230 |
{
|
231 |
nu_em=bss*(MYFLOAT)fi/(MYFLOAT)nbr;
|
232 |
nu_rec=nu_em*rf;
|
233 |
posfreq=(int)(nu_rec*(MYFLOAT)nbr/bss);
|
234 |
if ((posfreq>0)&&(posfreq<nbr))
|
235 |
{
|
236 |
// Initial version
|
237 |
// flux_int=2.*planck/c2*pow(nu_em,3)/(exp(planck*nu_em/(k*temp_em))-1.);
|
238 |
// Version with log used
|
239 |
//flux_int=2.*exp(lplanck-lc2+3.*log(nu_em))/(exp(exp(lplanck-lk+log(nu_em/temp_em)))-1.);
|
240 |
// flux_int*=pow(rf,3)*b*db*h;
|
241 |
//flux_int*=exp(3.e0f*log(rf))*b*db*h;
|
242 |
flux_int=2.e0f*exp(lplanck-lc2+3.e0f*log(nu_em))/(exp(exp(lplanck-lk+log(nu_em/temp_em)))-1.e0f)*exp(3.e0f*log(rf))*b*db*h;
|
243 |
|
244 |
flx+=flux_int;
|
245 |
}
|
246 |
}
|
247 |
|
248 |
return((float)(flx));
|
249 |
}
|
250 |
|
251 |
void impact(float phi,float r,float b,float tho,float m,
|
252 |
float *zp,float *fp,
|
253 |
int q,float db,
|
254 |
float h,int raie)
|
255 |
{
|
256 |
float flx,rf,bss;
|
257 |
|
258 |
rf=decalage_spectral(r,b,phi,tho,m);
|
259 |
|
260 |
if (raie==0)
|
261 |
{
|
262 |
bss=1.e19f;
|
263 |
flx=spectre_cn(rf,b,db,h,r,m,bss);
|
264 |
}
|
265 |
else
|
266 |
{
|
267 |
bss=2.e0f;
|
268 |
flx=spectre(rf,q,b,db,h,r,m,bss);
|
269 |
}
|
270 |
|
271 |
*zp=1.e0f/rf;
|
272 |
*fp=flx;
|
273 |
|
274 |
}
|
275 |
|
276 |
__kernel void EachPixel(__global float *zImage,__global float *fImage,
|
277 |
float Mass,float InternalRadius,
|
278 |
float ExternalRadius,float Angle,
|
279 |
int Line)
|
280 |
{
|
281 |
uint xi=(uint)get_global_id(0);
|
282 |
uint yi=(uint)get_global_id(1);
|
283 |
uint sizex=(uint)get_global_size(0);
|
284 |
uint sizey=(uint)get_global_size(1);
|
285 |
|
286 |
// Perform trajectory for each pixel, exit on hit
|
287 |
|
288 |
float m,rs,ri,re,tho;
|
289 |
int q,raie;
|
290 |
|
291 |
m=Mass;
|
292 |
rs=2.e0f*m;
|
293 |
ri=InternalRadius;
|
294 |
re=ExternalRadius;
|
295 |
tho=Angle;
|
296 |
q=-2;
|
297 |
raie=Line;
|
298 |
|
299 |
float bmx,db,b,h;
|
300 |
float rp0,rps;
|
301 |
float phi,phd;
|
302 |
uint nh=0;
|
303 |
float zp=0.e0f,fp=0.e0f;
|
304 |
|
305 |
// Autosize for image
|
306 |
bmx=1.25e0f*re;
|
307 |
|
308 |
h=4.e0f*PI/(float)TRACKPOINTS;
|
309 |
|
310 |
// set origin as center of image
|
311 |
float x=(float)xi-(float)(sizex/2)+(float)5.e-1f;
|
312 |
float y=(float)yi-(float)(sizey/2)+(float)5.e-1f;
|
313 |
// angle extracted from cylindric symmetry
|
314 |
phi=atanp(x,y);
|
315 |
phd=atanp(cos(phi)*sin(tho),cos(tho));
|
316 |
|
317 |
|
318 |
float up,vp,pp,us,vs,ps;
|
319 |
|
320 |
// impact parameter
|
321 |
b=sqrt(x*x+y*y)*(float)2.e0f/(float)sizex*bmx;
|
322 |
// step of impact parameter;
|
323 |
db=bmx/(float)(sizex);
|
324 |
|
325 |
up=0.e0f;
|
326 |
vp=1.e0f;
|
327 |
pp=0.e0f;
|
328 |
|
329 |
rungekutta(&ps,&us,&vs,pp,up,vp,h,m,b);
|
330 |
|
331 |
rps=fabs(b/us);
|
332 |
rp0=rps;
|
333 |
|
334 |
int ExitOnImpact=0;
|
335 |
|
336 |
do
|
337 |
{
|
338 |
nh++;
|
339 |
pp=ps;
|
340 |
up=us;
|
341 |
vp=vs;
|
342 |
rungekutta(&ps,&us,&vs,pp,up,vp,h,m,b);
|
343 |
rps=fabs(b/us);
|
344 |
ExitOnImpact = ((fmod(pp,PI)<fmod(phd,PI))&&(fmod(ps,PI)>fmod(phd,PI)))&&(rps>=ri)&&(rps<=re)?1:0;
|
345 |
|
346 |
} while ((rps>=rs)&&(rps<=rp0)&&(ExitOnImpact==0)&&(nh<TRACKPOINTS));
|
347 |
|
348 |
|
349 |
if (ExitOnImpact==1) {
|
350 |
impact(phi,rps,b,tho,m,&zp,&fp,q,db,h,raie);
|
351 |
}
|
352 |
else
|
353 |
{
|
354 |
zp=0.e0f;
|
355 |
fp=0.e0f;
|
356 |
}
|
357 |
|
358 |
barrier(CLK_GLOBAL_MEM_FENCE);
|
359 |
|
360 |
zImage[yi+sizex*xi]=(float)zp;
|
361 |
fImage[yi+sizex*xi]=(float)fp;
|
362 |
}
|
363 |
|
364 |
__kernel void Pixel(__global float *zImage,__global float *fImage,
|
365 |
__global float *Trajectories,__global int *IdLast,
|
366 |
uint ImpactParameter,
|
367 |
float Mass,float InternalRadius,
|
368 |
float ExternalRadius,float Angle,
|
369 |
int Line)
|
370 |
{
|
371 |
uint xi=(uint)get_global_id(0);
|
372 |
uint yi=(uint)get_global_id(1);
|
373 |
uint sizex=(uint)get_global_size(0);
|
374 |
uint sizey=(uint)get_global_size(1);
|
375 |
|
376 |
// Perform trajectory for each pixel
|
377 |
|
378 |
float m,ri,re,tho;
|
379 |
int q,raie;
|
380 |
|
381 |
m=Mass;
|
382 |
ri=InternalRadius;
|
383 |
re=ExternalRadius;
|
384 |
tho=Angle;
|
385 |
q=-2;
|
386 |
raie=Line;
|
387 |
|
388 |
float bmx,db,b,h;
|
389 |
float phi,phd,php,nr,r;
|
390 |
float zp=0.e0f,fp=0.e0f;
|
391 |
|
392 |
// Autosize for image, 25% greater than external radius
|
393 |
bmx=1.25e0f*re;
|
394 |
|
395 |
// Angular step of integration
|
396 |
h=4.e0f*PI/(float)TRACKPOINTS;
|
397 |
|
398 |
// Step of Impact Parameter
|
399 |
db=bmx/(2.e0f*(float)ImpactParameter);
|
400 |
|
401 |
// set origin as center of image
|
402 |
float x=(float)xi-(float)(sizex/2)+(float)5.e-1f;
|
403 |
float y=(float)yi-(float)(sizey/2)+(float)5.e-1f;
|
404 |
|
405 |
// angle extracted from cylindric symmetry
|
406 |
phi=atanp(x,y);
|
407 |
phd=atanp(cos(phi)*sin(tho),cos(tho));
|
408 |
|
409 |
// Real Impact Parameter
|
410 |
b=sqrt(x*x+y*y)*bmx/(float)ImpactParameter;
|
411 |
|
412 |
// Integer Impact Parameter
|
413 |
uint bi=(uint)sqrt(x*x+y*y);
|
414 |
|
415 |
int HalfLap=0,ExitOnImpact=0,ni;
|
416 |
|
417 |
if (bi<ImpactParameter)
|
418 |
{
|
419 |
do
|
420 |
{
|
421 |
php=phd+(float)HalfLap*PI;
|
422 |
nr=php/h;
|
423 |
ni=(int)nr;
|
424 |
|
425 |
if (ni<IdLast[bi])
|
426 |
{
|
427 |
r=(Trajectories[bi*TRACKPOINTS+ni+1]-Trajectories[bi*TRACKPOINTS+ni])*(nr-ni*1.e0f)+Trajectories[bi*TRACKPOINTS+ni];
|
428 |
}
|
429 |
else
|
430 |
{
|
431 |
r=Trajectories[bi*TRACKPOINTS+ni];
|
432 |
}
|
433 |
|
434 |
if ((r<=re)&&(r>=ri))
|
435 |
{
|
436 |
ExitOnImpact=1;
|
437 |
impact(phi,r,b,tho,m,&zp,&fp,q,db,h,raie);
|
438 |
}
|
439 |
|
440 |
HalfLap++;
|
441 |
} while ((HalfLap<=2)&&(ExitOnImpact==0));
|
442 |
|
443 |
}
|
444 |
|
445 |
barrier(CLK_GLOBAL_MEM_FENCE);
|
446 |
|
447 |
zImage[yi+sizex*xi]=zp;
|
448 |
fImage[yi+sizex*xi]=fp;
|
449 |
}
|
450 |
|
451 |
__kernel void Circle(__global float *Trajectories,__global int *IdLast,
|
452 |
__global float *zImage,__global float *fImage,
|
453 |
float Mass,float InternalRadius,
|
454 |
float ExternalRadius,float Angle,
|
455 |
int Line)
|
456 |
{
|
457 |
// Integer Impact Parameter ID
|
458 |
int bi=get_global_id(0);
|
459 |
// Integer points on circle
|
460 |
int i=get_global_id(1);
|
461 |
// Integer Impact Parameter Size (half of image)
|
462 |
int bmaxi=get_global_size(0);
|
463 |
// Integer Points on circle
|
464 |
int imx=get_global_size(1);
|
465 |
|
466 |
// Perform trajectory for each pixel
|
467 |
|
468 |
float m,ri,re,tho;
|
469 |
int q,raie;
|
470 |
|
471 |
m=Mass;
|
472 |
ri=InternalRadius;
|
473 |
re=ExternalRadius;
|
474 |
tho=Angle;
|
475 |
raie=Line;
|
476 |
|
477 |
float bmx,db,b,h;
|
478 |
float phi,phd;
|
479 |
float zp=0.e0f,fp=0.e0f;
|
480 |
|
481 |
// Autosize for image
|
482 |
bmx=1.25e0f*re;
|
483 |
|
484 |
// Angular step of integration
|
485 |
h=4.e0f*PI/(float)TRACKPOINTS;
|
486 |
|
487 |
// impact parameter
|
488 |
b=(float)bi/(float)bmaxi*bmx;
|
489 |
db=bmx/(2.e0f*(float)bmaxi);
|
490 |
|
491 |
phi=2.e0f*PI/(float)imx*(float)i;
|
492 |
phd=atanp(cos(phi)*sin(tho),cos(tho));
|
493 |
int yi=(int)((float)bi*sin(phi))+bmaxi;
|
494 |
int xi=(int)((float)bi*cos(phi))+bmaxi;
|
495 |
|
496 |
int HalfLap=0,ExitOnImpact=0,ni;
|
497 |
float php,nr,r;
|
498 |
|
499 |
do
|
500 |
{
|
501 |
php=phd+(float)HalfLap*PI;
|
502 |
nr=php/h;
|
503 |
ni=(int)nr;
|
504 |
|
505 |
if (ni<IdLast[bi])
|
506 |
{
|
507 |
r=(Trajectories[bi*TRACKPOINTS+ni+1]-Trajectories[bi*TRACKPOINTS+ni])*(nr-ni*1.e0f)+Trajectories[bi*TRACKPOINTS+ni];
|
508 |
}
|
509 |
else
|
510 |
{
|
511 |
r=Trajectories[bi*TRACKPOINTS+ni];
|
512 |
}
|
513 |
|
514 |
if ((r<=re)&&(r>=ri))
|
515 |
{
|
516 |
ExitOnImpact=1;
|
517 |
impact(phi,r,b,tho,m,&zp,&fp,q,db,h,raie);
|
518 |
}
|
519 |
|
520 |
HalfLap++;
|
521 |
} while ((HalfLap<=2)&&(ExitOnImpact==0));
|
522 |
|
523 |
zImage[yi+2*bmaxi*xi]=zp;
|
524 |
fImage[yi+2*bmaxi*xi]=fp;
|
525 |
|
526 |
barrier(CLK_GLOBAL_MEM_FENCE);
|
527 |
|
528 |
}
|
529 |
|
530 |
__kernel void Trajectory(__global float *Trajectories,__global int *IdLast,
|
531 |
float Mass,float InternalRadius,
|
532 |
float ExternalRadius,float Angle,
|
533 |
int Line)
|
534 |
{
|
535 |
// Integer Impact Parameter ID
|
536 |
int bi=get_global_id(0);
|
537 |
// Integer Impact Parameter Size (half of image)
|
538 |
int bmaxi=get_global_size(0);
|
539 |
|
540 |
// Perform trajectory for each pixel
|
541 |
|
542 |
float m,rs,re;
|
543 |
|
544 |
m=Mass;
|
545 |
rs=2.e0f*m;
|
546 |
re=ExternalRadius;
|
547 |
|
548 |
float bmx,b,h;
|
549 |
int nh;
|
550 |
|
551 |
// Autosize for image
|
552 |
bmx=1.25e0f*re;
|
553 |
|
554 |
// Angular step of integration
|
555 |
h=4.e0f*PI/(float)TRACKPOINTS;
|
556 |
|
557 |
// impact parameter
|
558 |
b=(float)bi/(float)bmaxi*bmx;
|
559 |
|
560 |
float up,vp,pp,us,vs,ps;
|
561 |
|
562 |
up=0.e0f;
|
563 |
vp=1.e0f;
|
564 |
|
565 |
pp=0.e0f;
|
566 |
nh=0;
|
567 |
|
568 |
rungekutta(&ps,&us,&vs,pp,up,vp,h,m,b);
|
569 |
|
570 |
// b versus us
|
571 |
float bvus=fabs(b/us);
|
572 |
float bvus0=bvus;
|
573 |
Trajectories[bi*TRACKPOINTS+nh]=bvus;
|
574 |
|
575 |
do
|
576 |
{
|
577 |
nh++;
|
578 |
pp=ps;
|
579 |
up=us;
|
580 |
vp=vs;
|
581 |
rungekutta(&ps,&us,&vs,pp,up,vp,h,m,b);
|
582 |
bvus=fabs(b/us);
|
583 |
Trajectories[bi*TRACKPOINTS+nh]=bvus;
|
584 |
|
585 |
} while ((bvus>=rs)&&(bvus<=bvus0));
|
586 |
|
587 |
IdLast[bi]=nh;
|
588 |
|
589 |
barrier(CLK_GLOBAL_MEM_FENCE);
|
590 |
|
591 |
}
|
592 |
|
593 |
__kernel void EachCircle(__global float *zImage,__global float *fImage,
|
594 |
float Mass,float InternalRadius,
|
595 |
float ExternalRadius,float Angle,
|
596 |
int Line)
|
597 |
{
|
598 |
// Integer Impact Parameter ID
|
599 |
uint bi=(uint)get_global_id(0);
|
600 |
// Integer Impact Parameter Size (half of image)
|
601 |
uint bmaxi=(uint)get_global_size(0);
|
602 |
|
603 |
private float Trajectory[TRACKPOINTS];
|
604 |
|
605 |
float m,rs,ri,re,tho;
|
606 |
int raie,q;
|
607 |
|
608 |
m=Mass;
|
609 |
rs=2.e0f*m;
|
610 |
ri=InternalRadius;
|
611 |
re=ExternalRadius;
|
612 |
tho=Angle;
|
613 |
q=-2;
|
614 |
raie=Line;
|
615 |
|
616 |
float bmx,db,b,h;
|
617 |
uint nh;
|
618 |
|
619 |
|
620 |
// Autosize for image
|
621 |
bmx=1.25e0f*re;
|
622 |
|
623 |
// Angular step of integration
|
624 |
h=4.e0f*PI/(float)TRACKPOINTS;
|
625 |
|
626 |
// impact parameter
|
627 |
b=(float)bi/(float)bmaxi*bmx;
|
628 |
db=bmx/(2.e0f*(float)bmaxi);
|
629 |
|
630 |
float up,vp,pp,us,vs,ps;
|
631 |
|
632 |
up=0.e0f;
|
633 |
vp=1.e0f;
|
634 |
|
635 |
pp=0.e0f;
|
636 |
nh=0;
|
637 |
|
638 |
rungekutta(&ps,&us,&vs,pp,up,vp,h,m,b);
|
639 |
|
640 |
// b versus us
|
641 |
float bvus=fabs(b/us);
|
642 |
float bvus0=bvus;
|
643 |
Trajectory[nh]=bvus;
|
644 |
|
645 |
do
|
646 |
{
|
647 |
nh++;
|
648 |
pp=ps;
|
649 |
up=us;
|
650 |
vp=vs;
|
651 |
rungekutta(&ps,&us,&vs,pp,up,vp,h,m,b);
|
652 |
bvus=(float)fabs(b/us);
|
653 |
Trajectory[nh]=bvus;
|
654 |
|
655 |
} while ((bvus>=rs)&&(bvus<=bvus0));
|
656 |
|
657 |
|
658 |
for (uint i=(uint)nh+1;i<TRACKPOINTS;i++) {
|
659 |
Trajectory[i]=0.e0f;
|
660 |
}
|
661 |
|
662 |
|
663 |
uint imx=(uint)(16*bi);
|
664 |
|
665 |
for (uint i=0;i<imx;i++)
|
666 |
{
|
667 |
float zp=0.e0f,fp=0.e0f;
|
668 |
float phi=2.e0f*PI/(float)imx*(float)i;
|
669 |
float phd=atanp(cos(phi)*sin(tho),cos(tho));
|
670 |
uint yi=(uint)((float)bi*sin(phi)+bmaxi);
|
671 |
uint xi=(uint)((float)bi*cos(phi)+bmaxi);
|
672 |
|
673 |
uint HalfLap=0,ExitOnImpact=0,ni;
|
674 |
float php,nr,r;
|
675 |
|
676 |
do
|
677 |
{
|
678 |
php=phd+(float)HalfLap*PI;
|
679 |
nr=php/h;
|
680 |
ni=(int)nr;
|
681 |
|
682 |
if (ni<nh)
|
683 |
{
|
684 |
r=(Trajectory[ni+1]-Trajectory[ni])*(nr-ni*1.e0f)+Trajectory[ni];
|
685 |
}
|
686 |
else
|
687 |
{
|
688 |
r=Trajectory[ni];
|
689 |
}
|
690 |
|
691 |
if ((r<=re)&&(r>=ri))
|
692 |
{
|
693 |
ExitOnImpact=1;
|
694 |
impact(phi,r,b,tho,m,&zp,&fp,q,db,h,raie);
|
695 |
}
|
696 |
|
697 |
HalfLap++;
|
698 |
|
699 |
} while ((HalfLap<=2)&&(ExitOnImpact==0));
|
700 |
|
701 |
zImage[yi+2*bmaxi*xi]=zp;
|
702 |
fImage[yi+2*bmaxi*xi]=fp;
|
703 |
|
704 |
}
|
705 |
|
706 |
barrier(CLK_GLOBAL_MEM_FENCE);
|
707 |
|
708 |
}
|
709 |
|
710 |
__kernel void Original(__global float *zImage,__global float *fImage,
|
711 |
uint Size,float Mass,float InternalRadius,
|
712 |
float ExternalRadius,float Angle,
|
713 |
int Line)
|
714 |
{
|
715 |
// Integer Impact Parameter Size (half of image)
|
716 |
uint bmaxi=(uint)Size;
|
717 |
|
718 |
float Trajectory[TRACKPOINTS];
|
719 |
|
720 |
// Perform trajectory for each pixel
|
721 |
|
722 |
float m,rs,ri,re,tho;
|
723 |
int raie,q;
|
724 |
|
725 |
m=Mass;
|
726 |
rs=2.e0f*m;
|
727 |
ri=InternalRadius;
|
728 |
re=ExternalRadius;
|
729 |
tho=Angle;
|
730 |
q=-2;
|
731 |
raie=Line;
|
732 |
|
733 |
float bmx,db,b,h;
|
734 |
uint nh;
|
735 |
|
736 |
// Autosize for image
|
737 |
bmx=1.25e0f*re;
|
738 |
|
739 |
// Angular step of integration
|
740 |
h=4.e0f*PI/(float)TRACKPOINTS;
|
741 |
|
742 |
// Integer Impact Parameter ID
|
743 |
for (int bi=0;bi<bmaxi;bi++)
|
744 |
{
|
745 |
// impact parameter
|
746 |
b=(float)bi/(float)bmaxi*bmx;
|
747 |
db=bmx/(2.e0f*(float)bmaxi);
|
748 |
|
749 |
float up,vp,pp,us,vs,ps;
|
750 |
|
751 |
up=0.e0f;
|
752 |
vp=1.e0f;
|
753 |
|
754 |
pp=0.e0f;
|
755 |
nh=0;
|
756 |
|
757 |
rungekutta(&ps,&us,&vs,pp,up,vp,h,m,b);
|
758 |
|
759 |
// b versus us
|
760 |
float bvus=fabs(b/us);
|
761 |
float bvus0=bvus;
|
762 |
Trajectory[nh]=bvus;
|
763 |
|
764 |
do
|
765 |
{
|
766 |
nh++;
|
767 |
pp=ps;
|
768 |
up=us;
|
769 |
vp=vs;
|
770 |
rungekutta(&ps,&us,&vs,pp,up,vp,h,m,b);
|
771 |
bvus=fabs(b/us);
|
772 |
Trajectory[nh]=bvus;
|
773 |
|
774 |
} while ((bvus>=rs)&&(bvus<=bvus0));
|
775 |
|
776 |
for (uint i=(uint)nh+1;i<TRACKPOINTS;i++) {
|
777 |
Trajectory[i]=0.e0f;
|
778 |
}
|
779 |
|
780 |
int imx=(int)(16*bi);
|
781 |
|
782 |
for (int i=0;i<imx;i++)
|
783 |
{
|
784 |
float zp=0.e0f,fp=0.e0f;
|
785 |
float phi=2.e0f*PI/(float)imx*(float)i;
|
786 |
float phd=atanp(cos(phi)*sin(tho),cos(tho));
|
787 |
uint yi=(uint)((float)bi*sin(phi)+bmaxi);
|
788 |
uint xi=(uint)((float)bi*cos(phi)+bmaxi);
|
789 |
|
790 |
uint HalfLap=0,ExitOnImpact=0,ni;
|
791 |
float php,nr,r;
|
792 |
|
793 |
do
|
794 |
{
|
795 |
php=phd+(float)HalfLap*PI;
|
796 |
nr=php/h;
|
797 |
ni=(int)nr;
|
798 |
|
799 |
if (ni<nh)
|
800 |
{
|
801 |
r=(Trajectory[ni+1]-Trajectory[ni])*(nr-ni*1.e0f)+Trajectory[ni];
|
802 |
}
|
803 |
else
|
804 |
{
|
805 |
r=Trajectory[ni];
|
806 |
}
|
807 |
|
808 |
if ((r<=re)&&(r>=ri))
|
809 |
{
|
810 |
ExitOnImpact=1;
|
811 |
impact(phi,r,b,tho,m,&zp,&fp,q,db,h,raie);
|
812 |
}
|
813 |
|
814 |
HalfLap++;
|
815 |
|
816 |
} while ((HalfLap<=2)&&(ExitOnImpact==0));
|
817 |
|
818 |
zImage[yi+2*bmaxi*xi]=zp;
|
819 |
fImage[yi+2*bmaxi*xi]=fp;
|
820 |
|
821 |
}
|
822 |
|
823 |
}
|
824 |
|
825 |
barrier(CLK_GLOBAL_MEM_FENCE);
|
826 |
|
827 |
}
|
828 |
"""
|
829 |
|
830 |
|
831 |
|
832 |
|
833 |
|
834 |
|
835 |
|
836 |
|
837 |
|
838 |
|
839 |
|
840 |
|
841 |
|
842 |
|
843 |
|
844 |
|
845 |
|
846 |
|
847 |
|
848 |
|
849 |
|
850 |
|
851 |
|
852 |
|
853 |
|
854 |
|
855 |
|
856 |
|
857 |
|
858 |
|
859 |
|
860 |
|
861 |
|
862 |
|
863 |
|
864 |
|
865 |
|
866 |
|
867 |
|
868 |
|
869 |
|
870 |
|
871 |
|
872 |
|
873 |
|
874 |
|
875 |
|
876 |
|
877 |
|
878 |
|
879 |
|
880 |
|
881 |
|
882 |
|
883 |
|
884 |
|
885 |
|
886 |
|
887 |
|
888 |
|
889 |
|
890 |
|
891 |
|
892 |
|
893 |
|
894 |
|
895 |
|
896 |
|
897 |
|
898 |
|
899 |
|
900 |
|
901 |
def KernelCodeCuda(): |
902 |
BlobCUDA= """
|
903 |
|
904 |
#define PI (float)3.14159265359
|
905 |
#define nbr 256
|
906 |
|
907 |
#define EINSTEIN 0
|
908 |
#define NEWTON 1
|
909 |
|
910 |
#ifdef SETTRACKPOINTS
|
911 |
#define TRACKPOINTS SETTRACKPOINTS
|
912 |
#else
|
913 |
#define TRACKPOINTS
|
914 |
#endif
|
915 |
__device__ float nothing(float x)
|
916 |
{
|
917 |
return(x);
|
918 |
}
|
919 |
|
920 |
__device__ float atanp(float x,float y)
|
921 |
{
|
922 |
float angle;
|
923 |
|
924 |
angle=atan2(y,x);
|
925 |
|
926 |
if (angle<0.e0f)
|
927 |
{
|
928 |
angle+=(float)2.e0f*PI;
|
929 |
}
|
930 |
|
931 |
return(angle);
|
932 |
}
|
933 |
|
934 |
__device__ float f(float v)
|
935 |
{
|
936 |
return(v);
|
937 |
}
|
938 |
|
939 |
#if PHYSICS == NEWTON
|
940 |
__device__ float g(float u,float m,float b)
|
941 |
{
|
942 |
return (-u);
|
943 |
}
|
944 |
#else
|
945 |
__device__ float g(float u,float m,float b)
|
946 |
{
|
947 |
return (3.e0f*m/b*pow(u,2)-u);
|
948 |
}
|
949 |
#endif
|
950 |
|
951 |
__device__ void calcul(float *us,float *vs,float up,float vp,
|
952 |
float h,float m,float b)
|
953 |
{
|
954 |
float c0,c1,c2,c3,d0,d1,d2,d3;
|
955 |
|
956 |
c0=h*f(vp);
|
957 |
c1=h*f(vp+c0/2.);
|
958 |
c2=h*f(vp+c1/2.);
|
959 |
c3=h*f(vp+c2);
|
960 |
d0=h*g(up,m,b);
|
961 |
d1=h*g(up+d0/2.,m,b);
|
962 |
d2=h*g(up+d1/2.,m,b);
|
963 |
d3=h*g(up+d2,m,b);
|
964 |
|
965 |
*us=up+(c0+2.*c1+2.*c2+c3)/6.;
|
966 |
*vs=vp+(d0+2.*d1+2.*d2+d3)/6.;
|
967 |
}
|
968 |
|
969 |
__device__ void rungekutta(float *ps,float *us,float *vs,
|
970 |
float pp,float up,float vp,
|
971 |
float h,float m,float b)
|
972 |
{
|
973 |
calcul(us,vs,up,vp,h,m,b);
|
974 |
*ps=pp+h;
|
975 |
}
|
976 |
|
977 |
__device__ float decalage_spectral(float r,float b,float phi,
|
978 |
float tho,float m)
|
979 |
{
|
980 |
return (sqrt(1-3*m/r)/(1+sqrt(m/pow(r,3))*b*sin(tho)*sin(phi)));
|
981 |
}
|
982 |
|
983 |
__device__ float spectre(float rf,int q,float b,float db,
|
984 |
float h,float r,float m,float bss)
|
985 |
{
|
986 |
float flx;
|
987 |
|
988 |
// flx=exp(q*log(r/m))*pow(rf,4)*b*db*h;
|
989 |
flx=exp(q*log(r/m)+4.*log(rf))*b*db*h;
|
990 |
return(flx);
|
991 |
}
|
992 |
|
993 |
__device__ float spectre_cn(float rf32,float b32,float db32,
|
994 |
float h32,float r32,float m32,float bss32)
|
995 |
{
|
996 |
|
997 |
#define MYFLOAT float
|
998 |
|
999 |
MYFLOAT rf=(MYFLOAT)(rf32);
|
1000 |
MYFLOAT b=(MYFLOAT)(b32);
|
1001 |
MYFLOAT db=(MYFLOAT)(db32);
|
1002 |
MYFLOAT h=(MYFLOAT)(h32);
|
1003 |
MYFLOAT r=(MYFLOAT)(r32);
|
1004 |
MYFLOAT m=(MYFLOAT)(m32);
|
1005 |
MYFLOAT bss=(MYFLOAT)(bss32);
|
1006 |
|
1007 |
MYFLOAT flx;
|
1008 |
MYFLOAT nu_rec,nu_em,qu,temp_em,flux_int;
|
1009 |
int fi,posfreq;
|
1010 |
|
1011 |
#define planck 6.62e-34
|
1012 |
#define k 1.38e-23
|
1013 |
#define c2 9.e16
|
1014 |
#define temp 3.e7
|
1015 |
#define m_point 1.
|
1016 |
|
1017 |
#define lplanck (log(6.62)-34.*log(10.))
|
1018 |
#define lk (log(1.38)-23.*log(10.))
|
1019 |
#define lc2 (log(9.)+16.*log(10.))
|
1020 |
|
1021 |
MYFLOAT v=1.-3./r;
|
1022 |
|
1023 |
qu=1./sqrt((1.-3./r)*r)*(sqrt(r)-sqrt(6.)+sqrt(3.)/2.*log((sqrt(r)+sqrt(3.))/(sqrt(r)-sqrt(3.))* 0.17157287525380988 ));
|
1024 |
|
1025 |
temp_em=temp*sqrt(m)*exp(0.25*log(m_point)-0.75*log(r)-0.125*log(v)+0.25*log(fabs(qu)));
|
1026 |
|
1027 |
flux_int=0.;
|
1028 |
flx=0.;
|
1029 |
|
1030 |
for (fi=0;fi<nbr;fi++)
|
1031 |
{
|
1032 |
nu_em=bss*(MYFLOAT)fi/(MYFLOAT)nbr;
|
1033 |
nu_rec=nu_em*rf;
|
1034 |
posfreq=(int)(nu_rec*(MYFLOAT)nbr/bss);
|
1035 |
if ((posfreq>0)&&(posfreq<nbr))
|
1036 |
{
|
1037 |
// Initial version
|
1038 |
// flux_int=2.*planck/c2*pow(nu_em,3)/(exp(planck*nu_em/(k*temp_em))-1.);
|
1039 |
// Version with log used
|
1040 |
//flux_int=2.*exp(lplanck-lc2+3.*log(nu_em))/(exp(exp(lplanck-lk+log(nu_em/temp_em)))-1.);
|
1041 |
// flux_int*=pow(rf,3)*b*db*h;
|
1042 |
//flux_int*=exp(3.*log(rf))*b*db*h;
|
1043 |
flux_int=2.*exp(lplanck-lc2+3.*log(nu_em))/(exp(exp(lplanck-lk+log(nu_em/temp_em)))-1.)*exp(3.*log(rf))*b*db*h;
|
1044 |
|
1045 |
flx+=flux_int;
|
1046 |
}
|
1047 |
}
|
1048 |
|
1049 |
return((float)(flx));
|
1050 |
}
|
1051 |
|
1052 |
__device__ void impact(float phi,float r,float b,float tho,float m,
|
1053 |
float *zp,float *fp,
|
1054 |
int q,float db,
|
1055 |
float h,int raie)
|
1056 |
{
|
1057 |
float flx,rf,bss;
|
1058 |
|
1059 |
rf=decalage_spectral(r,b,phi,tho,m);
|
1060 |
|
1061 |
if (raie==0)
|
1062 |
{
|
1063 |
bss=1.e19;
|
1064 |
flx=spectre_cn(rf,b,db,h,r,m,bss);
|
1065 |
}
|
1066 |
else
|
1067 |
{
|
1068 |
bss=2.;
|
1069 |
flx=spectre(rf,q,b,db,h,r,m,bss);
|
1070 |
}
|
1071 |
|
1072 |
*zp=1./rf;
|
1073 |
*fp=flx;
|
1074 |
|
1075 |
}
|
1076 |
|
1077 |
__global__ void EachPixel(float *zImage,float *fImage,
|
1078 |
float Mass,float InternalRadius,
|
1079 |
float ExternalRadius,float Angle,
|
1080 |
int Line)
|
1081 |
{
|
1082 |
uint xi=(uint)(blockIdx.x*blockDim.x+threadIdx.x);
|
1083 |
uint yi=(uint)(blockIdx.y*blockDim.y+threadIdx.y);
|
1084 |
uint sizex=(uint)gridDim.x*blockDim.x;
|
1085 |
uint sizey=(uint)gridDim.y*blockDim.y;
|
1086 |
|
1087 |
|
1088 |
// Perform trajectory for each pixel, exit on hit
|
1089 |
|
1090 |
float m,rs,ri,re,tho;
|
1091 |
int q,raie;
|
1092 |
|
1093 |
m=Mass;
|
1094 |
rs=2.*m;
|
1095 |
ri=InternalRadius;
|
1096 |
re=ExternalRadius;
|
1097 |
tho=Angle;
|
1098 |
q=-2;
|
1099 |
raie=Line;
|
1100 |
|
1101 |
float bmx,db,b,h;
|
1102 |
float rp0,rpp,rps;
|
1103 |
float phi,phd;
|
1104 |
int nh;
|
1105 |
float zp,fp;
|
1106 |
|
1107 |
// Autosize for image
|
1108 |
bmx=1.25*re;
|
1109 |
b=0.;
|
1110 |
|
1111 |
h=4.e0f*PI/(float)TRACKPOINTS;
|
1112 |
|
1113 |
// set origin as center of image
|
1114 |
float x=(float)xi-(float)(sizex/2)+(float)5e-1f;
|
1115 |
float y=(float)yi-(float)(sizey/2)+(float)5e-1f;
|
1116 |
// angle extracted from cylindric symmetry
|
1117 |
phi=atanp(x,y);
|
1118 |
phd=atanp(cos(phi)*sin(tho),cos(tho));
|
1119 |
|
1120 |
float up,vp,pp,us,vs,ps;
|
1121 |
|
1122 |
// impact parameter
|
1123 |
b=sqrt(x*x+y*y)*(float)2.e0f/(float)sizex*bmx;
|
1124 |
// step of impact parameter;
|
1125 |
// db=bmx/(float)(sizex/2);
|
1126 |
db=bmx/(float)(sizex);
|
1127 |
|
1128 |
up=0.;
|
1129 |
vp=1.;
|
1130 |
pp=0.;
|
1131 |
nh=0;
|
1132 |
|
1133 |
rungekutta(&ps,&us,&vs,pp,up,vp,h,m,b);
|
1134 |
|
1135 |
rps=fabs(b/us);
|
1136 |
rp0=rps;
|
1137 |
|
1138 |
int ExitOnImpact=0;
|
1139 |
|
1140 |
do
|
1141 |
{
|
1142 |
nh++;
|
1143 |
pp=ps;
|
1144 |
up=us;
|
1145 |
vp=vs;
|
1146 |
rungekutta(&ps,&us,&vs,pp,up,vp,h,m,b);
|
1147 |
rpp=rps;
|
1148 |
rps=fabs(b/us);
|
1149 |
ExitOnImpact = ((fmod(pp,PI)<fmod(phd,PI))&&(fmod(ps,PI)>fmod(phd,PI)))&&(rps>ri)&&(rps<re)?1:0;
|
1150 |
|
1151 |
} while ((rps>=rs)&&(rps<=rp0)&&(ExitOnImpact==0));
|
1152 |
|
1153 |
if (ExitOnImpact==1) {
|
1154 |
impact(phi,rpp,b,tho,m,&zp,&fp,q,db,h,raie);
|
1155 |
}
|
1156 |
else
|
1157 |
{
|
1158 |
zp=0.e0f;
|
1159 |
fp=0.e0f;
|
1160 |
}
|
1161 |
|
1162 |
__syncthreads();
|
1163 |
|
1164 |
zImage[yi+sizex*xi]=(float)zp;
|
1165 |
fImage[yi+sizex*xi]=(float)fp;
|
1166 |
}
|
1167 |
|
1168 |
__global__ void Pixel(float *zImage,float *fImage,
|
1169 |
float *Trajectories,int *IdLast,
|
1170 |
uint ImpactParameter,
|
1171 |
float Mass,float InternalRadius,
|
1172 |
float ExternalRadius,float Angle,
|
1173 |
int Line)
|
1174 |
{
|
1175 |
uint xi=(uint)(blockIdx.x*blockDim.x+threadIdx.x);
|
1176 |
uint yi=(uint)(blockIdx.y*blockDim.y+threadIdx.y);
|
1177 |
uint sizex=(uint)gridDim.x*blockDim.x;
|
1178 |
uint sizey=(uint)gridDim.y*blockDim.y;
|
1179 |
|
1180 |
// Perform trajectory for each pixel
|
1181 |
|
1182 |
float m,ri,re,tho;
|
1183 |
int q,raie;
|
1184 |
|
1185 |
m=Mass;
|
1186 |
ri=InternalRadius;
|
1187 |
re=ExternalRadius;
|
1188 |
tho=Angle;
|
1189 |
q=-2;
|
1190 |
raie=Line;
|
1191 |
|
1192 |
float bmx,db,b,h;
|
1193 |
float phi,phd,php,nr,r;
|
1194 |
float zp=0,fp=0;
|
1195 |
// Autosize for image, 25% greater than external radius
|
1196 |
bmx=1.25e0f*re;
|
1197 |
|
1198 |
// Angular step of integration
|
1199 |
h=4.e0f*PI/(float)TRACKPOINTS;
|
1200 |
|
1201 |
// Step of Impact Parameter
|
1202 |
db=bmx/(2.e0f*(float)ImpactParameter);
|
1203 |
|
1204 |
// set origin as center of image
|
1205 |
float x=(float)xi-(float)(sizex/2)+(float)5e-1f;
|
1206 |
float y=(float)yi-(float)(sizey/2)+(float)5e-1f;
|
1207 |
// angle extracted from cylindric symmetry
|
1208 |
phi=atanp(x,y);
|
1209 |
phd=atanp(cos(phi)*sin(tho),cos(tho));
|
1210 |
|
1211 |
// Real Impact Parameter
|
1212 |
b=sqrt(x*x+y*y)*bmx/(float)ImpactParameter;
|
1213 |
|
1214 |
// Integer Impact Parameter
|
1215 |
uint bi=(uint)sqrt(x*x+y*y);
|
1216 |
|
1217 |
int HalfLap=0,ExitOnImpact=0,ni;
|
1218 |
|
1219 |
if (bi<ImpactParameter)
|
1220 |
{
|
1221 |
do
|
1222 |
{
|
1223 |
php=phd+(float)HalfLap*PI;
|
1224 |
nr=php/h;
|
1225 |
ni=(int)nr;
|
1226 |
|
1227 |
if (ni<IdLast[bi])
|
1228 |
{
|
1229 |
r=(Trajectories[bi*TRACKPOINTS+ni+1]-Trajectories[bi*TRACKPOINTS+ni])*(nr-ni*1.e0f)+Trajectories[bi*TRACKPOINTS+ni];
|
1230 |
}
|
1231 |
else
|
1232 |
{
|
1233 |
r=Trajectories[bi*TRACKPOINTS+ni];
|
1234 |
}
|
1235 |
|
1236 |
if ((r<=re)&&(r>=ri))
|
1237 |
{
|
1238 |
ExitOnImpact=1;
|
1239 |
impact(phi,r,b,tho,m,&zp,&fp,q,db,h,raie);
|
1240 |
}
|
1241 |
|
1242 |
HalfLap++;
|
1243 |
} while ((HalfLap<=2)&&(ExitOnImpact==0));
|
1244 |
|
1245 |
}
|
1246 |
|
1247 |
zImage[yi+sizex*xi]=zp;
|
1248 |
fImage[yi+sizex*xi]=fp;
|
1249 |
}
|
1250 |
|
1251 |
__global__ void Circle(float *Trajectories,int *IdLast,
|
1252 |
float *zImage,float *fImage,
|
1253 |
float Mass,float InternalRadius,
|
1254 |
float ExternalRadius,float Angle,
|
1255 |
int Line)
|
1256 |
{
|
1257 |
// Integer Impact Parameter ID
|
1258 |
int bi=blockIdx.x*blockDim.x+threadIdx.x;
|
1259 |
// Integer points on circle
|
1260 |
int i=blockIdx.y*blockDim.y+threadIdx.y;
|
1261 |
// Integer Impact Parameter Size (half of image)
|
1262 |
int bmaxi=gridDim.x*blockDim.x;
|
1263 |
// Integer Points on circle
|
1264 |
int imx=gridDim.y*blockDim.y;
|
1265 |
|
1266 |
// Perform trajectory for each pixel
|
1267 |
|
1268 |
float m,ri,re,tho;
|
1269 |
int q,raie;
|
1270 |
|
1271 |
m=Mass;
|
1272 |
ri=InternalRadius;
|
1273 |
re=ExternalRadius;
|
1274 |
tho=Angle;
|
1275 |
raie=Line;
|
1276 |
|
1277 |
float bmx,db,b,h;
|
1278 |
float phi,phd;
|
1279 |
float zp=0,fp=0;
|
1280 |
|
1281 |
// Autosize for image
|
1282 |
bmx=1.25e0f*re;
|
1283 |
|
1284 |
// Angular step of integration
|
1285 |
h=4.e0f*PI/(float)TRACKPOINTS;
|
1286 |
|
1287 |
// impact parameter
|
1288 |
b=(float)bi/(float)bmaxi*bmx;
|
1289 |
db=bmx/(2.e0f*(float)bmaxi);
|
1290 |
|
1291 |
phi=2.e0f*PI/(float)imx*(float)i;
|
1292 |
phd=atanp(cos(phi)*sin(tho),cos(tho));
|
1293 |
int yi=(int)((float)bi*sin(phi))+bmaxi;
|
1294 |
int xi=(int)((float)bi*cos(phi))+bmaxi;
|
1295 |
|
1296 |
int HalfLap=0,ExitOnImpact=0,ni;
|
1297 |
float php,nr,r;
|
1298 |
|
1299 |
do
|
1300 |
{
|
1301 |
php=phd+(float)HalfLap*PI;
|
1302 |
nr=php/h;
|
1303 |
ni=(int)nr;
|
1304 |
|
1305 |
if (ni<IdLast[bi])
|
1306 |
{
|
1307 |
r=(Trajectories[bi*TRACKPOINTS+ni+1]-Trajectories[bi*TRACKPOINTS+ni])*(nr-ni*1.e0f)+Trajectories[bi*TRACKPOINTS+ni];
|
1308 |
}
|
1309 |
else
|
1310 |
{
|
1311 |
r=Trajectories[bi*TRACKPOINTS+ni];
|
1312 |
}
|
1313 |
|
1314 |
if ((r<=re)&&(r>=ri))
|
1315 |
{
|
1316 |
ExitOnImpact=1;
|
1317 |
impact(phi,r,b,tho,m,&zp,&fp,q,db,h,raie);
|
1318 |
}
|
1319 |
|
1320 |
HalfLap++;
|
1321 |
} while ((HalfLap<=2)&&(ExitOnImpact==0));
|
1322 |
|
1323 |
zImage[yi+2*bmaxi*xi]=zp;
|
1324 |
fImage[yi+2*bmaxi*xi]=fp;
|
1325 |
|
1326 |
}
|
1327 |
|
1328 |
__global__ void Trajectory(float *Trajectories,int *IdLast,
|
1329 |
float Mass,float InternalRadius,
|
1330 |
float ExternalRadius,float Angle,
|
1331 |
int Line)
|
1332 |
{
|
1333 |
// Integer Impact Parameter ID
|
1334 |
int bi=blockIdx.x*blockDim.x+threadIdx.x;
|
1335 |
// Integer Impact Parameter Size (half of image)
|
1336 |
int bmaxi=gridDim.x*blockDim.x;
|
1337 |
|
1338 |
// Perform trajectory for each pixel
|
1339 |
|
1340 |
float m,rs,re;
|
1341 |
|
1342 |
m=Mass;
|
1343 |
rs=2.e0f*m;
|
1344 |
re=ExternalRadius;
|
1345 |
|
1346 |
float bmx,b,h;
|
1347 |
int nh;
|
1348 |
|
1349 |
// Autosize for image
|
1350 |
bmx=1.25e0f*re;
|
1351 |
|
1352 |
// Angular step of integration
|
1353 |
h=4.e0f*PI/(float)TRACKPOINTS;
|
1354 |
|
1355 |
// impact parameter
|
1356 |
b=(float)bi/(float)bmaxi*bmx;
|
1357 |
|
1358 |
float up,vp,pp,us,vs,ps;
|
1359 |
|
1360 |
up=0.e0f;
|
1361 |
vp=1.e0f;
|
1362 |
pp=0.e0f;
|
1363 |
nh=0;
|
1364 |
|
1365 |
rungekutta(&ps,&us,&vs,pp,up,vp,h,m,b);
|
1366 |
|
1367 |
// b versus us
|
1368 |
float bvus=fabs(b/us);
|
1369 |
float bvus0=bvus;
|
1370 |
Trajectories[bi*TRACKPOINTS+nh]=bvus;
|
1371 |
|
1372 |
do
|
1373 |
{
|
1374 |
nh++;
|
1375 |
pp=ps;
|
1376 |
up=us;
|
1377 |
vp=vs;
|
1378 |
rungekutta(&ps,&us,&vs,pp,up,vp,h,m,b);
|
1379 |
bvus=fabs(b/us);
|
1380 |
Trajectories[bi*TRACKPOINTS+nh]=bvus;
|
1381 |
|
1382 |
} while ((bvus>=rs)&&(bvus<=bvus0));
|
1383 |
|
1384 |
IdLast[bi]=nh;
|
1385 |
|
1386 |
}
|
1387 |
|
1388 |
__global__ void EachCircle(float *zImage,float *fImage,
|
1389 |
float Mass,float InternalRadius,
|
1390 |
float ExternalRadius,float Angle,
|
1391 |
int Line)
|
1392 |
{
|
1393 |
// Integer Impact Parameter ID
|
1394 |
int bi=blockIdx.x*blockDim.x+threadIdx.x;
|
1395 |
|
1396 |
// Integer Impact Parameter Size (half of image)
|
1397 |
int bmaxi=gridDim.x*blockDim.x;
|
1398 |
|
1399 |
float Trajectory[2048];
|
1400 |
|
1401 |
// Perform trajectory for each pixel
|
1402 |
|
1403 |
float m,rs,ri,re,tho;
|
1404 |
int raie,q;
|
1405 |
|
1406 |
m=Mass;
|
1407 |
rs=2.*m;
|
1408 |
ri=InternalRadius;
|
1409 |
re=ExternalRadius;
|
1410 |
tho=Angle;
|
1411 |
q=-2;
|
1412 |
raie=Line;
|
1413 |
|
1414 |
float bmx,db,b,h;
|
1415 |
int nh;
|
1416 |
|
1417 |
// Autosize for image
|
1418 |
bmx=1.25e0f*re;
|
1419 |
|
1420 |
// Angular step of integration
|
1421 |
h=4.e0f*PI/(float)TRACKPOINTS;
|
1422 |
|
1423 |
// impact parameter
|
1424 |
b=(float)bi/(float)bmaxi*bmx;
|
1425 |
db=bmx/(2.e0f*(float)bmaxi);
|
1426 |
|
1427 |
float up,vp,pp,us,vs,ps;
|
1428 |
|
1429 |
up=0.;
|
1430 |
vp=1.;
|
1431 |
pp=0.;
|
1432 |
nh=0;
|
1433 |
|
1434 |
rungekutta(&ps,&us,&vs,pp,up,vp,h,m,b);
|
1435 |
|
1436 |
// b versus us
|
1437 |
float bvus=fabs(b/us);
|
1438 |
float bvus0=bvus;
|
1439 |
Trajectory[nh]=bvus;
|
1440 |
|
1441 |
do
|
1442 |
{
|
1443 |
nh++;
|
1444 |
pp=ps;
|
1445 |
up=us;
|
1446 |
vp=vs;
|
1447 |
rungekutta(&ps,&us,&vs,pp,up,vp,h,m,b);
|
1448 |
bvus=fabs(b/us);
|
1449 |
Trajectory[nh]=bvus;
|
1450 |
|
1451 |
} while ((bvus>=rs)&&(bvus<=bvus0));
|
1452 |
|
1453 |
int imx=(int)(16*bi);
|
1454 |
|
1455 |
for (int i=0;i<imx;i++)
|
1456 |
{
|
1457 |
float zp=0,fp=0;
|
1458 |
float phi=2.*PI/(float)imx*(float)i;
|
1459 |
float phd=atanp(cos(phi)*sin(tho),cos(tho));
|
1460 |
uint yi=(uint)((float)bi*sin(phi)+bmaxi);
|
1461 |
uint xi=(uint)((float)bi*cos(phi)+bmaxi);
|
1462 |
|
1463 |
int HalfLap=0,ExitOnImpact=0,ni;
|
1464 |
float php,nr,r;
|
1465 |
|
1466 |
do
|
1467 |
{
|
1468 |
php=phd+(float)HalfLap*PI;
|
1469 |
nr=php/h;
|
1470 |
ni=(int)nr;
|
1471 |
|
1472 |
if (ni<nh)
|
1473 |
{
|
1474 |
r=(Trajectory[ni+1]-Trajectory[ni])*(nr-ni*1.)+Trajectory[ni];
|
1475 |
}
|
1476 |
else
|
1477 |
{
|
1478 |
r=Trajectory[ni];
|
1479 |
}
|
1480 |
|
1481 |
if ((r<=re)&&(r>=ri))
|
1482 |
{
|
1483 |
ExitOnImpact=1;
|
1484 |
impact(phi,r,b,tho,m,&zp,&fp,q,db,h,raie);
|
1485 |
}
|
1486 |
|
1487 |
HalfLap++;
|
1488 |
|
1489 |
} while ((HalfLap<=2)&&(ExitOnImpact==0));
|
1490 |
|
1491 |
__syncthreads();
|
1492 |
|
1493 |
zImage[yi+2*bmaxi*xi]=zp;
|
1494 |
fImage[yi+2*bmaxi*xi]=fp;
|
1495 |
|
1496 |
}
|
1497 |
|
1498 |
}
|
1499 |
|
1500 |
__global__ void Original(float *zImage,float *fImage,
|
1501 |
uint Size,float Mass,float InternalRadius,
|
1502 |
float ExternalRadius,float Angle,
|
1503 |
int Line)
|
1504 |
{
|
1505 |
// Integer Impact Parameter Size (half of image)
|
1506 |
uint bmaxi=(uint)Size;
|
1507 |
|
1508 |
float Trajectory[TRACKPOINTS];
|
1509 |
|
1510 |
// Perform trajectory for each pixel
|
1511 |
|
1512 |
float m,rs,ri,re,tho;
|
1513 |
int raie,q;
|
1514 |
|
1515 |
m=Mass;
|
1516 |
rs=2.e0f*m;
|
1517 |
ri=InternalRadius;
|
1518 |
re=ExternalRadius;
|
1519 |
tho=Angle;
|
1520 |
q=-2;
|
1521 |
raie=Line;
|
1522 |
|
1523 |
float bmx,db,b,h;
|
1524 |
int nh;
|
1525 |
|
1526 |
// Autosize for image
|
1527 |
bmx=1.25e0f*re;
|
1528 |
|
1529 |
// Angular step of integration
|
1530 |
h=4.e0f*PI/(float)TRACKPOINTS;
|
1531 |
|
1532 |
// Integer Impact Parameter ID
|
1533 |
for (int bi=0;bi<bmaxi;bi++)
|
1534 |
{
|
1535 |
// impact parameter
|
1536 |
b=(float)bi/(float)bmaxi*bmx;
|
1537 |
db=bmx/(2.e0f*(float)bmaxi);
|
1538 |
|
1539 |
float up,vp,pp,us,vs,ps;
|
1540 |
|
1541 |
up=0.;
|
1542 |
vp=1.;
|
1543 |
pp=0.;
|
1544 |
nh=0;
|
1545 |
|
1546 |
rungekutta(&ps,&us,&vs,pp,up,vp,h,m,b);
|
1547 |
|
1548 |
// b versus us
|
1549 |
float bvus=fabs(b/us);
|
1550 |
float bvus0=bvus;
|
1551 |
Trajectory[nh]=bvus;
|
1552 |
|
1553 |
do
|
1554 |
{
|
1555 |
nh++;
|
1556 |
pp=ps;
|
1557 |
up=us;
|
1558 |
vp=vs;
|
1559 |
rungekutta(&ps,&us,&vs,pp,up,vp,h,m,b);
|
1560 |
bvus=fabs(b/us);
|
1561 |
Trajectory[nh]=bvus;
|
1562 |
|
1563 |
} while ((bvus>=rs)&&(bvus<=bvus0));
|
1564 |
|
1565 |
for (uint i=(uint)nh+1;i<TRACKPOINTS;i++) {
|
1566 |
Trajectory[i]=0.e0f;
|
1567 |
}
|
1568 |
|
1569 |
int imx=(int)(16*bi);
|
1570 |
|
1571 |
for (int i=0;i<imx;i++)
|
1572 |
{
|
1573 |
float zp=0,fp=0;
|
1574 |
float phi=2.e0f*PI/(float)imx*(float)i;
|
1575 |
float phd=atanp(cos(phi)*sin(tho),cos(tho));
|
1576 |
uint yi=(uint)((float)bi*sin(phi)+bmaxi);
|
1577 |
uint xi=(uint)((float)bi*cos(phi)+bmaxi);
|
1578 |
|
1579 |
int HalfLap=0,ExitOnImpact=0,ni;
|
1580 |
float php,nr,r;
|
1581 |
|
1582 |
do
|
1583 |
{
|
1584 |
php=phd+(float)HalfLap*PI;
|
1585 |
nr=php/h;
|
1586 |
ni=(int)nr;
|
1587 |
|
1588 |
if (ni<nh)
|
1589 |
{
|
1590 |
r=(Trajectory[ni+1]-Trajectory[ni])*(nr-ni*1.)+Trajectory[ni];
|
1591 |
}
|
1592 |
else
|
1593 |
{
|
1594 |
r=Trajectory[ni];
|
1595 |
}
|
1596 |
|
1597 |
if ((r<=re)&&(r>=ri))
|
1598 |
{
|
1599 |
ExitOnImpact=1;
|
1600 |
impact(phi,r,b,tho,m,&zp,&fp,q,db,h,raie);
|
1601 |
}
|
1602 |
|
1603 |
HalfLap++;
|
1604 |
|
1605 |
} while ((HalfLap<=2)&&(ExitOnImpact==0));
|
1606 |
|
1607 |
zImage[yi+2*bmaxi*xi]=zp;
|
1608 |
fImage[yi+2*bmaxi*xi]=fp;
|
1609 |
|
1610 |
}
|
1611 |
|
1612 |
}
|
1613 |
|
1614 |
}
|
1615 |
"""
|
1616 |
return(BlobCUDA)
|
1617 |
|
1618 |
# def ImageOutput(sigma,prefix):
|
1619 |
# from PIL import Image
|
1620 |
# Max=sigma.max()
|
1621 |
# Min=sigma.min()
|
1622 |
# # Normalize value as 8bits Integer
|
1623 |
# SigmaInt=(255*(sigma-Min)/(Max-Min)).astype('uint8')
|
1624 |
# image = Image.fromarray(SigmaInt)
|
1625 |
# image.save("%s.jpg" % prefix)
|
1626 |
|
1627 |
def ImageOutput(sigma,prefix,Colors): |
1628 |
try:
|
1629 |
import matplotlib.pyplot as plt |
1630 |
start_time=time.time() |
1631 |
if Colors == 'Red2Yellow': |
1632 |
plt.imsave("%s.png" % prefix, sigma, cmap='afmhot') |
1633 |
else:
|
1634 |
plt.imsave("%s.png" % prefix, sigma, cmap='Greys_r') |
1635 |
save_time = time.time()-start_time |
1636 |
print("Save image as %s.png file" % prefix)
|
1637 |
print("Save Time : %f" % save_time)
|
1638 |
except:
|
1639 |
from PIL import Image |
1640 |
start_time=time.time() |
1641 |
Max = sigma.max() |
1642 |
Min = sigma.min() |
1643 |
# Normalize value as 8bits Integer
|
1644 |
SigmaInt = (255 * (sigma - Min) / (Max - Min)).astype("uint8") |
1645 |
image = Image.fromarray(SigmaInt) |
1646 |
image.save("%s.jpg" % prefix)
|
1647 |
save_time = time.time()-start_time |
1648 |
print("Save image as %s.png file" % prefix)
|
1649 |
print("Save Time : %f" % save_time)
|
1650 |
|
1651 |
def BlackHoleCL(zImage,fImage,InputCL): |
1652 |
|
1653 |
kernel_params = {} |
1654 |
|
1655 |
Device=InputCL['Device']
|
1656 |
GpuStyle=InputCL['GpuStyle']
|
1657 |
VariableType=InputCL['VariableType']
|
1658 |
Size=InputCL['Size']
|
1659 |
Mass=InputCL['Mass']
|
1660 |
InternalRadius=InputCL['InternalRadius']
|
1661 |
ExternalRadius=InputCL['ExternalRadius']
|
1662 |
Angle=InputCL['Angle']
|
1663 |
Method=InputCL['Method']
|
1664 |
TrackPoints=InputCL['TrackPoints']
|
1665 |
Physics=InputCL['Physics']
|
1666 |
NoImage=InputCL['NoImage']
|
1667 |
TrackSave=InputCL['TrackSave']
|
1668 |
|
1669 |
PhysicsList=DictionariesAPI() |
1670 |
|
1671 |
if InputCL['BlackBody']: |
1672 |
# Spectrum is Black Body one
|
1673 |
Line=0
|
1674 |
else:
|
1675 |
# Spectrum is Monochromatic Line one
|
1676 |
Line=1
|
1677 |
|
1678 |
Trajectories=numpy.zeros((int(InputCL['Size']/2),InputCL['TrackPoints']),dtype=numpy.float32) |
1679 |
IdLast=numpy.zeros(int(InputCL['Size']/2),dtype=numpy.int32) |
1680 |
|
1681 |
# Je detecte un peripherique GPU dans la liste des peripheriques
|
1682 |
Id=0
|
1683 |
HasXPU=False
|
1684 |
for platform in cl.get_platforms(): |
1685 |
for device in platform.get_devices(): |
1686 |
if Id==Device:
|
1687 |
PF4XPU=platform.name |
1688 |
XPU=device |
1689 |
print("CPU/GPU selected: ",device.name.lstrip())
|
1690 |
HasXPU=True
|
1691 |
Id+=1
|
1692 |
|
1693 |
if HasXPU==False: |
1694 |
print("No XPU #%i found in all of %i devices, sorry..." % (Device,Id-1)) |
1695 |
sys.exit() |
1696 |
|
1697 |
ctx = cl.Context([XPU]) |
1698 |
queue = cl.CommandQueue(ctx, |
1699 |
properties=cl.command_queue_properties.PROFILING_ENABLE) |
1700 |
|
1701 |
BuildOptions="-DPHYSICS=%i -DSETTRACKPOINTS=%i " % (PhysicsList[Physics],InputCL['TrackPoints']) |
1702 |
|
1703 |
print('My Platform is ',PF4XPU)
|
1704 |
|
1705 |
if 'Intel' in PF4XPU or 'Experimental' in PF4XPU or 'Clover' in PF4XPU or 'Portable' in PF4XPU : |
1706 |
print('No extra options for Intel and Clover!')
|
1707 |
else:
|
1708 |
BuildOptions = BuildOptions+" -cl-mad-enable"
|
1709 |
|
1710 |
BlackHoleCL = cl.Program(ctx,BlobOpenCL).build(options = BuildOptions) |
1711 |
|
1712 |
# Je recupere les flag possibles pour les buffers
|
1713 |
mf = cl.mem_flags |
1714 |
|
1715 |
if Method=='TrajectoPixel' or Method=='TrajectoCircle': |
1716 |
# TrajectoriesCL = cl.Buffer(ctx, mf.WRITE_ONLY | mf.COPY_HOST_PTR, hostbuf=Trajectories)
|
1717 |
# IdLastCL = cl.Buffer(ctx, mf.WRITE_ONLY | mf.COPY_HOST_PTR, hostbuf=IdLast)
|
1718 |
|
1719 |
# zImageCL = cl.Buffer(ctx, mf.WRITE_ONLY | mf.COPY_HOST_PTR, hostbuf=zImage)
|
1720 |
# fImageCL = cl.Buffer(ctx, mf.WRITE_ONLY | mf.COPY_HOST_PTR, hostbuf=fImage)
|
1721 |
|
1722 |
TrajectoriesCL = cl.Buffer(ctx, mf.WRITE_ONLY, Trajectories.nbytes) |
1723 |
IdLastCL = cl.Buffer(ctx, mf.WRITE_ONLY, IdLast.nbytes) |
1724 |
|
1725 |
zImageCL = cl.Buffer(ctx, mf.WRITE_ONLY, zImage.nbytes) |
1726 |
fImageCL = cl.Buffer(ctx, mf.WRITE_ONLY, fImage.nbytes) |
1727 |
|
1728 |
start_time=time.time() |
1729 |
|
1730 |
if Method=='EachPixel': |
1731 |
CLLaunch=BlackHoleCL.EachPixel(queue,(zImage.shape[0],zImage.shape[1]), |
1732 |
None,zImageCL,fImageCL,
|
1733 |
numpy.float32(Mass), |
1734 |
numpy.float32(InternalRadius), |
1735 |
numpy.float32(ExternalRadius), |
1736 |
numpy.float32(Angle), |
1737 |
numpy.int32(Line)) |
1738 |
CLLaunch.wait() |
1739 |
elif Method=='Original': |
1740 |
CLLaunch=BlackHoleCL.Original(queue,(1,),
|
1741 |
None,zImageCL,fImageCL,
|
1742 |
numpy.uint32(zImage.shape[0]/2), |
1743 |
numpy.float32(Mass), |
1744 |
numpy.float32(InternalRadius), |
1745 |
numpy.float32(ExternalRadius), |
1746 |
numpy.float32(Angle), |
1747 |
numpy.int32(Line)) |
1748 |
CLLaunch.wait() |
1749 |
elif Method=='EachCircle': |
1750 |
CLLaunch=BlackHoleCL.EachCircle(queue,(int(zImage.shape[0]/2),), |
1751 |
None,zImageCL,fImageCL,
|
1752 |
numpy.float32(Mass), |
1753 |
numpy.float32(InternalRadius), |
1754 |
numpy.float32(ExternalRadius), |
1755 |
numpy.float32(Angle), |
1756 |
numpy.int32(Line)) |
1757 |
CLLaunch.wait() |
1758 |
elif Method=='TrajectoCircle': |
1759 |
CLLaunch=BlackHoleCL.Trajectory(queue,(Trajectories.shape[0],),
|
1760 |
None,TrajectoriesCL,IdLastCL,
|
1761 |
numpy.float32(Mass), |
1762 |
numpy.float32(InternalRadius), |
1763 |
numpy.float32(ExternalRadius), |
1764 |
numpy.float32(Angle), |
1765 |
numpy.int32(Line)) |
1766 |
|
1767 |
CLLaunch=BlackHoleCL.Circle(queue,(Trajectories.shape[0],
|
1768 |
int(zImage.shape[0]*4)),None, |
1769 |
TrajectoriesCL,IdLastCL, |
1770 |
zImageCL,fImageCL, |
1771 |
numpy.float32(Mass), |
1772 |
numpy.float32(InternalRadius), |
1773 |
numpy.float32(ExternalRadius), |
1774 |
numpy.float32(Angle), |
1775 |
numpy.int32(Line)) |
1776 |
CLLaunch.wait() |
1777 |
else:
|
1778 |
CLLaunch=BlackHoleCL.Trajectory(queue,(Trajectories.shape[0],),
|
1779 |
None,TrajectoriesCL,IdLastCL,
|
1780 |
numpy.float32(Mass), |
1781 |
numpy.float32(InternalRadius), |
1782 |
numpy.float32(ExternalRadius), |
1783 |
numpy.float32(Angle), |
1784 |
numpy.int32(Line)) |
1785 |
|
1786 |
CLLaunch=BlackHoleCL.Pixel(queue,(zImage.shape[0],zImage.shape[1]),None, |
1787 |
zImageCL,fImageCL,TrajectoriesCL,IdLastCL, |
1788 |
numpy.uint32(Trajectories.shape[0]),
|
1789 |
numpy.float32(Mass), |
1790 |
numpy.float32(InternalRadius), |
1791 |
numpy.float32(ExternalRadius), |
1792 |
numpy.float32(Angle), |
1793 |
numpy.int32(Line)) |
1794 |
CLLaunch.wait() |
1795 |
|
1796 |
compute = time.time()-start_time |
1797 |
|
1798 |
cl.enqueue_copy(queue,zImage,zImageCL).wait() |
1799 |
cl.enqueue_copy(queue,fImage,fImageCL).wait() |
1800 |
if Method=='TrajectoPixel' or Method=='TrajectoCircle': |
1801 |
cl.enqueue_copy(queue,Trajectories,TrajectoriesCL).wait() |
1802 |
cl.enqueue_copy(queue,IdLast,IdLastCL).wait() |
1803 |
elapsed = time.time()-start_time |
1804 |
print("\nCompute Time : %f" % compute)
|
1805 |
print("Elapsed Time : %f\n" % elapsed)
|
1806 |
|
1807 |
zMaxPosition=numpy.where(zImage[:,:]==zImage.max()) |
1808 |
fMaxPosition=numpy.where(fImage[:,:]==fImage.max()) |
1809 |
print("Z max @(%f,%f) : %f" % ((1.*zMaxPosition[1][0]/zImage.shape[1]-0.5,1.*zMaxPosition[0][0]/zImage.shape[0]-0.5,zImage.max()))) |
1810 |
print("Flux max @(%f,%f) : %f" % ((1.*fMaxPosition[1][0]/fImage.shape[1]-0.5,1.*fMaxPosition[0][0]/fImage.shape[0]-0.5,fImage.max()))) |
1811 |
zImageCL.release() |
1812 |
fImageCL.release() |
1813 |
|
1814 |
if Method=='TrajectoPixel' or Method=='TrajectoCircle': |
1815 |
if not NoImage: |
1816 |
AngleStep=4*numpy.pi/TrackPoints
|
1817 |
Angles=numpy.arange(0.,4*numpy.pi,AngleStep) |
1818 |
Angles.shape=(1,TrackPoints)
|
1819 |
Hostname=gethostname() |
1820 |
Date=time.strftime("%Y%m%d_%H%M%S")
|
1821 |
ImageInfo="%s_Device%i_%s_%s" % (Method,Device,Hostname,Date)
|
1822 |
|
1823 |
if TrackSave:
|
1824 |
# numpy.savetxt("TrouNoirTrajectories_%s.csv" % ImageInfo,
|
1825 |
# numpy.transpose(numpy.concatenate((Angles,Trajectories),axis=0)),
|
1826 |
# delimiter=' ', fmt='%.2e')
|
1827 |
numpy.savetxt("TrouNoirTrajectories.csv",
|
1828 |
numpy.transpose(numpy.concatenate((Angles,Trajectories),axis=0)),delimiter=' ', fmt='%.2e') |
1829 |
|
1830 |
TrajectoriesCL.release() |
1831 |
IdLastCL.release() |
1832 |
|
1833 |
return(elapsed)
|
1834 |
|
1835 |
def BlackHoleCUDA(zImage,fImage,InputCL): |
1836 |
|
1837 |
kernel_params = {} |
1838 |
|
1839 |
Device=InputCL['Device']
|
1840 |
GpuStyle=InputCL['GpuStyle']
|
1841 |
VariableType=InputCL['VariableType']
|
1842 |
Size=InputCL['Size']
|
1843 |
Mass=InputCL['Mass']
|
1844 |
InternalRadius=InputCL['InternalRadius']
|
1845 |
ExternalRadius=InputCL['ExternalRadius']
|
1846 |
Angle=InputCL['Angle']
|
1847 |
Method=InputCL['Method']
|
1848 |
TrackPoints=InputCL['TrackPoints']
|
1849 |
Physics=InputCL['Physics']
|
1850 |
Threads=InputCL['Threads']
|
1851 |
|
1852 |
PhysicsList=DictionariesAPI() |
1853 |
|
1854 |
if InputCL['BlackBody']: |
1855 |
# Spectrum is Black Body one
|
1856 |
Line=0
|
1857 |
else:
|
1858 |
# Spectrum is Monochromatic Line one
|
1859 |
Line=1
|
1860 |
|
1861 |
Trajectories=numpy.zeros((int(InputCL['Size']/2),InputCL['TrackPoints']),dtype=numpy.float32) |
1862 |
IdLast=numpy.zeros(int(InputCL['Size']/2),dtype=numpy.int32) |
1863 |
|
1864 |
try:
|
1865 |
# For PyCUDA import
|
1866 |
import pycuda.driver as cuda |
1867 |
from pycuda.compiler import SourceModule |
1868 |
|
1869 |
cuda.init() |
1870 |
for Id in range(cuda.Device.count()): |
1871 |
if Id==Device:
|
1872 |
XPU=cuda.Device(Id) |
1873 |
print("GPU selected %s" % XPU.name())
|
1874 |
print
|
1875 |
|
1876 |
except ImportError: |
1877 |
print("Platform does not seem to support CUDA")
|
1878 |
|
1879 |
Context=XPU.make_context() |
1880 |
|
1881 |
try:
|
1882 |
mod = SourceModule(KernelCodeCuda(),options=['--compiler-options','-DPHYSICS=%i -DSETTRACKPOINTS=%i' % (PhysicsList[Physics],TrackPoints)]) |
1883 |
print("Compilation seems to be OK")
|
1884 |
except:
|
1885 |
print("Compilation seems to break")
|
1886 |
|
1887 |
EachPixelCU=mod.get_function("EachPixel")
|
1888 |
OriginalCU=mod.get_function("Original")
|
1889 |
EachCircleCU=mod.get_function("EachCircle")
|
1890 |
TrajectoryCU=mod.get_function("Trajectory")
|
1891 |
PixelCU=mod.get_function("Pixel")
|
1892 |
CircleCU=mod.get_function("Circle")
|
1893 |
|
1894 |
TrajectoriesCU = cuda.mem_alloc(Trajectories.size*Trajectories.dtype.itemsize) |
1895 |
cuda.memcpy_htod(TrajectoriesCU, Trajectories) |
1896 |
zImageCU = cuda.mem_alloc(zImage.size*zImage.dtype.itemsize) |
1897 |
cuda.memcpy_htod(zImageCU, zImage) |
1898 |
fImageCU = cuda.mem_alloc(fImage.size*fImage.dtype.itemsize) |
1899 |
cuda.memcpy_htod(zImageCU, fImage) |
1900 |
IdLastCU = cuda.mem_alloc(IdLast.size*IdLast.dtype.itemsize) |
1901 |
cuda.memcpy_htod(IdLastCU, IdLast) |
1902 |
|
1903 |
start_time=time.time() |
1904 |
|
1905 |
if Method=='EachPixel': |
1906 |
EachPixelCU(zImageCU,fImageCU, |
1907 |
numpy.float32(Mass), |
1908 |
numpy.float32(InternalRadius), |
1909 |
numpy.float32(ExternalRadius), |
1910 |
numpy.float32(Angle), |
1911 |
numpy.int32(Line), |
1912 |
grid=(int(zImage.shape[0]/Threads), |
1913 |
int(zImage.shape[1]/Threads)), |
1914 |
block=(Threads,Threads,1))
|
1915 |
elif Method=='EachCircle': |
1916 |
EachCircleCU(zImageCU,fImageCU, |
1917 |
numpy.float32(Mass), |
1918 |
numpy.float32(InternalRadius), |
1919 |
numpy.float32(ExternalRadius), |
1920 |
numpy.float32(Angle), |
1921 |
numpy.int32(Line), |
1922 |
grid=(int(zImage.shape[0]/Threads/2),1), |
1923 |
block=(Threads,1,1)) |
1924 |
elif Method=='Original': |
1925 |
OriginalCU(zImageCU,fImageCU, |
1926 |
numpy.uint32(zImage.shape[0]/2), |
1927 |
numpy.float32(Mass), |
1928 |
numpy.float32(InternalRadius), |
1929 |
numpy.float32(ExternalRadius), |
1930 |
numpy.float32(Angle), |
1931 |
numpy.int32(Line), |
1932 |
grid=(1,1), |
1933 |
block=(1,1,1)) |
1934 |
elif Method=='TrajectoCircle': |
1935 |
TrajectoryCU(TrajectoriesCU,IdLastCU, |
1936 |
numpy.float32(Mass), |
1937 |
numpy.float32(InternalRadius), |
1938 |
numpy.float32(ExternalRadius), |
1939 |
numpy.float32(Angle), |
1940 |
numpy.int32(Line), |
1941 |
grid=(int(Trajectories.shape[0]/Threads),1), |
1942 |
block=(Threads,1,1)) |
1943 |
|
1944 |
CircleCU(TrajectoriesCU,IdLastCU,zImageCU,fImageCU, |
1945 |
numpy.float32(Mass), |
1946 |
numpy.float32(InternalRadius), |
1947 |
numpy.float32(ExternalRadius), |
1948 |
numpy.float32(Angle), |
1949 |
numpy.int32(Line), |
1950 |
grid=(int(Trajectories.shape[0]/Threads), |
1951 |
int(zImage.shape[0]*4/Threads)), |
1952 |
block=(Threads,Threads,1))
|
1953 |
else:
|
1954 |
# Default method: TrajectoPixel
|
1955 |
TrajectoryCU(TrajectoriesCU,IdLastCU, |
1956 |
numpy.float32(Mass), |
1957 |
numpy.float32(InternalRadius), |
1958 |
numpy.float32(ExternalRadius), |
1959 |
numpy.float32(Angle), |
1960 |
numpy.int32(Line), |
1961 |
grid=(int(Trajectories.shape[0]/Threads),1), |
1962 |
block=(Threads,1,1)) |
1963 |
|
1964 |
PixelCU(zImageCU,fImageCU,TrajectoriesCU,IdLastCU, |
1965 |
numpy.uint32(Trajectories.shape[0]),
|
1966 |
numpy.float32(Mass), |
1967 |
numpy.float32(InternalRadius), |
1968 |
numpy.float32(ExternalRadius), |
1969 |
numpy.float32(Angle), |
1970 |
numpy.int32(Line), |
1971 |
grid=(int(zImage.shape[0]/Threads), |
1972 |
int(zImage.shape[1]/Threads),1), |
1973 |
block=(Threads,Threads,1))
|
1974 |
|
1975 |
Context.synchronize() |
1976 |
|
1977 |
compute = time.time()-start_time |
1978 |
|
1979 |
cuda.memcpy_dtoh(zImage,zImageCU) |
1980 |
cuda.memcpy_dtoh(fImage,fImageCU) |
1981 |
if Method=='TrajectoPixel' or Method=='TrajectoCircle': |
1982 |
cuda.memcpy_dtoh(Trajectories,TrajectoriesCU) |
1983 |
elapsed = time.time()-start_time |
1984 |
print("\nCompute Time : %f" % compute)
|
1985 |
print("Elapsed Time : %f\n" % elapsed)
|
1986 |
|
1987 |
zMaxPosition=numpy.where(zImage[:,:]==zImage.max()) |
1988 |
fMaxPosition=numpy.where(fImage[:,:]==fImage.max()) |
1989 |
print("Z max @(%f,%f) : %f" % ((1.*zMaxPosition[1][0]/zImage.shape[1]-0.5,1.*zMaxPosition[0][0]/zImage.shape[0]-0.5,zImage.max()))) |
1990 |
print("Flux max @(%f,%f) : %f" % ((1.*fMaxPosition[1][0]/fImage.shape[1]-0.5,1.*fMaxPosition[0][0]/fImage.shape[0]-0.5,fImage.max()))) |
1991 |
|
1992 |
|
1993 |
Context.pop() |
1994 |
|
1995 |
Context.detach() |
1996 |
|
1997 |
if Method=='TrajectoPixel' or Method=='TrajectoCircle': |
1998 |
if not NoImage: |
1999 |
AngleStep=4*numpy.pi/TrackPoints
|
2000 |
Angles=numpy.arange(0.,4*numpy.pi,AngleStep) |
2001 |
Angles.shape=(1,TrackPoints)
|
2002 |
Hostname=gethostname() |
2003 |
Date=time.strftime("%Y%m%d_%H%M%S")
|
2004 |
ImageInfo="%s_Device%i_%s_%s" % (Method,Device,Hostname,Date)
|
2005 |
|
2006 |
# numpy.savetxt("TrouNoirTrajectories_%s.csv" % ImageInfo,
|
2007 |
# numpy.transpose(numpy.concatenate((Angles,Trajectories),axis=0)),
|
2008 |
# delimiter=' ', fmt='%.2e')
|
2009 |
numpy.savetxt("TrouNoirTrajectories.csv",
|
2010 |
numpy.transpose(numpy.concatenate((Angles,Trajectories),axis=0)),
|
2011 |
delimiter=' ', fmt='%.2e') |
2012 |
|
2013 |
|
2014 |
return(elapsed)
|
2015 |
|
2016 |
if __name__=='__main__': |
2017 |
|
2018 |
# Default device: first one!
|
2019 |
Device=0
|
2020 |
# Default implementation: OpenCL, most versatile!
|
2021 |
GpuStyle = 'OpenCL'
|
2022 |
Mass = 1.
|
2023 |
# Internal Radius 3 times de Schwarzschild Radius
|
2024 |
InternalRadius=6.*Mass
|
2025 |
#
|
2026 |
ExternalRadius=12.
|
2027 |
#
|
2028 |
# Angle with normal to disc 10 degrees
|
2029 |
Angle = numpy.pi/180.*(90.-10.) |
2030 |
# Radiation of disc : BlackBody or Monochromatic
|
2031 |
BlackBody = False
|
2032 |
# Size of image
|
2033 |
Size=1024
|
2034 |
# Variable Type
|
2035 |
VariableType='FP32'
|
2036 |
# ?
|
2037 |
q=-2
|
2038 |
# Method of resolution
|
2039 |
Method='TrajectoPixel'
|
2040 |
# Colors for output image
|
2041 |
Colors='Greyscale'
|
2042 |
# Physics
|
2043 |
Physics='Einstein'
|
2044 |
# No output as image
|
2045 |
NoImage = False
|
2046 |
# Threads in CUDA
|
2047 |
Threads = 32
|
2048 |
# Trackpoints of trajectories
|
2049 |
TrackPoints=2048
|
2050 |
# Tracksave of trajectories
|
2051 |
TrackSave=False
|
2052 |
|
2053 |
HowToUse='%s -h [Help] -b [BlackBodyEmission] -j [TrackSave] -n [NoImage] -p <Einstein/Newton> -s <SizeInPixels> -m <Mass> -i <DiscInternalRadius> -e <DiscExternalRadius> -a <AngleAboveDisc> -d <DeviceId> -c <Greyscale/Red2Yellow> -g <CUDA/OpenCL> -o <EachPixel/TrajectoCircle/TrajectoPixel/EachCircle/Original> -t <ThreadsInCuda> -v <FP32/FP64> -k <TrackPoints>'
|
2054 |
|
2055 |
try:
|
2056 |
opts, args = getopt.getopt(sys.argv[1:],"hbnjs:m:i:e:a:d:g:v:o:t:c:p:k:",["tracksave","blackbody","noimage","camera","size=","mass=","internal=","external=","angle=","device=","gpustyle=","variabletype=","method=","threads=","colors=","physics=","trackpoints="]) |
2057 |
except getopt.GetoptError:
|
2058 |
print(HowToUse % sys.argv[0])
|
2059 |
sys.exit(2)
|
2060 |
|
2061 |
# List of Devices
|
2062 |
Devices=[] |
2063 |
Alu={} |
2064 |
|
2065 |
for opt, arg in opts: |
2066 |
if opt == '-h': |
2067 |
print(HowToUse % sys.argv[0])
|
2068 |
|
2069 |
print("\nInformations about devices detected under OpenCL API:")
|
2070 |
# For PyOpenCL import
|
2071 |
try:
|
2072 |
import pyopencl as cl |
2073 |
Id=0
|
2074 |
for platform in cl.get_platforms(): |
2075 |
for device in platform.get_devices(): |
2076 |
#deviceType=cl.device_type.to_string(device.type)
|
2077 |
deviceType="xPU"
|
2078 |
print("Device #%i from %s of type %s : %s" % (Id,platform.vendor.lstrip(),deviceType,device.name.lstrip()))
|
2079 |
Id=Id+1
|
2080 |
|
2081 |
except:
|
2082 |
print("Your platform does not seem to support OpenCL")
|
2083 |
|
2084 |
print("\nInformations about devices detected under CUDA API:")
|
2085 |
# For PyCUDA import
|
2086 |
try:
|
2087 |
import pycuda.driver as cuda |
2088 |
cuda.init() |
2089 |
for Id in range(cuda.Device.count()): |
2090 |
device=cuda.Device(Id) |
2091 |
print("Device #%i of type GPU : %s" % (Id,device.name()))
|
2092 |
print
|
2093 |
except:
|
2094 |
print("Your platform does not seem to support CUDA")
|
2095 |
|
2096 |
sys.exit() |
2097 |
|
2098 |
elif opt in ("-d", "--device"): |
2099 |
# Devices.append(int(arg))
|
2100 |
Device=int(arg)
|
2101 |
elif opt in ("-g", "--gpustyle"): |
2102 |
GpuStyle = arg |
2103 |
elif opt in ("-v", "--variabletype"): |
2104 |
VariableType = arg |
2105 |
elif opt in ("-s", "--size"): |
2106 |
Size = int(arg)
|
2107 |
elif opt in ("-k", "--trackpoints"): |
2108 |
TrackPoints = int(arg)
|
2109 |
elif opt in ("-m", "--mass"): |
2110 |
Mass = float(arg)
|
2111 |
elif opt in ("-i", "--internal"): |
2112 |
InternalRadius = float(arg)
|
2113 |
elif opt in ("-e", "--external"): |
2114 |
ExternalRadius = float(arg)
|
2115 |
elif opt in ("-a", "--angle"): |
2116 |
Angle = numpy.pi/180.*(90.-float(arg)) |
2117 |
elif opt in ("-b", "--blackbody"): |
2118 |
BlackBody = True
|
2119 |
elif opt in ("-j", "--tracksave"): |
2120 |
TrackSave = True
|
2121 |
elif opt in ("-n", "--noimage"): |
2122 |
NoImage = True
|
2123 |
elif opt in ("-o", "--method"): |
2124 |
Method = arg |
2125 |
elif opt in ("-t", "--threads"): |
2126 |
Threads = int(arg)
|
2127 |
elif opt in ("-c", "--colors"): |
2128 |
Colors = arg |
2129 |
elif opt in ("-p", "--physics"): |
2130 |
Physics = arg |
2131 |
|
2132 |
print("Device Identification selected : %s" % Device)
|
2133 |
print("GpuStyle used : %s" % GpuStyle)
|
2134 |
print("VariableType : %s" % VariableType)
|
2135 |
print("Size : %i" % Size)
|
2136 |
print("Mass : %f" % Mass)
|
2137 |
print("Internal Radius : %f" % InternalRadius)
|
2138 |
print("External Radius : %f" % ExternalRadius)
|
2139 |
print("Angle with normal of (in radians) : %f" % Angle)
|
2140 |
print("Black Body Disc Emission (monochromatic instead) : %s" % BlackBody)
|
2141 |
print("Method of resolution : %s" % Method)
|
2142 |
print("Colors for output images : %s" % Colors)
|
2143 |
print("Physics used for Trajectories : %s" % Physics)
|
2144 |
print("Trackpoints of Trajectories : %i" % TrackPoints)
|
2145 |
print("Tracksave of Trajectories : %i" % TrackSave)
|
2146 |
|
2147 |
if GpuStyle=='CUDA': |
2148 |
print("\nSelection of CUDA device")
|
2149 |
try:
|
2150 |
# For PyCUDA import
|
2151 |
import pycuda.driver as cuda |
2152 |
|
2153 |
cuda.init() |
2154 |
for Id in range(cuda.Device.count()): |
2155 |
device=cuda.Device(Id) |
2156 |
print("Device #%i of type GPU : %s" % (Id,device.name()))
|
2157 |
if Id in Devices: |
2158 |
Alu[Id]='GPU'
|
2159 |
|
2160 |
except ImportError: |
2161 |
print("Platform does not seem to support CUDA")
|
2162 |
|
2163 |
if GpuStyle=='OpenCL': |
2164 |
print("\nSelection of OpenCL device")
|
2165 |
try:
|
2166 |
# For PyOpenCL import
|
2167 |
import pyopencl as cl |
2168 |
Id=0
|
2169 |
for platform in cl.get_platforms(): |
2170 |
for device in platform.get_devices(): |
2171 |
#deviceType=cl.device_type.to_string(device.type)
|
2172 |
deviceType="xPU"
|
2173 |
print("Device #%i from %s of type %s : %s" % (Id,platform.vendor.lstrip().rstrip(),deviceType,device.name.lstrip().rstrip()))
|
2174 |
|
2175 |
if Id in Devices: |
2176 |
# Set the Alu as detected Device Type
|
2177 |
Alu[Id]=deviceType |
2178 |
Id=Id+1
|
2179 |
except ImportError: |
2180 |
print("Platform does not seem to support OpenCL")
|
2181 |
|
2182 |
|
2183 |
zImage=numpy.zeros((Size,Size),dtype=numpy.float32) |
2184 |
fImage=numpy.zeros((Size,Size),dtype=numpy.float32) |
2185 |
|
2186 |
InputCL={} |
2187 |
InputCL['Device']=Device
|
2188 |
InputCL['GpuStyle']=GpuStyle
|
2189 |
InputCL['VariableType']=VariableType
|
2190 |
InputCL['Size']=Size
|
2191 |
InputCL['Mass']=Mass
|
2192 |
InputCL['InternalRadius']=InternalRadius
|
2193 |
InputCL['ExternalRadius']=ExternalRadius
|
2194 |
InputCL['Angle']=Angle
|
2195 |
InputCL['BlackBody']=BlackBody
|
2196 |
InputCL['Method']=Method
|
2197 |
InputCL['TrackPoints']=TrackPoints
|
2198 |
InputCL['Physics']=Physics
|
2199 |
InputCL['Threads']=Threads
|
2200 |
InputCL['NoImage']=NoImage
|
2201 |
InputCL['TrackSave']=TrackSave
|
2202 |
|
2203 |
if GpuStyle=='OpenCL': |
2204 |
duration=BlackHoleCL(zImage,fImage,InputCL) |
2205 |
else:
|
2206 |
duration=BlackHoleCUDA(zImage,fImage,InputCL) |
2207 |
|
2208 |
Hostname=gethostname() |
2209 |
Date=time.strftime("%Y%m%d_%H%M%S")
|
2210 |
ImageInfo="%s_Device%i_%s_%s" % (Method,Device,Hostname,Date)
|
2211 |
|
2212 |
|
2213 |
if not NoImage: |
2214 |
ImageOutput(zImage,"TrouNoirZ_%s" % ImageInfo,Colors)
|
2215 |
ImageOutput(fImage,"TrouNoirF_%s" % ImageInfo,Colors)
|