root / ETSN / MyDFT_5.py @ 288
Historique | Voir | Annoter | Télécharger (7,22 ko)
1 |
#!/usr/bin/env python3
|
---|---|
2 |
|
3 |
import numpy as np |
4 |
import pyopencl as cl |
5 |
from numpy import pi,cos,sin |
6 |
|
7 |
# Naive Discrete Fourier Transform
|
8 |
def MyDFT(x,y): |
9 |
size=x.shape[0]
|
10 |
X=np.zeros(size).astype(np.float32) |
11 |
Y=np.zeros(size).astype(np.float32) |
12 |
for i in range(size): |
13 |
for j in range(size): |
14 |
X[i]=X[i]+x[j]*cos(2.*pi*i*j/size)-y[j]*sin(2.*pi*i*j/size) |
15 |
Y[i]=Y[i]+x[j]*sin(2.*pi*i*j/size)+y[j]*cos(2.*pi*i*j/size) |
16 |
return(X,Y)
|
17 |
|
18 |
# Numpy Discrete Fourier Transform
|
19 |
def NumpyDFT(x,y): |
20 |
size=x.shape[0]
|
21 |
X=np.zeros(size).astype(np.float32) |
22 |
Y=np.zeros(size).astype(np.float32) |
23 |
nj=np.multiply(2.0*np.pi/size,np.arange(size)).astype(np.float32)
|
24 |
for i in range(size): |
25 |
X[i]=np.sum(np.subtract(np.multiply(np.cos(i*nj),x),np.multiply(np.sin(i*nj),y))) |
26 |
Y[i]=np.sum(np.add(np.multiply(np.sin(i*nj),x),np.multiply(np.cos(i*nj),y))) |
27 |
return(X,Y)
|
28 |
|
29 |
# Numba Discrete Fourier Transform
|
30 |
import numba |
31 |
@numba.njit(parallel=True) |
32 |
def NumbaDFT(x,y): |
33 |
size=x.shape[0]
|
34 |
X=np.zeros(size).astype(np.float32) |
35 |
Y=np.zeros(size).astype(np.float32) |
36 |
nj=np.multiply(2.0*np.pi/size,np.arange(size)).astype(np.float32)
|
37 |
for i in numba.prange(size): |
38 |
X[i]=np.sum(np.subtract(np.multiply(np.cos(i*nj),x),np.multiply(np.sin(i*nj),y))) |
39 |
Y[i]=np.sum(np.add(np.multiply(np.sin(i*nj),x),np.multiply(np.cos(i*nj),y))) |
40 |
return(X,Y)
|
41 |
|
42 |
# OpenCL complete operation
|
43 |
def OpenCLDFT(a_np,b_np): |
44 |
|
45 |
# Context creation
|
46 |
ctx = cl.create_some_context() |
47 |
# Every process is stored in a queue
|
48 |
queue = cl.CommandQueue(ctx) |
49 |
|
50 |
TimeIn=time.time() |
51 |
# Copy from Host to Device using pointers
|
52 |
mf = cl.mem_flags |
53 |
a_g = cl.Buffer(ctx, mf.READ_ONLY | mf.COPY_HOST_PTR, hostbuf=a_np) |
54 |
b_g = cl.Buffer(ctx, mf.READ_ONLY | mf.COPY_HOST_PTR, hostbuf=b_np) |
55 |
Elapsed=time.time()-TimeIn |
56 |
print("Copy from Host 2 Device : %.3f" % Elapsed)
|
57 |
|
58 |
TimeIn=time.time() |
59 |
# Definition of kernel under OpenCL
|
60 |
prg = cl.Program(ctx, """
|
61 |
|
62 |
#define PI 3.141592653589793
|
63 |
|
64 |
__kernel void MyDFT(
|
65 |
__global const float *a_g, __global const float *b_g, __global float *A_g, __global float *B_g)
|
66 |
{
|
67 |
int gid = get_global_id(0);
|
68 |
uint size = get_global_size(0);
|
69 |
float A=0.,B=0.;
|
70 |
for (uint i=0; i<size;i++)
|
71 |
{
|
72 |
A+=a_g[i]*cos(2.*PI*(float)(gid*i)/(float)size)-b_g[i]*sin(2.*PI*(float)(gid*i)/(float)size);
|
73 |
B+=a_g[i]*sin(2.*PI*(float)(gid*i)/(float)size)+b_g[i]*cos(2.*PI*(float)(gid*i)/(float)size);
|
74 |
}
|
75 |
A_g[gid]=A;
|
76 |
B_g[gid]=B;
|
77 |
}
|
78 |
""").build()
|
79 |
Elapsed=time.time()-TimeIn |
80 |
print("Building kernels : %.3f" % Elapsed)
|
81 |
|
82 |
TimeIn=time.time() |
83 |
# Memory allocation on Device for result
|
84 |
A_ocl = np.empty_like(a_np) |
85 |
B_ocl = np.empty_like(a_np) |
86 |
Elapsed=time.time()-TimeIn |
87 |
print("Allocation on Host for results : %.3f" % Elapsed)
|
88 |
|
89 |
A_g = cl.Buffer(ctx, mf.WRITE_ONLY, A_ocl.nbytes) |
90 |
B_g = cl.Buffer(ctx, mf.WRITE_ONLY, B_ocl.nbytes) |
91 |
Elapsed=time.time()-TimeIn |
92 |
print("Allocation on Device for results : %.3f" % Elapsed)
|
93 |
|
94 |
TimeIn=time.time() |
95 |
# Synthesis of function "sillysum" inside Kernel Sources
|
96 |
knl = prg.MyDFT # Use this Kernel object for repeated calls
|
97 |
Elapsed=time.time()-TimeIn |
98 |
print("Synthesis of kernel : %.3f" % Elapsed)
|
99 |
|
100 |
TimeIn=time.time() |
101 |
# Call of kernel previously defined
|
102 |
CallCL=knl(queue, a_np.shape, None, a_g, b_g, A_g, B_g)
|
103 |
#
|
104 |
CallCL.wait() |
105 |
Elapsed=time.time()-TimeIn |
106 |
print("Execution of kernel : %.3f" % Elapsed)
|
107 |
|
108 |
TimeIn=time.time() |
109 |
# Copy from Device to Host
|
110 |
cl.enqueue_copy(queue, A_ocl, A_g) |
111 |
cl.enqueue_copy(queue, B_ocl, B_g) |
112 |
Elapsed=time.time()-TimeIn |
113 |
print("Copy from Device 2 Host : %.3f" % Elapsed)
|
114 |
|
115 |
# Liberation of memory
|
116 |
a_g.release() |
117 |
b_g.release() |
118 |
A_g.release() |
119 |
B_g.release() |
120 |
|
121 |
return(A_ocl,B_ocl)
|
122 |
|
123 |
# CUDA Silly complete operation
|
124 |
def CUDADFT(a_np,b_np): |
125 |
import pycuda.autoinit |
126 |
import pycuda.driver as drv |
127 |
import numpy |
128 |
|
129 |
from pycuda.compiler import SourceModule |
130 |
TimeIn=time.time() |
131 |
mod = SourceModule("""
|
132 |
|
133 |
#define PI 3.141592653589793
|
134 |
|
135 |
__global__ void MyDFT(float *A_g, float *B_g, const float *a_g,const float *b_g)
|
136 |
{
|
137 |
const int gid = blockIdx.x;
|
138 |
uint size = gridDim.x;
|
139 |
float A=0.,B=0.;
|
140 |
for (uint i=0; i<size;i++)
|
141 |
{
|
142 |
A+=a_g[i]*cos(2.*PI*(float)(gid*i)/(float)size)-b_g[i]*sin(2.*PI*(float)(gid*i)/(float)size);
|
143 |
B+=a_g[i]*sin(2.*PI*(float)(gid*i)/(float)size)+b_g[i]*cos(2.*PI*(float)(gid*i)/(float)size);
|
144 |
}
|
145 |
A_g[gid]=A;
|
146 |
B_g[gid]=B;
|
147 |
}
|
148 |
|
149 |
""")
|
150 |
Elapsed=time.time()-TimeIn |
151 |
print("Definition of kernel : %.3f" % Elapsed)
|
152 |
|
153 |
TimeIn=time.time() |
154 |
MyDFT = mod.get_function("MyDFT")
|
155 |
Elapsed=time.time()-TimeIn |
156 |
print("Synthesis of kernel : %.3f" % Elapsed)
|
157 |
|
158 |
TimeIn=time.time() |
159 |
A_np = numpy.zeros_like(a_np) |
160 |
B_np = numpy.zeros_like(a_np) |
161 |
Elapsed=time.time()-TimeIn |
162 |
print("Allocation on Host for results : %.3f" % Elapsed)
|
163 |
|
164 |
TimeIn=time.time() |
165 |
MyDFT(drv.Out(A_np), drv.Out(B_np), drv.In(a_np), drv.In(b_np), |
166 |
block=(1,1,1), grid=(a_np.size,1)) |
167 |
Elapsed=time.time()-TimeIn |
168 |
print("Execution of kernel : %.3f" % Elapsed)
|
169 |
return(A_np,B_np)
|
170 |
|
171 |
import sys |
172 |
import time |
173 |
|
174 |
if __name__=='__main__': |
175 |
|
176 |
# Size of input vectors definition based on stdin
|
177 |
import sys |
178 |
try:
|
179 |
SIZE=int(sys.argv[1]) |
180 |
print("Size of vectors set to %i" % SIZE)
|
181 |
except:
|
182 |
SIZE=256
|
183 |
print("Size of vectors set to default size %i" % SIZE)
|
184 |
|
185 |
a_np = np.ones(SIZE).astype(np.float32) |
186 |
b_np = np.ones(SIZE).astype(np.float32) |
187 |
|
188 |
C_np = np.zeros(SIZE).astype(np.float32) |
189 |
D_np = np.zeros(SIZE).astype(np.float32) |
190 |
C_np[0] = np.float32(SIZE)
|
191 |
D_np[0] = np.float32(SIZE)
|
192 |
|
193 |
# # Native & Naive Implementation
|
194 |
# print("Performing naive implementation")
|
195 |
# TimeIn=time.time()
|
196 |
# c_np,d_np=MyDFT(a_np,b_np)
|
197 |
# NativeElapsed=time.time()-TimeIn
|
198 |
# NativeRate=int(SIZE/NativeElapsed)
|
199 |
# print("NativeRate: %i" % NativeRate)
|
200 |
# print("Precision: ",np.linalg.norm(c_np-C_np),np.linalg.norm(d_np-D_np))
|
201 |
|
202 |
# Native & Numpy Implementation
|
203 |
print("Performing Numpy implementation")
|
204 |
TimeIn=time.time() |
205 |
e_np,f_np=NumpyDFT(a_np,b_np) |
206 |
NumpyElapsed=time.time()-TimeIn |
207 |
NumpyRate=int(SIZE/NumpyElapsed)
|
208 |
print("NumpyRate: %i" % NumpyRate)
|
209 |
print("Precision: ",np.linalg.norm(e_np-C_np),np.linalg.norm(f_np-D_np))
|
210 |
|
211 |
# Native & Numba Implementation
|
212 |
print("Performing Numba implementation")
|
213 |
TimeIn=time.time() |
214 |
g_np,h_np=NumbaDFT(a_np,b_np) |
215 |
NumbaElapsed=time.time()-TimeIn |
216 |
NumbaRate=int(SIZE/NumbaElapsed)
|
217 |
print("NumbaRate: %i" % NumbaRate)
|
218 |
print("Precision: ",np.linalg.norm(g_np-C_np),np.linalg.norm(h_np-D_np))
|
219 |
|
220 |
# OpenCL Implementation
|
221 |
print("Performing OpenCL implementation")
|
222 |
TimeIn=time.time() |
223 |
i_np,j_np=OpenCLDFT(a_np,b_np) |
224 |
OpenCLElapsed=time.time()-TimeIn |
225 |
OpenCLRate=int(SIZE/OpenCLElapsed)
|
226 |
print("OpenCLRate: %i" % OpenCLRate)
|
227 |
print("Precision: ",np.linalg.norm(i_np-C_np),np.linalg.norm(j_np-D_np))
|
228 |
|
229 |
# CUDA Implementation
|
230 |
print("Performing CUDA implementation")
|
231 |
TimeIn=time.time() |
232 |
k_np,l_np=CUDADFT(a_np,b_np) |
233 |
CUDAElapsed=time.time()-TimeIn |
234 |
CUDARate=int(SIZE/CUDAElapsed)
|
235 |
print("CUDARate: %i" % CUDARate)
|
236 |
print("Precision: ",np.linalg.norm(k_np-C_np),np.linalg.norm(l_np-D_np))
|
237 |
|