Statistiques
| Révision :

root / ETSN / MySteps_4.py @ 288

Historique | Voir | Annoter | Télécharger (7,12 ko)

1 269 equemene
#!/usr/bin/env python3
2 269 equemene
3 269 equemene
import numpy as np
4 269 equemene
import pyopencl as cl
5 269 equemene
6 269 equemene
# piling 16 arithmetical functions
7 269 equemene
def MySillyFunction(x):
8 269 equemene
    return(np.power(np.sqrt(np.log(np.exp(np.arctanh(np.tanh(np.arcsinh(np.sinh(np.arccosh(np.cosh(np.arctan(np.tan(np.arcsin(np.sin(np.arccos(np.cos(x))))))))))))))),2))
9 269 equemene
10 269 equemene
# Native Operation under Numpy (for prototyping & tests
11 269 equemene
def NativeAddition(a_np,b_np):
12 269 equemene
    return(a_np+b_np)
13 269 equemene
14 269 equemene
# Native Operation with MySillyFunction under Numpy (for prototyping & tests
15 269 equemene
def NativeSillyAddition(a_np,b_np):
16 269 equemene
    return(MySillyFunction(a_np)+MySillyFunction(b_np))
17 269 equemene
18 269 equemene
# CUDA complete operation
19 269 equemene
def CUDAAddition(a_np,b_np):
20 269 equemene
    import pycuda.autoinit
21 269 equemene
    import pycuda.driver as drv
22 269 equemene
    import numpy
23 269 equemene
24 269 equemene
    from pycuda.compiler import SourceModule
25 269 equemene
    mod = SourceModule("""
26 269 equemene
    __global__ void sum(float *dest, float *a, float *b)
27 269 equemene
{
28 269 equemene
  // const int i = threadIdx.x;
29 269 equemene
  const int i = blockIdx.x;
30 269 equemene
  dest[i] = a[i] + b[i];
31 269 equemene
}
32 269 equemene
""")
33 269 equemene
34 269 equemene
    sum = mod.get_function("sum")
35 269 equemene
36 269 equemene
    res_np = numpy.zeros_like(a_np)
37 269 equemene
    sum(drv.Out(res_np), drv.In(a_np), drv.In(b_np),
38 269 equemene
        block=(1,1,1), grid=(a_np.size,1))
39 269 equemene
    return(res_np)
40 269 equemene
41 269 equemene
# OpenCL complete operation
42 269 equemene
def OpenCLAddition(a_np,b_np):
43 269 equemene
44 269 equemene
    # Context creation
45 269 equemene
    ctx = cl.create_some_context()
46 269 equemene
    # Every process is stored in a queue
47 269 equemene
    queue = cl.CommandQueue(ctx)
48 269 equemene
49 269 equemene
    TimeIn=time.time()
50 269 equemene
    # Copy from Host to Device using pointers
51 269 equemene
    mf = cl.mem_flags
52 269 equemene
    a_g = cl.Buffer(ctx, mf.READ_ONLY | mf.COPY_HOST_PTR, hostbuf=a_np)
53 269 equemene
    b_g = cl.Buffer(ctx, mf.READ_ONLY | mf.COPY_HOST_PTR, hostbuf=b_np)
54 269 equemene
    Elapsed=time.time()-TimeIn
55 269 equemene
    print("Copy from Host 2 Device : %.3f" % Elapsed)
56 269 equemene
57 269 equemene
    TimeIn=time.time()
58 269 equemene
    # Definition of kernel under OpenCL
59 269 equemene
    prg = cl.Program(ctx, """
60 269 equemene
__kernel void sum(
61 269 equemene
    __global const float *a_g, __global const float *b_g, __global float *res_g)
62 269 equemene
{
63 269 equemene
  int gid = get_global_id(0);
64 269 equemene
  res_g[gid] = a_g[gid] + b_g[gid];
65 269 equemene
}
66 269 equemene
""").build()
67 269 equemene
    Elapsed=time.time()-TimeIn
68 269 equemene
    print("Building kernels : %.3f" % Elapsed)
69 269 equemene
70 269 equemene
    TimeIn=time.time()
71 269 equemene
    # Memory allocation on Device for result
72 269 equemene
    res_g = cl.Buffer(ctx, mf.WRITE_ONLY, a_np.nbytes)
73 269 equemene
    Elapsed=time.time()-TimeIn
74 269 equemene
    print("Allocation on Device for results : %.3f" % Elapsed)
75 269 equemene
76 269 equemene
    TimeIn=time.time()
77 269 equemene
    # Synthesis of function "sum" inside Kernel Sources
78 269 equemene
    knl = prg.sum  # Use this Kernel object for repeated calls
79 269 equemene
    Elapsed=time.time()-TimeIn
80 269 equemene
    print("Synthesis of kernel : %.3f" % Elapsed)
81 269 equemene
82 269 equemene
    TimeIn=time.time()
83 269 equemene
    # Call of kernel previously defined
84 269 equemene
    knl(queue, a_np.shape, None, a_g, b_g, res_g)
85 269 equemene
    Elapsed=time.time()-TimeIn
86 269 equemene
    print("Execution of kernel : %.3f" % Elapsed)
87 269 equemene
88 269 equemene
    TimeIn=time.time()
89 269 equemene
    # Creation of vector for result with same size as input vectors
90 269 equemene
    res_np = np.empty_like(a_np)
91 269 equemene
    Elapsed=time.time()-TimeIn
92 269 equemene
    print("Allocation on Host for results: %.3f" % Elapsed)
93 269 equemene
94 269 equemene
    TimeIn=time.time()
95 269 equemene
    # Copy from Device to Host
96 269 equemene
    cl.enqueue_copy(queue, res_np, res_g)
97 269 equemene
    Elapsed=time.time()-TimeIn
98 269 equemene
    print("Copy from Device 2 Host : %.3f" % Elapsed)
99 269 equemene
100 275 equemene
    # Liberation of memory
101 275 equemene
    a_g.release()
102 275 equemene
    b_g.release()
103 275 equemene
    res_g.release()
104 275 equemene
105 269 equemene
    return(res_np)
106 269 equemene
107 269 equemene
# OpenCL complete operation
108 269 equemene
def OpenCLSillyAddition(a_np,b_np):
109 269 equemene
110 269 equemene
    # Context creation
111 269 equemene
    ctx = cl.create_some_context()
112 269 equemene
    # Every process is stored in a queue
113 269 equemene
    queue = cl.CommandQueue(ctx)
114 269 equemene
115 269 equemene
    TimeIn=time.time()
116 269 equemene
    # Copy from Host to Device using pointers
117 269 equemene
    mf = cl.mem_flags
118 269 equemene
    a_g = cl.Buffer(ctx, mf.READ_ONLY | mf.COPY_HOST_PTR, hostbuf=a_np)
119 269 equemene
    b_g = cl.Buffer(ctx, mf.READ_ONLY | mf.COPY_HOST_PTR, hostbuf=b_np)
120 269 equemene
    Elapsed=time.time()-TimeIn
121 269 equemene
    print("Copy from Host 2 Device : %.3f" % Elapsed)
122 269 equemene
123 269 equemene
    TimeIn=time.time()
124 269 equemene
    # Definition of kernel under OpenCL
125 269 equemene
    prg = cl.Program(ctx, """
126 269 equemene

127 269 equemene
float MySillyFunction(float x)
128 269 equemene
{
129 269 equemene
    return(pow(sqrt(log(exp(atanh(tanh(asinh(sinh(acosh(cosh(atan(tan(asin(sin(acos(cos(x))))))))))))))),2));
130 269 equemene
}
131 269 equemene

132 269 equemene
__kernel void sillysum(
133 269 equemene
    __global const float *a_g, __global const float *b_g, __global float *res_g)
134 269 equemene
{
135 269 equemene
  int gid = get_global_id(0);
136 269 equemene
  res_g[gid] = MySillyFunction(a_g[gid]) + MySillyFunction(b_g[gid]);
137 269 equemene
}
138 269 equemene

139 269 equemene
__kernel void sum(
140 269 equemene
    __global const float *a_g, __global const float *b_g, __global float *res_g)
141 269 equemene
{
142 269 equemene
  int gid = get_global_id(0);
143 269 equemene
  res_g[gid] = a_g[gid] + b_g[gid];
144 269 equemene
}
145 269 equemene
""").build()
146 269 equemene
    Elapsed=time.time()-TimeIn
147 269 equemene
    print("Building kernels : %.3f" % Elapsed)
148 269 equemene
149 269 equemene
    TimeIn=time.time()
150 269 equemene
    # Memory allocation on Device for result
151 269 equemene
    res_g = cl.Buffer(ctx, mf.WRITE_ONLY, a_np.nbytes)
152 269 equemene
    Elapsed=time.time()-TimeIn
153 269 equemene
    print("Allocation on Device for results : %.3f" % Elapsed)
154 269 equemene
155 269 equemene
    TimeIn=time.time()
156 269 equemene
    # Synthesis of function "sillysum" inside Kernel Sources
157 269 equemene
    knl = prg.sillysum  # Use this Kernel object for repeated calls
158 269 equemene
    Elapsed=time.time()-TimeIn
159 269 equemene
    print("Synthesis of kernel : %.3f" % Elapsed)
160 269 equemene
161 269 equemene
    TimeIn=time.time()
162 269 equemene
    # Call of kernel previously defined
163 269 equemene
    CallCL=knl(queue, a_np.shape, None, a_g, b_g, res_g)
164 269 equemene
    #
165 269 equemene
    CallCL.wait()
166 269 equemene
    Elapsed=time.time()-TimeIn
167 269 equemene
    print("Execution of kernel : %.3f" % Elapsed)
168 269 equemene
169 269 equemene
    TimeIn=time.time()
170 269 equemene
    # Creation of vector for result with same size as input vectors
171 269 equemene
    res_np = np.empty_like(a_np)
172 269 equemene
    Elapsed=time.time()-TimeIn
173 269 equemene
    print("Allocation on Host for results: %.3f" % Elapsed)
174 269 equemene
175 269 equemene
    TimeIn=time.time()
176 269 equemene
    # Copy from Device to Host
177 269 equemene
    cl.enqueue_copy(queue, res_np, res_g)
178 269 equemene
    Elapsed=time.time()-TimeIn
179 269 equemene
    print("Copy from Device 2 Host : %.3f" % Elapsed)
180 269 equemene
181 275 equemene
    # Liberation of memory
182 275 equemene
    a_g.release()
183 275 equemene
    b_g.release()
184 275 equemene
    res_g.release()
185 275 equemene
186 269 equemene
    return(res_np)
187 269 equemene
188 269 equemene
import sys
189 269 equemene
import time
190 269 equemene
191 269 equemene
if __name__=='__main__':
192 269 equemene
193 269 equemene
    # Size of input vectors definition based on stdin
194 269 equemene
    import sys
195 269 equemene
    try:
196 269 equemene
        SIZE=int(sys.argv[1])
197 269 equemene
        print("Size of vectors set to %i" % SIZE)
198 269 equemene
    except:
199 269 equemene
        SIZE=50000
200 269 equemene
        print("Size of vectors set to default size %i" % SIZE)
201 269 equemene
202 269 equemene
    a_np = np.random.rand(SIZE).astype(np.float32)
203 269 equemene
    b_np = np.random.rand(SIZE).astype(np.float32)
204 269 equemene
205 269 equemene
    # Native Implementation
206 269 equemene
    TimeIn=time.time()
207 269 equemene
    # res_np=NativeSillyAddition(a_np,b_np)
208 269 equemene
    res_np=NativeAddition(a_np,b_np)
209 269 equemene
    NativeElapsed=time.time()-TimeIn
210 269 equemene
    NativeRate=int(SIZE/NativeElapsed)
211 269 equemene
    print("NativeRate: %i" % NativeRate)
212 269 equemene
213 269 equemene
    # OpenCL Implementation
214 269 equemene
    TimeIn=time.time()
215 269 equemene
    # res_cl=OpenCLSillyAddition(a_np,b_np)
216 269 equemene
    res_cl=OpenCLAddition(a_np,b_np)
217 269 equemene
    OpenCLElapsed=time.time()-TimeIn
218 269 equemene
    OpenCLRate=int(SIZE/OpenCLElapsed)
219 269 equemene
    print("OpenCLRate: %i" % OpenCLRate)
220 269 equemene
221 269 equemene
    # CUDA Implementation
222 269 equemene
    TimeIn=time.time()
223 269 equemene
    res_cuda=CUDAAddition(a_np,b_np)
224 269 equemene
    CUDAElapsed=time.time()-TimeIn
225 269 equemene
    CUDARate=int(SIZE/CUDAElapsed)
226 269 equemene
    print("CUDARate: %i" % CUDARate)
227 269 equemene
228 269 equemene
    print("OpenCLvsNative ratio: %f" % (OpenCLRate/NativeRate))
229 269 equemene
    print("CUDAvsNative ratio: %f" % (CUDARate/NativeRate))
230 269 equemene
231 269 equemene
    # Check on OpenCL with Numpy:
232 269 equemene
    print(res_cl - res_np)
233 269 equemene
    print(np.linalg.norm(res_cl - res_np))
234 269 equemene
    try:
235 269 equemene
        assert np.allclose(res_np, res_cl)
236 269 equemene
    except:
237 269 equemene
        print("Results between Native & OpenCL seem to be too different!")
238 269 equemene
239 269 equemene
    # Check on CUDA with Numpy:
240 269 equemene
    print(res_cuda - res_np)
241 269 equemene
    print(np.linalg.norm(res_cuda - res_np))
242 269 equemene
    try:
243 269 equemene
        assert np.allclose(res_np, res_cuda)
244 269 equemene
    except:
245 269 equemene
        print("Results between Native & CUDA seem to be too different!")
246 269 equemene