Révision 287 Pi/XPU/PiXpuMPI.py
PiXpuMPI.py (revision 287) | ||
---|---|---|
235 | 235 |
DurationItem=numpy.array([]).astype(numpy.float32) |
236 | 236 |
Duration=numpy.array([]).astype(numpy.float32) |
237 | 237 |
Rate=numpy.array([]).astype(numpy.float32) |
238 |
|
|
238 | 239 |
for i in range(Redo): |
239 | 240 |
time_start=time.time() |
240 | 241 |
|
... | ... | |
288 | 289 |
NewIterations+=OutputCL['NewIterations'] |
289 | 290 |
Inside+=OutputCL['Inside'] |
290 | 291 |
|
291 |
Duration=numpy.append(Duration,time.time()-time_start) |
|
292 |
Rate=numpy.append(Rate,NewIterations/Duration[-1]) |
|
293 |
print("Itops %i\nLogItops %.2f " % (int(Rate),numpy.log(Rate)/numpy.log(10))) |
|
294 |
print("Pi estimation %.8f" % (4./NewIterations*Inside)) |
|
292 |
Duration=numpy.append(Duration,time.time()-time_start) |
|
293 |
Rate=numpy.append(Rate,NewIterations/Duration[-1]) |
|
295 | 294 |
|
295 |
print("Itops %i\nLogItops %.2f " % (int(Rate[-1]),numpy.log(Rate[-1])/numpy.log(10))) |
|
296 |
print("Pi estimation %.8f" % (4./NewIterations*Inside)) |
|
296 | 297 |
|
297 | 298 |
avgD=numpy.append(avgD,numpy.average(Duration)) |
298 | 299 |
medD=numpy.append(medD,numpy.median(Duration)) |
Formats disponibles : Unified diff