Révision 287 Pi/XPU/PiXpuMPI.py

PiXpuMPI.py (revision 287)
235 235
            DurationItem=numpy.array([]).astype(numpy.float32)
236 236
            Duration=numpy.array([]).astype(numpy.float32)
237 237
            Rate=numpy.array([]).astype(numpy.float32)
238
            
238 239
            for i in range(Redo):
239 240
                time_start=time.time()
240 241

  
......
288 289
                    NewIterations+=OutputCL['NewIterations']
289 290
                    Inside+=OutputCL['Inside']
290 291

  
291
            Duration=numpy.append(Duration,time.time()-time_start)
292
            Rate=numpy.append(Rate,NewIterations/Duration[-1])
293
            print("Itops %i\nLogItops %.2f " % (int(Rate),numpy.log(Rate)/numpy.log(10)))
294
            print("Pi estimation %.8f" % (4./NewIterations*Inside))
292
                Duration=numpy.append(Duration,time.time()-time_start)
293
                Rate=numpy.append(Rate,NewIterations/Duration[-1])
295 294

  
295
                print("Itops %i\nLogItops %.2f " % (int(Rate[-1]),numpy.log(Rate[-1])/numpy.log(10)))
296
                print("Pi estimation %.8f" % (4./NewIterations*Inside))
296 297
                                            
297 298
            avgD=numpy.append(avgD,numpy.average(Duration))
298 299
            medD=numpy.append(medD,numpy.median(Duration))

Formats disponibles : Unified diff