root / ETSN / MyDFT_10.py @ 285
Historique | Voir | Annoter | Télécharger (14,39 ko)
1 |
#!/usr/bin/env python3
|
---|---|
2 |
|
3 |
import numpy as np |
4 |
import pyopencl as cl |
5 |
from numpy import pi,cos,sin |
6 |
|
7 |
#
|
8 |
def NumpyFFT(x,y): |
9 |
xy=x+1.j*y
|
10 |
XY=np.fft.fft(xy) |
11 |
return(XY.real,XY.imag)
|
12 |
|
13 |
#
|
14 |
def OpenCLFFT(x,y,device): |
15 |
import pyopencl as cl |
16 |
import pyopencl.array as cla |
17 |
import time |
18 |
import gpyfft |
19 |
from gpyfft.fft import FFT |
20 |
|
21 |
Id=0
|
22 |
HasXPU=False
|
23 |
for platform in cl.get_platforms(): |
24 |
for device in platform.get_devices(): |
25 |
if Id==Device:
|
26 |
XPU=device |
27 |
print("CPU/GPU selected: ",device.name.lstrip())
|
28 |
HasXPU=True
|
29 |
Id+=1
|
30 |
# print(Id)
|
31 |
|
32 |
if HasXPU==False: |
33 |
print("No XPU #%i found in all of %i devices, sorry..." % (Device,Id-1)) |
34 |
sys.exit() |
35 |
|
36 |
try:
|
37 |
ctx = cl.Context(devices=[XPU]) |
38 |
queue = cl.CommandQueue(ctx,properties=cl.command_queue_properties.PROFILING_ENABLE) |
39 |
except:
|
40 |
print("Crash during context creation")
|
41 |
|
42 |
XY_gpu = cla.to_device(queue, x+1.j*y)
|
43 |
|
44 |
transform = FFT(ctx, queue, XY_gpu) |
45 |
|
46 |
event, = transform.enqueue() |
47 |
event.wait() |
48 |
|
49 |
XY = XY_gpu.get() |
50 |
return(XY.real,XY.imag)
|
51 |
|
52 |
# Naive Discrete Fourier Transform
|
53 |
def MyDFT(x,y): |
54 |
size=x.shape[0]
|
55 |
X=np.zeros(size).astype(np.float32) |
56 |
Y=np.zeros(size).astype(np.float32) |
57 |
for i in range(size): |
58 |
for j in range(size): |
59 |
X[i]=X[i]+x[j]*cos(2.*pi*i*j/size)-y[j]*sin(2.*pi*i*j/size) |
60 |
Y[i]=Y[i]+x[j]*sin(2.*pi*i*j/size)+y[j]*cos(2.*pi*i*j/size) |
61 |
return(X,Y)
|
62 |
|
63 |
# Numpy Discrete Fourier Transform
|
64 |
def NumpyDFT(x,y): |
65 |
size=x.shape[0]
|
66 |
X=np.zeros(size).astype(np.float32) |
67 |
Y=np.zeros(size).astype(np.float32) |
68 |
nj=np.multiply(2.0*np.pi/size,np.arange(size)).astype(np.float32)
|
69 |
for i in range(size): |
70 |
X[i]=np.sum(np.subtract(np.multiply(np.cos(i*nj),x),np.multiply(np.sin(i*nj),y))) |
71 |
Y[i]=np.sum(np.add(np.multiply(np.sin(i*nj),x),np.multiply(np.cos(i*nj),y))) |
72 |
return(X,Y)
|
73 |
|
74 |
# Numba Discrete Fourier Transform
|
75 |
import numba |
76 |
@numba.njit(parallel=True) |
77 |
def NumbaDFT(x,y): |
78 |
size=x.shape[0]
|
79 |
X=np.zeros(size).astype(np.float32) |
80 |
Y=np.zeros(size).astype(np.float32) |
81 |
nj=np.multiply(2.0*np.pi/size,np.arange(size)).astype(np.float32)
|
82 |
for i in numba.prange(size): |
83 |
X[i]=np.sum(np.subtract(np.multiply(np.cos(i*nj),x),np.multiply(np.sin(i*nj),y))) |
84 |
Y[i]=np.sum(np.add(np.multiply(np.sin(i*nj),x),np.multiply(np.cos(i*nj),y))) |
85 |
return(X,Y)
|
86 |
|
87 |
# OpenCL complete operation
|
88 |
def OpenCLDFT(a_np,b_np,Device): |
89 |
|
90 |
Id=0
|
91 |
HasXPU=False
|
92 |
for platform in cl.get_platforms(): |
93 |
for device in platform.get_devices(): |
94 |
if Id==Device:
|
95 |
XPU=device |
96 |
print("CPU/GPU selected: ",device.name.lstrip())
|
97 |
HasXPU=True
|
98 |
Id+=1
|
99 |
# print(Id)
|
100 |
|
101 |
if HasXPU==False: |
102 |
print("No XPU #%i found in all of %i devices, sorry..." % (Device,Id-1)) |
103 |
sys.exit() |
104 |
|
105 |
try:
|
106 |
ctx = cl.Context(devices=[XPU]) |
107 |
queue = cl.CommandQueue(ctx,properties=cl.command_queue_properties.PROFILING_ENABLE) |
108 |
except:
|
109 |
print("Crash during context creation")
|
110 |
|
111 |
TimeIn=time.time() |
112 |
# Copy from Host to Device using pointers
|
113 |
mf = cl.mem_flags |
114 |
a_g = cl.Buffer(ctx, mf.READ_ONLY | mf.COPY_HOST_PTR, hostbuf=a_np) |
115 |
b_g = cl.Buffer(ctx, mf.READ_ONLY | mf.COPY_HOST_PTR, hostbuf=b_np) |
116 |
Elapsed=time.time()-TimeIn |
117 |
print("Copy from Host 2 Device : %.3f" % Elapsed)
|
118 |
|
119 |
TimeIn=time.time() |
120 |
# Definition of kernel under OpenCL
|
121 |
prg = cl.Program(ctx, """
|
122 |
|
123 |
#define PI 3.141592653589793
|
124 |
|
125 |
__kernel void MyDFT(
|
126 |
__global const float *a_g, __global const float *b_g, __global float *A_g, __global float *B_g)
|
127 |
{
|
128 |
int gid = get_global_id(0);
|
129 |
uint size = get_global_size(0);
|
130 |
float A=0.,B=0.;
|
131 |
for (uint i=0; i<size;i++)
|
132 |
{
|
133 |
A+=a_g[i]*cos(2.*PI*(float)(gid*i)/(float)size)-b_g[i]*sin(2.*PI*(float)(gid*i)/(float)size);
|
134 |
B+=a_g[i]*sin(2.*PI*(float)(gid*i)/(float)size)+b_g[i]*cos(2.*PI*(float)(gid*i)/(float)size);
|
135 |
}
|
136 |
A_g[gid]=A;
|
137 |
B_g[gid]=B;
|
138 |
}
|
139 |
""").build()
|
140 |
Elapsed=time.time()-TimeIn |
141 |
print("Building kernels : %.3f" % Elapsed)
|
142 |
|
143 |
TimeIn=time.time() |
144 |
# Memory allocation on Device for result
|
145 |
A_ocl = np.empty_like(a_np) |
146 |
B_ocl = np.empty_like(a_np) |
147 |
Elapsed=time.time()-TimeIn |
148 |
print("Allocation on Host for results : %.3f" % Elapsed)
|
149 |
|
150 |
A_g = cl.Buffer(ctx, mf.WRITE_ONLY, A_ocl.nbytes) |
151 |
B_g = cl.Buffer(ctx, mf.WRITE_ONLY, B_ocl.nbytes) |
152 |
Elapsed=time.time()-TimeIn |
153 |
print("Allocation on Device for results : %.3f" % Elapsed)
|
154 |
|
155 |
TimeIn=time.time() |
156 |
# Synthesis of function "sillysum" inside Kernel Sources
|
157 |
knl = prg.MyDFT # Use this Kernel object for repeated calls
|
158 |
Elapsed=time.time()-TimeIn |
159 |
print("Synthesis of kernel : %.3f" % Elapsed)
|
160 |
|
161 |
TimeIn=time.time() |
162 |
# Call of kernel previously defined
|
163 |
CallCL=knl(queue, a_np.shape, None, a_g, b_g, A_g, B_g)
|
164 |
#
|
165 |
CallCL.wait() |
166 |
Elapsed=time.time()-TimeIn |
167 |
print("Execution of kernel : %.3f" % Elapsed)
|
168 |
|
169 |
TimeIn=time.time() |
170 |
# Copy from Device to Host
|
171 |
cl.enqueue_copy(queue, A_ocl, A_g) |
172 |
cl.enqueue_copy(queue, B_ocl, B_g) |
173 |
Elapsed=time.time()-TimeIn |
174 |
print("Copy from Device 2 Host : %.3f" % Elapsed)
|
175 |
|
176 |
# Liberation of memory
|
177 |
a_g.release() |
178 |
b_g.release() |
179 |
A_g.release() |
180 |
B_g.release() |
181 |
|
182 |
return(A_ocl,B_ocl)
|
183 |
|
184 |
# CUDA complete operation
|
185 |
def CUDADFT(a_np,b_np,Device,Threads): |
186 |
# import pycuda.autoinit
|
187 |
import pycuda.driver as drv |
188 |
from pycuda.compiler import SourceModule |
189 |
|
190 |
try:
|
191 |
# For PyCUDA import
|
192 |
import pycuda.driver as cuda |
193 |
from pycuda.compiler import SourceModule |
194 |
|
195 |
cuda.init() |
196 |
for Id in range(cuda.Device.count()): |
197 |
if Id==Device:
|
198 |
XPU=cuda.Device(Id) |
199 |
print("GPU selected %s" % XPU.name())
|
200 |
print
|
201 |
|
202 |
except ImportError: |
203 |
print("Platform does not seem to support CUDA")
|
204 |
|
205 |
Context=XPU.make_context() |
206 |
|
207 |
TimeIn=time.time() |
208 |
mod = SourceModule("""
|
209 |
|
210 |
#define PI 3.141592653589793
|
211 |
|
212 |
__global__ void MyDFT(float *A_g, float *B_g, const float *a_g,const float *b_g)
|
213 |
{
|
214 |
const int gid = blockIdx.x*blockDim.x+threadIdx.x;
|
215 |
uint size = gridDim.x*blockDim.x;
|
216 |
float A=0.,B=0.;
|
217 |
for (uint i=0; i<size;i++)
|
218 |
{
|
219 |
A+=a_g[i]*cos(2.*PI*(float)(gid*i)/(float)size)-b_g[i]*sin(2.*PI*(float)(gid*i)/(float)size);
|
220 |
B+=a_g[i]*sin(2.*PI*(float)(gid*i)/(float)size)+b_g[i]*cos(2.*PI*(float)(gid*i)/(float)size);
|
221 |
}
|
222 |
A_g[gid]=A;
|
223 |
B_g[gid]=B;
|
224 |
}
|
225 |
|
226 |
""")
|
227 |
Elapsed=time.time()-TimeIn |
228 |
print("Definition of kernel : %.3f" % Elapsed)
|
229 |
|
230 |
TimeIn=time.time() |
231 |
MyDFT = mod.get_function("MyDFT")
|
232 |
Elapsed=time.time()-TimeIn |
233 |
print("Synthesis of kernel : %.3f" % Elapsed)
|
234 |
|
235 |
TimeIn=time.time() |
236 |
A_np = np.zeros_like(a_np) |
237 |
B_np = np.zeros_like(a_np) |
238 |
Elapsed=time.time()-TimeIn |
239 |
print("Allocation on Host for results : %.3f" % Elapsed)
|
240 |
|
241 |
Size=a_np.size |
242 |
if (Size % Threads != 0): |
243 |
print("Impossible : %i not multiple of %i..." % (Threads,Size) )
|
244 |
TimeIn=time.time() |
245 |
MyDFT(drv.Out(A_np), drv.Out(B_np), drv.In(a_np), drv.In(b_np), |
246 |
block=(1,1,1), grid=(a_np.size,1)) |
247 |
Elapsed=time.time()-TimeIn |
248 |
print("Execution of kernel : %.3f" % Elapsed)
|
249 |
else:
|
250 |
Blocks=int(Size/Threads)
|
251 |
TimeIn=time.time() |
252 |
MyDFT(drv.Out(A_np), drv.Out(B_np), drv.In(a_np), drv.In(b_np), |
253 |
block=(Threads,1,1), grid=(Blocks,1)) |
254 |
Elapsed=time.time()-TimeIn |
255 |
print("Execution of kernel : %.3f" % Elapsed)
|
256 |
|
257 |
Context.pop() |
258 |
Context.detach() |
259 |
|
260 |
return(A_np,B_np)
|
261 |
|
262 |
import sys |
263 |
import time |
264 |
|
265 |
if __name__=='__main__': |
266 |
|
267 |
SIZE=1024
|
268 |
Device=0
|
269 |
NaiveMethod=False
|
270 |
NumpyFFTMethod=True
|
271 |
OpenCLFFTMethod=True
|
272 |
NumpyMethod=False
|
273 |
NumbaMethod=False
|
274 |
OpenCLMethod=False
|
275 |
CUDAMethod=False
|
276 |
Threads=1
|
277 |
|
278 |
import getopt |
279 |
|
280 |
HowToUse='%s -n [Naive] -y [numpY] -a [numbA] -o [OpenCL] -c [CUDA] -s <SizeOfVector> -d <DeviceId> -t <threads>'
|
281 |
|
282 |
try:
|
283 |
opts, args = getopt.getopt(sys.argv[1:],"nyaochs:d:t:",["size=","device="]) |
284 |
except getopt.GetoptError:
|
285 |
print(HowToUse % sys.argv[0])
|
286 |
sys.exit(2)
|
287 |
|
288 |
# List of Devices
|
289 |
Devices=[] |
290 |
Alu={} |
291 |
|
292 |
for opt, arg in opts: |
293 |
if opt == '-h': |
294 |
print(HowToUse % sys.argv[0])
|
295 |
|
296 |
print("\nInformations about devices detected under OpenCL API:")
|
297 |
# For PyOpenCL import
|
298 |
try:
|
299 |
import pyopencl as cl |
300 |
Id=0
|
301 |
for platform in cl.get_platforms(): |
302 |
for device in platform.get_devices(): |
303 |
#deviceType=cl.device_type.to_string(device.type)
|
304 |
deviceType="xPU"
|
305 |
print("Device #%i from %s of type %s : %s" % (Id,platform.vendor.lstrip(),deviceType,device.name.lstrip()))
|
306 |
Id=Id+1
|
307 |
|
308 |
except:
|
309 |
print("Your platform does not seem to support OpenCL")
|
310 |
|
311 |
print("\nInformations about devices detected under CUDA API:")
|
312 |
# For PyCUDA import
|
313 |
try:
|
314 |
import pycuda.driver as cuda |
315 |
cuda.init() |
316 |
for Id in range(cuda.Device.count()): |
317 |
device=cuda.Device(Id) |
318 |
print("Device #%i of type GPU : %s" % (Id,device.name()))
|
319 |
print
|
320 |
except:
|
321 |
print("Your platform does not seem to support CUDA")
|
322 |
|
323 |
sys.exit() |
324 |
|
325 |
elif opt in ("-d", "--device"): |
326 |
Device=int(arg)
|
327 |
elif opt in ("-s", "--size"): |
328 |
SIZE = int(arg)
|
329 |
elif opt in ("-t", "--threads"): |
330 |
Threads = int(arg)
|
331 |
elif opt in ("-n"): |
332 |
NaiveMethod=True
|
333 |
elif opt in ("-y"): |
334 |
NumpyMethod=True
|
335 |
elif opt in ("-a"): |
336 |
NumbaMethod=True
|
337 |
elif opt in ("-o"): |
338 |
OpenCLMethod=True
|
339 |
elif opt in ("-c"): |
340 |
CUDAMethod=True
|
341 |
|
342 |
print("Device Selection : %i" % Device)
|
343 |
print("Size of complex vector : %i" % SIZE)
|
344 |
print("DFT Naive computation %s " % NaiveMethod )
|
345 |
print("DFT Numpy computation %s " % NumpyMethod )
|
346 |
print("DFT Numba computation %s " % NumbaMethod )
|
347 |
print("DFT OpenCL computation %s " % OpenCLMethod )
|
348 |
print("DFT CUDA computation %s " % CUDAMethod )
|
349 |
|
350 |
if CUDAMethod:
|
351 |
try:
|
352 |
# For PyCUDA import
|
353 |
import pycuda.driver as cuda |
354 |
|
355 |
cuda.init() |
356 |
for Id in range(cuda.Device.count()): |
357 |
device=cuda.Device(Id) |
358 |
print("Device #%i of type GPU : %s" % (Id,device.name()))
|
359 |
if Id in Devices: |
360 |
Alu[Id]='GPU'
|
361 |
|
362 |
except ImportError: |
363 |
print("Platform does not seem to support CUDA")
|
364 |
|
365 |
if OpenCLMethod:
|
366 |
try:
|
367 |
# For PyOpenCL import
|
368 |
import pyopencl as cl |
369 |
Id=0
|
370 |
for platform in cl.get_platforms(): |
371 |
for device in platform.get_devices(): |
372 |
#deviceType=cl.device_type.to_string(device.type)
|
373 |
deviceType="xPU"
|
374 |
print("Device #%i from %s of type %s : %s" % (Id,platform.vendor.lstrip().rstrip(),deviceType,device.name.lstrip().rstrip()))
|
375 |
|
376 |
if Id in Devices: |
377 |
# Set the Alu as detected Device Type
|
378 |
Alu[Id]=deviceType |
379 |
Id=Id+1
|
380 |
except ImportError: |
381 |
print("Platform does not seem to support OpenCL")
|
382 |
|
383 |
|
384 |
|
385 |
a_np = np.ones(SIZE).astype(np.float32) |
386 |
b_np = np.ones(SIZE).astype(np.float32) |
387 |
|
388 |
C_np = np.zeros(SIZE).astype(np.float32) |
389 |
D_np = np.zeros(SIZE).astype(np.float32) |
390 |
C_np[0] = np.float32(SIZE)
|
391 |
D_np[0] = np.float32(SIZE)
|
392 |
|
393 |
# Native & Naive Implementation
|
394 |
if NaiveMethod:
|
395 |
print("Performing naive implementation")
|
396 |
TimeIn=time.time() |
397 |
c_np,d_np=MyDFT(a_np,b_np) |
398 |
NativeElapsed=time.time()-TimeIn |
399 |
NativeRate=int(SIZE/NativeElapsed)
|
400 |
print("NativeRate: %i" % NativeRate)
|
401 |
print("Precision: ",np.linalg.norm(c_np-C_np),
|
402 |
np.linalg.norm(d_np-D_np)) |
403 |
|
404 |
# Native & Numpy Implementation
|
405 |
if NumpyMethod:
|
406 |
print("Performing Numpy implementation")
|
407 |
TimeIn=time.time() |
408 |
e_np,f_np=NumpyDFT(a_np,b_np) |
409 |
NumpyElapsed=time.time()-TimeIn |
410 |
NumpyRate=int(SIZE/NumpyElapsed)
|
411 |
print("NumpyRate: %i" % NumpyRate)
|
412 |
print("Precision: ",np.linalg.norm(e_np-C_np),
|
413 |
np.linalg.norm(f_np-D_np)) |
414 |
|
415 |
# Native & Numba Implementation
|
416 |
if NumbaMethod:
|
417 |
print("Performing Numba implementation")
|
418 |
TimeIn=time.time() |
419 |
g_np,h_np=NumbaDFT(a_np,b_np) |
420 |
NumbaElapsed=time.time()-TimeIn |
421 |
NumbaRate=int(SIZE/NumbaElapsed)
|
422 |
print("NumbaRate: %i" % NumbaRate)
|
423 |
print("Precision: ",np.linalg.norm(g_np-C_np),
|
424 |
np.linalg.norm(h_np-D_np)) |
425 |
|
426 |
# OpenCL Implementation
|
427 |
if OpenCLMethod:
|
428 |
print("Performing OpenCL implementation")
|
429 |
TimeIn=time.time() |
430 |
i_np,j_np=OpenCLDFT(a_np,b_np,Device) |
431 |
OpenCLElapsed=time.time()-TimeIn |
432 |
OpenCLRate=int(SIZE/OpenCLElapsed)
|
433 |
print("OpenCLRate: %i" % OpenCLRate)
|
434 |
print("Precision: ",np.linalg.norm(i_np-C_np),
|
435 |
np.linalg.norm(j_np-D_np)) |
436 |
|
437 |
# CUDA Implementation
|
438 |
if CUDAMethod:
|
439 |
print("Performing CUDA implementation")
|
440 |
TimeIn=time.time() |
441 |
k_np,l_np=CUDADFT(a_np,b_np,Device,Threads) |
442 |
CUDAElapsed=time.time()-TimeIn |
443 |
CUDARate=int(SIZE/CUDAElapsed)
|
444 |
print("CUDARate: %i" % CUDARate)
|
445 |
print("Precision: ",np.linalg.norm(k_np-C_np),
|
446 |
np.linalg.norm(l_np-D_np)) |
447 |
|
448 |
if NumpyFFTMethod:
|
449 |
print("Performing NumpyFFT implementation")
|
450 |
TimeIn=time.time() |
451 |
m_np,n_np=NumpyFFT(a_np,b_np) |
452 |
NumpyFFTElapsed=time.time()-TimeIn |
453 |
NumpyFFTRate=int(SIZE/NumpyFFTElapsed)
|
454 |
print("NumpyFFTRate: %i" % NumpyFFTRate)
|
455 |
print("Precision: ",np.linalg.norm(m_np-C_np),
|
456 |
np.linalg.norm(n_np-D_np)) |
457 |
|
458 |
# OpenCL Implementation
|
459 |
if OpenCLFFTMethod:
|
460 |
print("Performing OpenCL implementation")
|
461 |
TimeIn=time.time() |
462 |
i_np,j_np=OpenCLFFT(a_np,b_np,Device) |
463 |
OpenCLFFTElapsed=time.time()-TimeIn |
464 |
OpenCLFFTRate=int(SIZE/OpenCLFFTElapsed)
|
465 |
print("OpenCLRate: %i" % OpenCLFFTRate)
|
466 |
print("Precision: ",np.linalg.norm(i_np-C_np),
|
467 |
np.linalg.norm(j_np-D_np)) |
468 |
|