root / Pi / XPU / PiXpuThreads.py @ 282
Historique | Voir | Annoter | Télécharger (11,75 ko)
1 | 127 | equemene | #!/usr/bin/env python3
|
---|---|---|---|
2 | 107 | equemene | |
3 | 107 | equemene | #
|
4 | 107 | equemene | # Pi-by-MonteCarlo using PyCUDA/PyOpenCL
|
5 | 107 | equemene | #
|
6 | 107 | equemene | # CC BY-NC-SA 2011 : Emmanuel QUEMENER <emmanuel.quemener@gmail.com>
|
7 | 107 | equemene | # Cecill v2 : Emmanuel QUEMENER <emmanuel.quemener@gmail.com>
|
8 | 107 | equemene | #
|
9 | 107 | equemene | # Thanks to Andreas Klockner for PyCUDA:
|
10 | 107 | equemene | # http://mathema.tician.de/software/pycuda
|
11 | 107 | equemene | # Thanks to Andreas Klockner for PyOpenCL:
|
12 | 107 | equemene | # http://mathema.tician.de/software/pyopencl
|
13 | 107 | equemene | #
|
14 | 107 | equemene | |
15 | 107 | equemene | # 2013-01-01 : problems with launch timeout
|
16 | 107 | equemene | # http://stackoverflow.com/questions/497685/how-do-you-get-around-the-maximum-cuda-run-time
|
17 | 107 | equemene | # Option "Interactive" "0" in /etc/X11/xorg.conf
|
18 | 107 | equemene | |
19 | 107 | equemene | # Common tools
|
20 | 107 | equemene | import numpy |
21 | 107 | equemene | from numpy.random import randint as nprnd |
22 | 107 | equemene | import sys |
23 | 107 | equemene | import getopt |
24 | 107 | equemene | import time |
25 | 107 | equemene | import math |
26 | 107 | equemene | import itertools |
27 | 107 | equemene | from socket import gethostname |
28 | 107 | equemene | |
29 | 107 | equemene | from threading import Thread |
30 | 107 | equemene | |
31 | 107 | equemene | from PiXPU import * |
32 | 107 | equemene | |
33 | 107 | equemene | class threadWithReturn(Thread): |
34 | 107 | equemene | def __init__(self, *args, **kwargs): |
35 | 107 | equemene | super(threadWithReturn, self).__init__(*args, **kwargs) |
36 | 107 | equemene | self._return = None |
37 | 107 | equemene | |
38 | 107 | equemene | def run(self): |
39 | 127 | equemene | if self._target is not None: |
40 | 127 | equemene | self._return = self._target(*self._args, **self._kwargs) |
41 | 107 | equemene | |
42 | 107 | equemene | def join(self, *args, **kwargs): |
43 | 107 | equemene | super(threadWithReturn, self).join(*args, **kwargs) |
44 | 107 | equemene | return self._return |
45 | 107 | equemene | |
46 | 107 | equemene | if __name__=='__main__': |
47 | 107 | equemene | |
48 | 107 | equemene | # Set defaults values
|
49 | 107 | equemene | |
50 | 107 | equemene | # Id of Device : 1 is for first find !
|
51 | 107 | equemene | Device=1
|
52 | 107 | equemene | # GPU style can be Cuda (Nvidia implementation) or OpenCL
|
53 | 107 | equemene | GpuStyle='OpenCL'
|
54 | 107 | equemene | # Iterations is integer
|
55 | 107 | equemene | Iterations=10000000
|
56 | 107 | equemene | # BlocksBlocks in first number of Blocks to explore
|
57 | 107 | equemene | BlocksBegin=1
|
58 | 107 | equemene | # BlocksEnd is last number of Blocks to explore
|
59 | 107 | equemene | BlocksEnd=16
|
60 | 107 | equemene | # BlocksStep is the step of Blocks to explore
|
61 | 107 | equemene | BlocksStep=1
|
62 | 107 | equemene | # ThreadsBlocks in first number of Blocks to explore
|
63 | 107 | equemene | ThreadsBegin=1
|
64 | 107 | equemene | # ThreadsEnd is last number of Blocks to explore
|
65 | 107 | equemene | ThreadsEnd=1
|
66 | 107 | equemene | # ThreadsStep is the step of Blocks to explore
|
67 | 107 | equemene | ThreadsStep=1
|
68 | 107 | equemene | # Redo is the times to redo the test to improve metrology
|
69 | 107 | equemene | Redo=1
|
70 | 107 | equemene | # OutMetrology is method for duration estimation : False is GPU inside
|
71 | 107 | equemene | OutMetrology=False
|
72 | 107 | equemene | Metrology='InMetro'
|
73 | 107 | equemene | # Curves is True to print the curves
|
74 | 107 | equemene | Curves=False
|
75 | 107 | equemene | # Fit is True to print the curves
|
76 | 107 | equemene | Fit=False
|
77 | 107 | equemene | # Marsaglia RNG
|
78 | 107 | equemene | RNG='MWC'
|
79 | 239 | equemene | # Seeds
|
80 | 239 | equemene | Seeds=110271,101008 |
81 | 107 | equemene | # Value type : INT32, INT64, FP32, FP64
|
82 | 107 | equemene | ValueType='FP32'
|
83 | 190 | equemene | # Inside based on If
|
84 | 190 | equemene | IfThen=False
|
85 | 107 | equemene | |
86 | 190 | equemene | HowToUse='%s -c (Print Curves) -k (Case On IfThen) -d <DeviceId> -g <CUDA/OpenCL> -i <Iterations> -b <BlocksBegin> -e <BlocksEnd> -s <BlocksStep> -f <ThreadsFirst> -l <ThreadsLast> -t <ThreadssTep> -r <RedoToImproveStats> -m <SHR3/CONG/MWC/KISS> -v <INT32/INT64/FP32/FP64>'
|
87 | 107 | equemene | |
88 | 107 | equemene | try:
|
89 | 190 | equemene | opts, args = getopt.getopt(sys.argv[1:],"hckg:i:b:e:s:f:l:t:r:d:m:v:",["gpustyle=","iterations=","blocksBegin=","blocksEnd=","blocksStep=","threadsFirst=","threadsLast=","threadssTep=","redo=","device=","marsaglia=","valuetype="]) |
90 | 107 | equemene | except getopt.GetoptError:
|
91 | 127 | equemene | print(HowToUse % sys.argv[0])
|
92 | 107 | equemene | sys.exit(2)
|
93 | 107 | equemene | |
94 | 107 | equemene | # List of Devices
|
95 | 107 | equemene | Devices=[] |
96 | 107 | equemene | Alu={} |
97 | 107 | equemene | |
98 | 107 | equemene | for opt, arg in opts: |
99 | 107 | equemene | if opt == '-h': |
100 | 127 | equemene | print(HowToUse % sys.argv[0])
|
101 | 107 | equemene | |
102 | 127 | equemene | print("\nInformations about devices detected under OpenCL:")
|
103 | 107 | equemene | # For PyOpenCL import
|
104 | 107 | equemene | try:
|
105 | 107 | equemene | import pyopencl as cl |
106 | 123 | equemene | Id=0
|
107 | 107 | equemene | for platform in cl.get_platforms(): |
108 | 107 | equemene | for device in platform.get_devices(): |
109 | 138 | equemene | #deviceType=cl.device_type.to_string(device.type)
|
110 | 157 | equemene | deviceType="xPU"
|
111 | 127 | equemene | print("Device #%i from %s of type %s : %s" % (Id,platform.vendor.lstrip(),deviceType,device.name.lstrip()))
|
112 | 107 | equemene | Id=Id+1
|
113 | 107 | equemene | |
114 | 107 | equemene | print
|
115 | 107 | equemene | except ImportError: |
116 | 127 | equemene | print("Your platform does not seem to support OpenCL")
|
117 | 129 | equemene | |
118 | 129 | equemene | print("\nInformations about devices detected under CUDA API:")
|
119 | 129 | equemene | # For PyCUDA import
|
120 | 129 | equemene | try:
|
121 | 129 | equemene | import pycuda.driver as cuda |
122 | 129 | equemene | cuda.init() |
123 | 129 | equemene | for Id in range(cuda.Device.count()): |
124 | 129 | equemene | device=cuda.Device(Id) |
125 | 129 | equemene | print("Device #%i of type GPU : %s" % (Id,device.name()))
|
126 | 129 | equemene | print
|
127 | 129 | equemene | except:
|
128 | 129 | equemene | print("Your platform does not seem to support CUDA")
|
129 | 107 | equemene | |
130 | 129 | equemene | sys.exit() |
131 | 129 | equemene | |
132 | 107 | equemene | elif opt == '-c': |
133 | 107 | equemene | Curves=True
|
134 | 190 | equemene | elif opt == '-k': |
135 | 190 | equemene | IfThen=True
|
136 | 107 | equemene | elif opt in ("-d", "--device"): |
137 | 107 | equemene | Devices.append(int(arg))
|
138 | 107 | equemene | elif opt in ("-g", "--gpustyle"): |
139 | 107 | equemene | GpuStyle = arg |
140 | 107 | equemene | elif opt in ("-m", "--marsaglia"): |
141 | 107 | equemene | RNG = arg |
142 | 107 | equemene | elif opt in ("-v", "--valuetype"): |
143 | 107 | equemene | ValueType = arg |
144 | 107 | equemene | elif opt in ("-i", "--iterations"): |
145 | 107 | equemene | Iterations = numpy.uint64(arg) |
146 | 107 | equemene | elif opt in ("-b", "--blocksbegin"): |
147 | 107 | equemene | BlocksBegin = int(arg)
|
148 | 192 | equemene | BlocksEnd = BlocksBegin |
149 | 107 | equemene | elif opt in ("-e", "--blocksend"): |
150 | 107 | equemene | BlocksEnd = int(arg)
|
151 | 107 | equemene | elif opt in ("-s", "--blocksstep"): |
152 | 107 | equemene | BlocksStep = int(arg)
|
153 | 107 | equemene | elif opt in ("-f", "--threadsfirst"): |
154 | 107 | equemene | ThreadsBegin = int(arg)
|
155 | 192 | equemene | ThreadsEnd = ThreadsBegin |
156 | 107 | equemene | elif opt in ("-l", "--threadslast"): |
157 | 107 | equemene | ThreadsEnd = int(arg)
|
158 | 107 | equemene | elif opt in ("-t", "--threadsstep"): |
159 | 107 | equemene | ThreadsStep = int(arg)
|
160 | 107 | equemene | elif opt in ("-r", "--redo"): |
161 | 107 | equemene | Redo = int(arg)
|
162 | 107 | equemene | |
163 | 127 | equemene | print("Devices Identification : %s" % Devices)
|
164 | 127 | equemene | print("GpuStyle used : %s" % GpuStyle)
|
165 | 127 | equemene | print("Iterations : %s" % Iterations)
|
166 | 127 | equemene | print("Number of Blocks on begin : %s" % BlocksBegin)
|
167 | 127 | equemene | print("Number of Blocks on end : %s" % BlocksEnd)
|
168 | 127 | equemene | print("Step on Blocks : %s" % BlocksStep)
|
169 | 127 | equemene | print("Number of Threads on begin : %s" % ThreadsBegin)
|
170 | 127 | equemene | print("Number of Threads on end : %s" % ThreadsEnd)
|
171 | 127 | equemene | print("Step on Threads : %s" % ThreadsStep)
|
172 | 127 | equemene | print("Number of redo : %s" % Redo)
|
173 | 127 | equemene | print("Metrology done out of XPU : %r" % OutMetrology)
|
174 | 127 | equemene | print("Type of Marsaglia RNG used : %s" % RNG)
|
175 | 127 | equemene | print("Type of variable : %s" % ValueType)
|
176 | 107 | equemene | |
177 | 107 | equemene | if GpuStyle=='CUDA': |
178 | 107 | equemene | try:
|
179 | 107 | equemene | # For PyCUDA import
|
180 | 107 | equemene | import pycuda.driver as cuda |
181 | 129 | equemene | |
182 | 129 | equemene | cuda.init() |
183 | 129 | equemene | for Id in range(cuda.Device.count()): |
184 | 129 | equemene | device=cuda.Device(Id) |
185 | 129 | equemene | print("Device #%i of type GPU : %s" % (Id,device.name()))
|
186 | 129 | equemene | if Id in Devices: |
187 | 129 | equemene | Alu[Id]='GPU'
|
188 | 107 | equemene | except ImportError: |
189 | 127 | equemene | print("Platform does not seem to support CUDA")
|
190 | 129 | equemene | |
191 | 107 | equemene | if GpuStyle=='OpenCL': |
192 | 107 | equemene | try:
|
193 | 107 | equemene | # For PyOpenCL import
|
194 | 107 | equemene | import pyopencl as cl |
195 | 123 | equemene | Id=0
|
196 | 107 | equemene | for platform in cl.get_platforms(): |
197 | 107 | equemene | for device in platform.get_devices(): |
198 | 138 | equemene | #deviceType=cl.device_type.to_string(device.type)
|
199 | 239 | equemene | deviceType="xPU"
|
200 | 127 | equemene | print("Device #%i from %s of type %s : %s" % (Id,platform.vendor.lstrip().rstrip(),deviceType,device.name.lstrip().rstrip()))
|
201 | 107 | equemene | |
202 | 107 | equemene | if Id in Devices: |
203 | 107 | equemene | # Set the Alu as detected Device Type
|
204 | 107 | equemene | Alu[Id]=deviceType |
205 | 107 | equemene | Id=Id+1
|
206 | 107 | equemene | except ImportError: |
207 | 127 | equemene | print("Platform does not seem to support OpenCL")
|
208 | 107 | equemene | |
209 | 127 | equemene | print(Devices,Alu) |
210 | 107 | equemene | |
211 | 127 | equemene | BlocksList=range(BlocksBegin,BlocksEnd+BlocksStep,BlocksStep)
|
212 | 127 | equemene | ThreadsList=range(ThreadsBegin,ThreadsEnd+ThreadsStep,ThreadsStep)
|
213 | 107 | equemene | |
214 | 107 | equemene | ExploredJobs=numpy.array([]).astype(numpy.uint32) |
215 | 107 | equemene | ExploredBlocks=numpy.array([]).astype(numpy.uint32) |
216 | 107 | equemene | ExploredThreads=numpy.array([]).astype(numpy.uint32) |
217 | 107 | equemene | avgD=numpy.array([]).astype(numpy.float32) |
218 | 107 | equemene | medD=numpy.array([]).astype(numpy.float32) |
219 | 107 | equemene | stdD=numpy.array([]).astype(numpy.float32) |
220 | 107 | equemene | minD=numpy.array([]).astype(numpy.float32) |
221 | 107 | equemene | maxD=numpy.array([]).astype(numpy.float32) |
222 | 107 | equemene | avgR=numpy.array([]).astype(numpy.float32) |
223 | 107 | equemene | medR=numpy.array([]).astype(numpy.float32) |
224 | 107 | equemene | stdR=numpy.array([]).astype(numpy.float32) |
225 | 107 | equemene | minR=numpy.array([]).astype(numpy.float32) |
226 | 107 | equemene | maxR=numpy.array([]).astype(numpy.float32) |
227 | 107 | equemene | |
228 | 107 | equemene | for Blocks,Threads in itertools.product(BlocksList,ThreadsList): |
229 | 107 | equemene | |
230 | 107 | equemene | ExploredJobs=numpy.append(ExploredJobs,Blocks*Threads) |
231 | 107 | equemene | ExploredBlocks=numpy.append(ExploredBlocks,Blocks) |
232 | 107 | equemene | ExploredThreads=numpy.append(ExploredThreads,Threads) |
233 | 107 | equemene | |
234 | 107 | equemene | IterationsMP=Iterations/len(Devices)
|
235 | 107 | equemene | if Iterations%len(Devices)!=0: |
236 | 107 | equemene | IterationsMP+=1
|
237 | 107 | equemene | |
238 | 129 | equemene | DurationItem=numpy.array([]).astype(numpy.float32) |
239 | 129 | equemene | Duration=numpy.array([]).astype(numpy.float32) |
240 | 129 | equemene | Rate=numpy.array([]).astype(numpy.float32) |
241 | 129 | equemene | for i in range(Redo): |
242 | 129 | equemene | MyThreads=[] |
243 | 107 | equemene | time_start=time.time() |
244 | 129 | equemene | |
245 | 107 | equemene | for Device in Devices: |
246 | 239 | equemene | DeltaD=Device-min(Devices)+1 |
247 | 239 | equemene | DeltaS=(DeltaD-1)*524287 |
248 | 107 | equemene | InputCL={} |
249 | 107 | equemene | InputCL['Iterations']=IterationsMP
|
250 | 129 | equemene | InputCL['Steps']=1 |
251 | 107 | equemene | InputCL['Blocks']=Blocks
|
252 | 107 | equemene | InputCL['Threads']=Threads
|
253 | 107 | equemene | InputCL['Device']=Device
|
254 | 107 | equemene | InputCL['RNG']=RNG
|
255 | 239 | equemene | InputCL['Seeds']=numpy.uint32(Seeds[0]*DeltaD+DeltaS),numpy.uint32(Seeds[1]*DeltaD+DeltaS) |
256 | 107 | equemene | InputCL['ValueType']=ValueType
|
257 | 190 | equemene | InputCL['IfThen']=IfThen
|
258 | 107 | equemene | if GpuStyle=='CUDA': |
259 | 107 | equemene | try:
|
260 | 129 | equemene | MyThread=threadWithReturn(target=MetropolisCuda, args=(InputCL,)) |
261 | 107 | equemene | except:
|
262 | 127 | equemene | print("Problem with (%i,%i) // computations on Cuda" % (Blocks,Threads))
|
263 | 107 | equemene | elif GpuStyle=='OpenCL': |
264 | 107 | equemene | try:
|
265 | 107 | equemene | MyThread=threadWithReturn(target=MetropolisOpenCL, args=(InputCL,)) |
266 | 107 | equemene | except:
|
267 | 129 | equemene | print("Problem with (%i,%i) // computations on OpenCL" % (Blocks,Threads) )
|
268 | 107 | equemene | |
269 | 127 | equemene | print("Start on #%i device..." % Device)
|
270 | 107 | equemene | MyThread.start() |
271 | 107 | equemene | MyThreads.append(MyThread) |
272 | 107 | equemene | |
273 | 107 | equemene | NewIterations=0
|
274 | 107 | equemene | Inside=0
|
275 | 107 | equemene | for MyThread in MyThreads: |
276 | 107 | equemene | OutputCL=MyThread.join() |
277 | 107 | equemene | NewIterations+=OutputCL['NewIterations']
|
278 | 107 | equemene | Inside+=OutputCL['Inside']
|
279 | 129 | equemene | |
280 | 129 | equemene | Duration=numpy.append(Duration,time.time()-time_start) |
281 | 129 | equemene | Rate=numpy.append(Rate,NewIterations/Duration[-1])
|
282 | 266 | equemene | print("Itops %i\nLogItops %.2f " % (int(Rate),numpy.log(Rate)/numpy.log(10))) |
283 | 266 | equemene | print("Pi estimation %.8f" % (4./NewIterations*Inside)) |
284 | 129 | equemene | |
285 | 107 | equemene | avgD=numpy.append(avgD,numpy.average(Duration)) |
286 | 107 | equemene | medD=numpy.append(medD,numpy.median(Duration)) |
287 | 107 | equemene | stdD=numpy.append(stdD,numpy.std(Duration)) |
288 | 107 | equemene | minD=numpy.append(minD,numpy.min(Duration)) |
289 | 107 | equemene | maxD=numpy.append(maxD,numpy.max(Duration)) |
290 | 107 | equemene | avgR=numpy.append(avgR,numpy.average(Rate)) |
291 | 107 | equemene | medR=numpy.append(medR,numpy.median(Rate)) |
292 | 107 | equemene | stdR=numpy.append(stdR,numpy.std(Rate)) |
293 | 107 | equemene | minR=numpy.append(minR,numpy.min(Rate)) |
294 | 107 | equemene | maxR=numpy.append(maxR,numpy.max(Rate)) |
295 | 107 | equemene | |
296 | 127 | equemene | print("%.2f %.2f %.2f %.2f %.2f %i %i %i %i %i" % (avgD[-1],medD[-1],stdD[-1],minD[-1],maxD[-1],avgR[-1],medR[-1],stdR[-1],minR[-1],maxR[-1])) |
297 | 107 | equemene | |
298 | 131 | equemene | numpy.savez("PiThreads_%s_%s_%s_%s_%s_%s_%s_%s_%.8i_Device%i_%s_%s" % (ValueType,RNG,Alu[Devices[0]],GpuStyle,BlocksBegin,BlocksEnd,ThreadsBegin,ThreadsEnd,Iterations,Devices[0],Metrology,gethostname()),(ExploredBlocks,ExploredThreads,avgD,medD,stdD,minD,maxD,avgR,medR,stdR,minR,maxR)) |
299 | 107 | equemene | ToSave=[ ExploredBlocks,ExploredThreads,avgD,medD,stdD,minD,maxD,avgR,medR,stdR,minR,maxR ] |
300 | 131 | equemene | numpy.savetxt("PiThreads_%s_%s_%s_%s_%s_%s_%s_%i_%.8i_Device%i_%s_%s" % (ValueType,RNG,Alu[Devices[0]],GpuStyle,BlocksBegin,BlocksEnd,ThreadsBegin,ThreadsEnd,Iterations,Devices[0],Metrology,gethostname()),numpy.transpose(ToSave),fmt='%i %i %e %e %e %e %e %i %i %i %i %i') |
301 | 107 | equemene | |
302 | 107 | equemene | if Fit:
|
303 | 107 | equemene | FitAndPrint(ExploredJobs,median,Curves) |