root / ETSN / MyDFT_7.py @ 280
Historique | Voir | Annoter | Télécharger (10,74 ko)
1 | 274 | equemene | #!/usr/bin/env python3
|
---|---|---|---|
2 | 274 | equemene | |
3 | 274 | equemene | import numpy as np |
4 | 274 | equemene | import pyopencl as cl |
5 | 274 | equemene | from numpy import pi,cos,sin |
6 | 274 | equemene | |
7 | 274 | equemene | # Naive Discrete Fourier Transform
|
8 | 274 | equemene | def MyDFT(x,y): |
9 | 274 | equemene | size=x.shape[0]
|
10 | 274 | equemene | X=np.zeros(size).astype(np.float32) |
11 | 274 | equemene | Y=np.zeros(size).astype(np.float32) |
12 | 274 | equemene | for i in range(size): |
13 | 274 | equemene | for j in range(size): |
14 | 274 | equemene | X[i]=X[i]+x[j]*cos(2.*pi*i*j/size)-y[j]*sin(2.*pi*i*j/size) |
15 | 274 | equemene | Y[i]=Y[i]+x[j]*sin(2.*pi*i*j/size)+y[j]*cos(2.*pi*i*j/size) |
16 | 274 | equemene | return(X,Y)
|
17 | 274 | equemene | |
18 | 274 | equemene | # Numpy Discrete Fourier Transform
|
19 | 274 | equemene | def NumpyDFT(x,y): |
20 | 274 | equemene | size=x.shape[0]
|
21 | 274 | equemene | X=np.zeros(size).astype(np.float32) |
22 | 274 | equemene | Y=np.zeros(size).astype(np.float32) |
23 | 274 | equemene | nj=np.multiply(2.0*np.pi/size,np.arange(size)).astype(np.float32)
|
24 | 274 | equemene | for i in range(size): |
25 | 274 | equemene | X[i]=np.sum(np.subtract(np.multiply(np.cos(i*nj),x),np.multiply(np.sin(i*nj),y))) |
26 | 274 | equemene | Y[i]=np.sum(np.add(np.multiply(np.sin(i*nj),x),np.multiply(np.cos(i*nj),y))) |
27 | 274 | equemene | return(X,Y)
|
28 | 274 | equemene | |
29 | 274 | equemene | # Numba Discrete Fourier Transform
|
30 | 274 | equemene | import numba |
31 | 274 | equemene | @numba.njit(parallel=True) |
32 | 274 | equemene | def NumbaDFT(x,y): |
33 | 274 | equemene | size=x.shape[0]
|
34 | 274 | equemene | X=np.zeros(size).astype(np.float32) |
35 | 274 | equemene | Y=np.zeros(size).astype(np.float32) |
36 | 274 | equemene | nj=np.multiply(2.0*np.pi/size,np.arange(size)).astype(np.float32)
|
37 | 274 | equemene | for i in numba.prange(size): |
38 | 274 | equemene | X[i]=np.sum(np.subtract(np.multiply(np.cos(i*nj),x),np.multiply(np.sin(i*nj),y))) |
39 | 274 | equemene | Y[i]=np.sum(np.add(np.multiply(np.sin(i*nj),x),np.multiply(np.cos(i*nj),y))) |
40 | 274 | equemene | return(X,Y)
|
41 | 274 | equemene | |
42 | 274 | equemene | # OpenCL complete operation
|
43 | 274 | equemene | def OpenCLDFT(a_np,b_np,Device): |
44 | 274 | equemene | |
45 | 274 | equemene | Id=0
|
46 | 274 | equemene | HasXPU=False
|
47 | 274 | equemene | for platform in cl.get_platforms(): |
48 | 274 | equemene | for device in platform.get_devices(): |
49 | 274 | equemene | if Id==Device:
|
50 | 274 | equemene | XPU=device |
51 | 274 | equemene | print("CPU/GPU selected: ",device.name.lstrip())
|
52 | 274 | equemene | HasXPU=True
|
53 | 274 | equemene | Id+=1
|
54 | 274 | equemene | # print(Id)
|
55 | 274 | equemene | |
56 | 274 | equemene | if HasXPU==False: |
57 | 274 | equemene | print("No XPU #%i found in all of %i devices, sorry..." % (Device,Id-1)) |
58 | 274 | equemene | sys.exit() |
59 | 274 | equemene | |
60 | 274 | equemene | try:
|
61 | 274 | equemene | ctx = cl.Context(devices=[XPU]) |
62 | 274 | equemene | queue = cl.CommandQueue(ctx,properties=cl.command_queue_properties.PROFILING_ENABLE) |
63 | 274 | equemene | except:
|
64 | 274 | equemene | print("Crash during context creation")
|
65 | 274 | equemene | |
66 | 274 | equemene | TimeIn=time.time() |
67 | 274 | equemene | # Copy from Host to Device using pointers
|
68 | 274 | equemene | mf = cl.mem_flags |
69 | 274 | equemene | a_g = cl.Buffer(ctx, mf.READ_ONLY | mf.COPY_HOST_PTR, hostbuf=a_np) |
70 | 274 | equemene | b_g = cl.Buffer(ctx, mf.READ_ONLY | mf.COPY_HOST_PTR, hostbuf=b_np) |
71 | 274 | equemene | Elapsed=time.time()-TimeIn |
72 | 274 | equemene | print("Copy from Host 2 Device : %.3f" % Elapsed)
|
73 | 274 | equemene | |
74 | 274 | equemene | TimeIn=time.time() |
75 | 274 | equemene | # Definition of kernel under OpenCL
|
76 | 274 | equemene | prg = cl.Program(ctx, """
|
77 | 274 | equemene |
|
78 | 274 | equemene | #define PI 3.141592653589793
|
79 | 274 | equemene |
|
80 | 274 | equemene | __kernel void MyDFT(
|
81 | 274 | equemene | __global const float *a_g, __global const float *b_g, __global float *A_g, __global float *B_g)
|
82 | 274 | equemene | {
|
83 | 274 | equemene | int gid = get_global_id(0);
|
84 | 274 | equemene | uint size = get_global_size(0);
|
85 | 274 | equemene | float A=0.,B=0.;
|
86 | 274 | equemene | for (uint i=0; i<size;i++)
|
87 | 274 | equemene | {
|
88 | 274 | equemene | A+=a_g[i]*cos(2.*PI*(float)(gid*i)/(float)size)-b_g[i]*sin(2.*PI*(float)(gid*i)/(float)size);
|
89 | 274 | equemene | B+=a_g[i]*sin(2.*PI*(float)(gid*i)/(float)size)+b_g[i]*cos(2.*PI*(float)(gid*i)/(float)size);
|
90 | 274 | equemene | }
|
91 | 274 | equemene | A_g[gid]=A;
|
92 | 274 | equemene | B_g[gid]=B;
|
93 | 274 | equemene | }
|
94 | 274 | equemene | """).build()
|
95 | 274 | equemene | Elapsed=time.time()-TimeIn |
96 | 274 | equemene | print("Building kernels : %.3f" % Elapsed)
|
97 | 274 | equemene | |
98 | 274 | equemene | TimeIn=time.time() |
99 | 274 | equemene | # Memory allocation on Device for result
|
100 | 274 | equemene | A_ocl = np.empty_like(a_np) |
101 | 274 | equemene | B_ocl = np.empty_like(a_np) |
102 | 274 | equemene | Elapsed=time.time()-TimeIn |
103 | 274 | equemene | print("Allocation on Host for results : %.3f" % Elapsed)
|
104 | 274 | equemene | |
105 | 274 | equemene | A_g = cl.Buffer(ctx, mf.WRITE_ONLY, A_ocl.nbytes) |
106 | 274 | equemene | B_g = cl.Buffer(ctx, mf.WRITE_ONLY, B_ocl.nbytes) |
107 | 274 | equemene | Elapsed=time.time()-TimeIn |
108 | 274 | equemene | print("Allocation on Device for results : %.3f" % Elapsed)
|
109 | 274 | equemene | |
110 | 274 | equemene | TimeIn=time.time() |
111 | 274 | equemene | # Synthesis of function "sillysum" inside Kernel Sources
|
112 | 274 | equemene | knl = prg.MyDFT # Use this Kernel object for repeated calls
|
113 | 274 | equemene | Elapsed=time.time()-TimeIn |
114 | 274 | equemene | print("Synthesis of kernel : %.3f" % Elapsed)
|
115 | 274 | equemene | |
116 | 274 | equemene | TimeIn=time.time() |
117 | 274 | equemene | # Call of kernel previously defined
|
118 | 274 | equemene | CallCL=knl(queue, a_np.shape, None, a_g, b_g, A_g, B_g)
|
119 | 274 | equemene | #
|
120 | 274 | equemene | CallCL.wait() |
121 | 274 | equemene | Elapsed=time.time()-TimeIn |
122 | 274 | equemene | print("Execution of kernel : %.3f" % Elapsed)
|
123 | 274 | equemene | |
124 | 274 | equemene | TimeIn=time.time() |
125 | 274 | equemene | # Copy from Device to Host
|
126 | 274 | equemene | cl.enqueue_copy(queue, A_ocl, A_g) |
127 | 274 | equemene | cl.enqueue_copy(queue, B_ocl, B_g) |
128 | 274 | equemene | Elapsed=time.time()-TimeIn |
129 | 274 | equemene | print("Copy from Device 2 Host : %.3f" % Elapsed)
|
130 | 274 | equemene | |
131 | 275 | equemene | # Liberation of memory
|
132 | 274 | equemene | a_g.release() |
133 | 274 | equemene | b_g.release() |
134 | 274 | equemene | A_g.release() |
135 | 274 | equemene | B_g.release() |
136 | 274 | equemene | |
137 | 274 | equemene | return(A_ocl,B_ocl)
|
138 | 274 | equemene | |
139 | 274 | equemene | # CUDA Silly complete operation
|
140 | 274 | equemene | def CUDADFT(a_np,b_np): |
141 | 274 | equemene | import pycuda.autoinit |
142 | 274 | equemene | import pycuda.driver as drv |
143 | 274 | equemene | |
144 | 274 | equemene | from pycuda.compiler import SourceModule |
145 | 274 | equemene | TimeIn=time.time() |
146 | 274 | equemene | mod = SourceModule("""
|
147 | 274 | equemene |
|
148 | 274 | equemene | #define PI 3.141592653589793
|
149 | 274 | equemene |
|
150 | 274 | equemene | __global__ void MyDFT(float *A_g, float *B_g, const float *a_g,const float *b_g)
|
151 | 274 | equemene | {
|
152 | 274 | equemene | const int gid = blockIdx.x;
|
153 | 274 | equemene | uint size = gridDim.x;
|
154 | 274 | equemene | float A=0.,B=0.;
|
155 | 274 | equemene | for (uint i=0; i<size;i++)
|
156 | 274 | equemene | {
|
157 | 274 | equemene | A+=a_g[i]*cos(2.*PI*(float)(gid*i)/(float)size)-b_g[i]*sin(2.*PI*(float)(gid*i)/(float)size);
|
158 | 274 | equemene | B+=a_g[i]*sin(2.*PI*(float)(gid*i)/(float)size)+b_g[i]*cos(2.*PI*(float)(gid*i)/(float)size);
|
159 | 274 | equemene | }
|
160 | 274 | equemene | A_g[gid]=A;
|
161 | 274 | equemene | B_g[gid]=B;
|
162 | 274 | equemene | }
|
163 | 274 | equemene |
|
164 | 274 | equemene | """)
|
165 | 274 | equemene | Elapsed=time.time()-TimeIn |
166 | 274 | equemene | print("Definition of kernel : %.3f" % Elapsed)
|
167 | 274 | equemene | |
168 | 274 | equemene | TimeIn=time.time() |
169 | 274 | equemene | MyDFT = mod.get_function("MyDFT")
|
170 | 274 | equemene | Elapsed=time.time()-TimeIn |
171 | 274 | equemene | print("Synthesis of kernel : %.3f" % Elapsed)
|
172 | 274 | equemene | |
173 | 274 | equemene | TimeIn=time.time() |
174 | 274 | equemene | A_np = np.zeros_like(a_np) |
175 | 274 | equemene | B_np = np.zeros_like(a_np) |
176 | 274 | equemene | Elapsed=time.time()-TimeIn |
177 | 274 | equemene | print("Allocation on Host for results : %.3f" % Elapsed)
|
178 | 274 | equemene | |
179 | 274 | equemene | TimeIn=time.time() |
180 | 274 | equemene | MyDFT(drv.Out(A_np), drv.Out(B_np), drv.In(a_np), drv.In(b_np), |
181 | 274 | equemene | block=(1,1,1), grid=(a_np.size,1)) |
182 | 274 | equemene | Elapsed=time.time()-TimeIn |
183 | 274 | equemene | print("Execution of kernel : %.3f" % Elapsed)
|
184 | 274 | equemene | return(A_np,B_np)
|
185 | 274 | equemene | |
186 | 274 | equemene | import sys |
187 | 274 | equemene | import time |
188 | 274 | equemene | |
189 | 274 | equemene | if __name__=='__main__': |
190 | 274 | equemene | |
191 | 274 | equemene | GpuStyle='OpenCL'
|
192 | 274 | equemene | SIZE=1024
|
193 | 274 | equemene | Device=0
|
194 | 274 | equemene | |
195 | 274 | equemene | import getopt |
196 | 274 | equemene | |
197 | 274 | equemene | HowToUse='%s -g <CUDA/OpenCL> -s <SizeOfVector> -d <DeviceId>'
|
198 | 274 | equemene | |
199 | 274 | equemene | try:
|
200 | 274 | equemene | opts, args = getopt.getopt(sys.argv[1:],"hg:s:d:",["gpustyle=","size=","device="]) |
201 | 274 | equemene | except getopt.GetoptError:
|
202 | 274 | equemene | print(HowToUse % sys.argv[0])
|
203 | 274 | equemene | sys.exit(2)
|
204 | 274 | equemene | |
205 | 274 | equemene | # List of Devices
|
206 | 274 | equemene | Devices=[] |
207 | 274 | equemene | Alu={} |
208 | 274 | equemene | |
209 | 274 | equemene | for opt, arg in opts: |
210 | 274 | equemene | if opt == '-h': |
211 | 274 | equemene | print(HowToUse % sys.argv[0])
|
212 | 274 | equemene | |
213 | 274 | equemene | print("\nInformations about devices detected under OpenCL API:")
|
214 | 274 | equemene | # For PyOpenCL import
|
215 | 274 | equemene | try:
|
216 | 274 | equemene | import pyopencl as cl |
217 | 274 | equemene | Id=0
|
218 | 274 | equemene | for platform in cl.get_platforms(): |
219 | 274 | equemene | for device in platform.get_devices(): |
220 | 274 | equemene | #deviceType=cl.device_type.to_string(device.type)
|
221 | 274 | equemene | deviceType="xPU"
|
222 | 274 | equemene | print("Device #%i from %s of type %s : %s" % (Id,platform.vendor.lstrip(),deviceType,device.name.lstrip()))
|
223 | 274 | equemene | Id=Id+1
|
224 | 274 | equemene | |
225 | 274 | equemene | except:
|
226 | 274 | equemene | print("Your platform does not seem to support OpenCL")
|
227 | 274 | equemene | |
228 | 274 | equemene | print("\nInformations about devices detected under CUDA API:")
|
229 | 274 | equemene | # For PyCUDA import
|
230 | 274 | equemene | try:
|
231 | 274 | equemene | import pycuda.driver as cuda |
232 | 274 | equemene | cuda.init() |
233 | 274 | equemene | for Id in range(cuda.Device.count()): |
234 | 274 | equemene | device=cuda.Device(Id) |
235 | 274 | equemene | print("Device #%i of type GPU : %s" % (Id,device.name()))
|
236 | 274 | equemene | print
|
237 | 274 | equemene | except:
|
238 | 274 | equemene | print("Your platform does not seem to support CUDA")
|
239 | 274 | equemene | |
240 | 274 | equemene | sys.exit() |
241 | 274 | equemene | |
242 | 274 | equemene | elif opt in ("-d", "--device"): |
243 | 274 | equemene | Device=int(arg)
|
244 | 274 | equemene | elif opt in ("-g", "--gpustyle"): |
245 | 274 | equemene | GpuStyle = arg |
246 | 274 | equemene | elif opt in ("-s", "--size"): |
247 | 274 | equemene | SIZE = int(arg)
|
248 | 274 | equemene | |
249 | 274 | equemene | print("Device Selection : %i" % Device)
|
250 | 274 | equemene | print("GpuStyle used : %s" % GpuStyle)
|
251 | 274 | equemene | print("Size of complex vector : %i" % SIZE)
|
252 | 274 | equemene | |
253 | 274 | equemene | if GpuStyle=='CUDA': |
254 | 274 | equemene | try:
|
255 | 274 | equemene | # For PyCUDA import
|
256 | 274 | equemene | import pycuda.driver as cuda |
257 | 274 | equemene | |
258 | 274 | equemene | cuda.init() |
259 | 274 | equemene | for Id in range(cuda.Device.count()): |
260 | 274 | equemene | device=cuda.Device(Id) |
261 | 274 | equemene | print("Device #%i of type GPU : %s" % (Id,device.name()))
|
262 | 274 | equemene | if Id in Devices: |
263 | 274 | equemene | Alu[Id]='GPU'
|
264 | 274 | equemene | |
265 | 274 | equemene | except ImportError: |
266 | 274 | equemene | print("Platform does not seem to support CUDA")
|
267 | 274 | equemene | |
268 | 274 | equemene | if GpuStyle=='OpenCL': |
269 | 274 | equemene | try:
|
270 | 274 | equemene | # For PyOpenCL import
|
271 | 274 | equemene | import pyopencl as cl |
272 | 274 | equemene | Id=0
|
273 | 274 | equemene | for platform in cl.get_platforms(): |
274 | 274 | equemene | for device in platform.get_devices(): |
275 | 274 | equemene | #deviceType=cl.device_type.to_string(device.type)
|
276 | 274 | equemene | deviceType="xPU"
|
277 | 274 | equemene | print("Device #%i from %s of type %s : %s" % (Id,platform.vendor.lstrip().rstrip(),deviceType,device.name.lstrip().rstrip()))
|
278 | 274 | equemene | |
279 | 274 | equemene | if Id in Devices: |
280 | 274 | equemene | # Set the Alu as detected Device Type
|
281 | 274 | equemene | Alu[Id]=deviceType |
282 | 274 | equemene | Id=Id+1
|
283 | 274 | equemene | except ImportError: |
284 | 274 | equemene | print("Platform does not seem to support OpenCL")
|
285 | 274 | equemene | |
286 | 274 | equemene | |
287 | 274 | equemene | |
288 | 274 | equemene | a_np = np.ones(SIZE).astype(np.float32) |
289 | 274 | equemene | b_np = np.ones(SIZE).astype(np.float32) |
290 | 274 | equemene | |
291 | 274 | equemene | C_np = np.zeros(SIZE).astype(np.float32) |
292 | 274 | equemene | D_np = np.zeros(SIZE).astype(np.float32) |
293 | 274 | equemene | C_np[0] = np.float32(SIZE)
|
294 | 274 | equemene | D_np[0] = np.float32(SIZE)
|
295 | 274 | equemene | |
296 | 274 | equemene | # # Native & Naive Implementation
|
297 | 274 | equemene | # print("Performing naive implementation")
|
298 | 274 | equemene | # TimeIn=time.time()
|
299 | 274 | equemene | # c_np,d_np=MyDFT(a_np,b_np)
|
300 | 274 | equemene | # NativeElapsed=time.time()-TimeIn
|
301 | 274 | equemene | # NativeRate=int(SIZE/NativeElapsed)
|
302 | 274 | equemene | # print("NativeRate: %i" % NativeRate)
|
303 | 274 | equemene | # print("Precision: ",np.linalg.norm(c_np-C_np),np.linalg.norm(d_np-D_np))
|
304 | 274 | equemene | |
305 | 274 | equemene | # # Native & Numpy Implementation
|
306 | 274 | equemene | # print("Performing Numpy implementation")
|
307 | 274 | equemene | # TimeIn=time.time()
|
308 | 274 | equemene | # e_np,f_np=NumpyDFT(a_np,b_np)
|
309 | 274 | equemene | # NumpyElapsed=time.time()-TimeIn
|
310 | 274 | equemene | # NumpyRate=int(SIZE/NumpyElapsed)
|
311 | 274 | equemene | # print("NumpyRate: %i" % NumpyRate)
|
312 | 274 | equemene | # print("Precision: ",np.linalg.norm(e_np-C_np),np.linalg.norm(f_np-D_np))
|
313 | 274 | equemene | |
314 | 274 | equemene | # # Native & Numba Implementation
|
315 | 274 | equemene | # print("Performing Numba implementation")
|
316 | 274 | equemene | # TimeIn=time.time()
|
317 | 274 | equemene | # g_np,h_np=NumbaDFT(a_np,b_np)
|
318 | 274 | equemene | # NumbaElapsed=time.time()-TimeIn
|
319 | 274 | equemene | # NumbaRate=int(SIZE/NumbaElapsed)
|
320 | 274 | equemene | # print("NumbaRate: %i" % NumbaRate)
|
321 | 274 | equemene | # print("Precision: ",np.linalg.norm(g_np-C_np),np.linalg.norm(h_np-D_np))
|
322 | 274 | equemene | |
323 | 274 | equemene | # OpenCL Implementation
|
324 | 274 | equemene | if GpuStyle=='OpenCL': |
325 | 274 | equemene | print("Performing OpenCL implementation")
|
326 | 274 | equemene | TimeIn=time.time() |
327 | 274 | equemene | i_np,j_np=OpenCLDFT(a_np,b_np,Device) |
328 | 274 | equemene | OpenCLElapsed=time.time()-TimeIn |
329 | 274 | equemene | OpenCLRate=int(SIZE/OpenCLElapsed)
|
330 | 274 | equemene | print("OpenCLRate: %i" % OpenCLRate)
|
331 | 274 | equemene | print("Precision: ",np.linalg.norm(i_np-C_np),
|
332 | 274 | equemene | np.linalg.norm(j_np-D_np)) |
333 | 274 | equemene | |
334 | 274 | equemene | # # CUDA Implementation
|
335 | 274 | equemene | # print("Performing CUDA implementation")
|
336 | 274 | equemene | # TimeIn=time.time()
|
337 | 274 | equemene | # k_np,l_np=CUDADFT(a_np,b_np)
|
338 | 274 | equemene | # CUDAElapsed=time.time()-TimeIn
|
339 | 274 | equemene | # CUDARate=int(SIZE/CUDAElapsed)
|
340 | 274 | equemene | # print("CUDARate: %i" % CUDARate)
|
341 | 274 | equemene | # print("Precision: ",np.linalg.norm(k_np-C_np),np.linalg.norm(l_np-D_np))
|