root / NBody / NBody.py @ 279
Historique | Voir | Annoter | Télécharger (29,1 ko)
1 | 128 | equemene | #!/usr/bin/env python3
|
---|---|---|---|
2 | 136 | equemene | # -*- coding: utf-8 -*-
|
3 | 116 | equemene | """
|
4 | 171 | equemene | NBody Demonstrator implemented in OpenCL, rendering OpenGL
|
5 | 116 | equemene |
|
6 | 260 | equemene | By default, rendering in OpenGL is disabled. Add -g option to activate.
|
7 | 174 | equemene |
|
8 | 260 | equemene | Part of matrix programs from: https://forge.cbp.ens-lyon.fr/svn/bench4gpu/
|
9 | 260 | equemene |
|
10 | 260 | equemene | CC BY-NC-SA 2011 : Emmanuel QUEMENER <emmanuel.quemener@ens-lyon.fr>
|
11 | 260 | equemene |
|
12 | 174 | equemene | Thanks to Andreas Klockner for PyOpenCL:
|
13 | 174 | equemene | http://mathema.tician.de/software/pyopencl
|
14 | 174 | equemene |
|
15 | 116 | equemene | """
|
16 | 116 | equemene | import getopt |
17 | 116 | equemene | import sys |
18 | 116 | equemene | import time |
19 | 116 | equemene | import numpy as np |
20 | 116 | equemene | import pyopencl as cl |
21 | 116 | equemene | import pyopencl.array as cl_array |
22 | 116 | equemene | from numpy.random import randint as nprnd |
23 | 170 | equemene | import string, sys |
24 | 170 | equemene | from OpenGL.GL import * |
25 | 170 | equemene | from OpenGL.GLUT import * |
26 | 116 | equemene | |
27 | 132 | equemene | def DictionariesAPI(): |
28 | 132 | equemene | Marsaglia={'CONG':0,'SHR3':1,'MWC':2,'KISS':3} |
29 | 132 | equemene | Computing={'FP32':0,'FP64':1} |
30 | 170 | equemene | Interaction={'Force':0,'Potential':1} |
31 | 175 | equemene | Artevasion={'None':0,'NegExp':1,'CorRad':2} |
32 | 171 | equemene | return(Marsaglia,Computing,Interaction,Artevasion)
|
33 | 132 | equemene | |
34 | 142 | equemene | BlobOpenCL= """
|
35 | 132 | equemene | #define TFP32 0
|
36 | 132 | equemene | #define TFP64 1
|
37 | 132 | equemene |
|
38 | 170 | equemene | #define TFORCE 0
|
39 | 170 | equemene | #define TPOTENTIAL 1
|
40 | 116 | equemene |
|
41 | 171 | equemene | #define NONE 0
|
42 | 171 | equemene | #define NEGEXP 1
|
43 | 175 | equemene | #define CORRAD 2
|
44 | 171 | equemene |
|
45 | 132 | equemene | #if TYPE == TFP32
|
46 | 132 | equemene | #define MYFLOAT4 float4
|
47 | 132 | equemene | #define MYFLOAT8 float8
|
48 | 132 | equemene | #define MYFLOAT float
|
49 | 151 | equemene | #define DISTANCE fast_distance
|
50 | 132 | equemene | #else
|
51 | 132 | equemene | #define MYFLOAT4 double4
|
52 | 132 | equemene | #define MYFLOAT8 double8
|
53 | 132 | equemene | #define MYFLOAT double
|
54 | 151 | equemene | #define DISTANCE distance
|
55 | 170 | equemene | #if defined(cl_khr_fp64) // Khronos extension available?
|
56 | 170 | equemene | #pragma OPENCL EXTENSION cl_khr_fp64 : enable
|
57 | 132 | equemene | #endif
|
58 | 170 | equemene | #endif
|
59 | 132 | equemene |
|
60 | 170 | equemene | #define znew ((zmwc=36969*(zmwc&65535)+(zmwc>>16))<<16)
|
61 | 170 | equemene | #define wnew ((wmwc=18000*(wmwc&65535)+(wmwc>>16))&65535)
|
62 | 170 | equemene | #define MWC (znew+wnew)
|
63 | 170 | equemene | #define SHR3 (jsr=(jsr=(jsr=jsr^(jsr<<17))^(jsr>>13))^(jsr<<5))
|
64 | 170 | equemene | #define CONG (jcong=69069*jcong+1234567)
|
65 | 170 | equemene | #define KISS ((MWC^CONG)+SHR3)
|
66 | 170 | equemene |
|
67 | 160 | equemene | #define MWCfp (MYFLOAT)(MWC * 2.3283064365386963e-10f)
|
68 | 160 | equemene | #define KISSfp (MYFLOAT)(KISS * 2.3283064365386963e-10f)
|
69 | 160 | equemene | #define SHR3fp (MYFLOAT)(SHR3 * 2.3283064365386963e-10f)
|
70 | 160 | equemene | #define CONGfp (MYFLOAT)(CONG * 2.3283064365386963e-10f)
|
71 | 160 | equemene |
|
72 | 171 | equemene | #define PI (MYFLOAT)3.141592653589793238e0f
|
73 | 160 | equemene |
|
74 | 170 | equemene | #define SMALL_NUM (MYFLOAT)1.e-9f
|
75 | 160 | equemene |
|
76 | 175 | equemene | #define CoreRadius (MYFLOAT)(1.e0f)
|
77 | 175 | equemene |
|
78 | 170 | equemene | // Create my own Distance implementation: distance buggy on Oland AMD chipset
|
79 | 116 | equemene |
|
80 | 170 | equemene | MYFLOAT MyDistance(MYFLOAT4 n,MYFLOAT4 m)
|
81 | 141 | equemene | {
|
82 | 170 | equemene | private MYFLOAT x2,y2,z2;
|
83 | 170 | equemene | x2=n.s0-m.s0;
|
84 | 170 | equemene | x2*=x2;
|
85 | 170 | equemene | y2=n.s1-m.s1;
|
86 | 170 | equemene | y2*=y2;
|
87 | 170 | equemene | z2=n.s2-m.s2;
|
88 | 170 | equemene | z2*=z2;
|
89 | 170 | equemene | return(sqrt(x2+y2+z2));
|
90 | 141 | equemene | }
|
91 | 141 | equemene |
|
92 | 171 | equemene | // Potential between 2 m,n bodies
|
93 | 133 | equemene | MYFLOAT PairPotential(MYFLOAT4 m,MYFLOAT4 n)
|
94 | 171 | equemene | #if ARTEVASION == NEGEXP
|
95 | 171 | equemene | // Add exp(-r) to numerator to avoid divergence for low distances
|
96 | 133 | equemene | {
|
97 | 171 | equemene | MYFLOAT r=DISTANCE(n,m);
|
98 | 171 | equemene | return((-1.e0f+exp(-r))/r);
|
99 | 171 | equemene | }
|
100 | 175 | equemene | #elif ARTEVASION == CORRAD
|
101 | 175 | equemene | // Add Core Radius to avoid divergence for low distances
|
102 | 175 | equemene | {
|
103 | 175 | equemene | MYFLOAT r=DISTANCE(n,m);
|
104 | 175 | equemene | return(-1.e0f/sqrt(r*r+CoreRadius*CoreRadius));
|
105 | 175 | equemene | }
|
106 | 171 | equemene | #else
|
107 | 171 | equemene | // Classical potential in 1/r
|
108 | 171 | equemene | {
|
109 | 170 | equemene | // return((MYFLOAT)(-1.e0f)/(MyDistance(m,n)));
|
110 | 151 | equemene | return((MYFLOAT)(-1.e0f)/(DISTANCE(n,m)));
|
111 | 133 | equemene | }
|
112 | 171 | equemene | #endif
|
113 | 133 | equemene |
|
114 | 176 | equemene | // Interaction based of Force as gradient of Potential
|
115 | 170 | equemene | MYFLOAT4 Interaction(MYFLOAT4 m,MYFLOAT4 n)
|
116 | 170 | equemene | #if INTERACTION == TFORCE
|
117 | 175 | equemene | #if ARTEVASION == NEGEXP
|
118 | 175 | equemene | // Force gradient of potential, set as (1-exp(-r))/r
|
119 | 175 | equemene | {
|
120 | 175 | equemene | private MYFLOAT r=MyDistance(n,m);
|
121 | 175 | equemene | private MYFLOAT num=1.e0f+exp(-r)*(r-1.e0f);
|
122 | 175 | equemene | return((n-m)*num/(MYFLOAT)(r*r*r));
|
123 | 175 | equemene | }
|
124 | 175 | equemene | #elif ARTEVASION == CORRAD
|
125 | 175 | equemene | // Force gradient of potential, (Core Radius) set as 1/sqrt(r**2+CoreRadius**2)
|
126 | 175 | equemene | {
|
127 | 175 | equemene | private MYFLOAT r=MyDistance(n,m);
|
128 | 175 | equemene | private MYFLOAT den=sqrt(r*r+CoreRadius*CoreRadius);
|
129 | 175 | equemene | return((n-m)/(MYFLOAT)(den*den*den));
|
130 | 175 | equemene | }
|
131 | 175 | equemene | #else
|
132 | 170 | equemene | // Simplest implementation of force (equals to acceleration)
|
133 | 170 | equemene | // seems to bo bad (numerous artevasions)
|
134 | 170 | equemene | // MYFLOAT4 InteractionForce(MYFLOAT4 m,MYFLOAT4 n)
|
135 | 170 | equemene | {
|
136 | 170 | equemene | private MYFLOAT r=MyDistance(n,m);
|
137 | 170 | equemene | return((n-m)/(MYFLOAT)(r*r*r));
|
138 | 170 | equemene | }
|
139 | 175 | equemene | #endif
|
140 | 170 | equemene | #else
|
141 | 170 | equemene | // Force definited as gradient of potential
|
142 | 170 | equemene | // Estimate potential and proximate potential to estimate force
|
143 | 170 | equemene | {
|
144 | 171 | equemene | // 1/1024 seems to be a good factor: larger one provides bad results
|
145 | 171 | equemene | private MYFLOAT epsilon=(MYFLOAT)(1.e0f/1024);
|
146 | 170 | equemene | private MYFLOAT4 er=normalize(n-m);
|
147 | 170 | equemene | private MYFLOAT4 dr=er*(MYFLOAT)epsilon;
|
148 | 170 | equemene |
|
149 | 171 | equemene | return(er/epsilon*(PairPotential(m,n)-PairPotential(m+dr,n)));
|
150 | 170 | equemene | }
|
151 | 170 | equemene | #endif
|
152 | 170 | equemene |
|
153 | 160 | equemene | MYFLOAT AtomicPotential(__global MYFLOAT4* clDataX,int gid)
|
154 | 139 | equemene | {
|
155 | 160 | equemene | private MYFLOAT potential=(MYFLOAT)0.e0f;
|
156 | 160 | equemene | private MYFLOAT4 x=clDataX[gid];
|
157 | 139 | equemene |
|
158 | 139 | equemene | for (int i=0;i<get_global_size(0);i++)
|
159 | 139 | equemene | {
|
160 | 139 | equemene | if (gid != i)
|
161 | 160 | equemene | potential+=PairPotential(x,clDataX[i]);
|
162 | 139 | equemene | }
|
163 | 133 | equemene |
|
164 | 139 | equemene | barrier(CLK_GLOBAL_MEM_FENCE);
|
165 | 141 | equemene | return(potential);
|
166 | 139 | equemene | }
|
167 | 139 | equemene |
|
168 | 160 | equemene | MYFLOAT AtomicPotentialCoM(__global MYFLOAT4* clDataX,__global MYFLOAT4* clCoM,int gid)
|
169 | 139 | equemene | {
|
170 | 160 | equemene | return(PairPotential(clDataX[gid],clCoM[0]));
|
171 | 139 | equemene | }
|
172 | 139 | equemene |
|
173 | 170 | equemene | // Elements from : http://doswa.com/2009/01/02/fourth-order-runge-kutta-numerical-integration.html
|
174 | 170 | equemene |
|
175 | 160 | equemene | MYFLOAT8 AtomicRungeKutta(__global MYFLOAT4* clDataInX,__global MYFLOAT4* clDataInV,int gid,MYFLOAT dt)
|
176 | 116 | equemene | {
|
177 | 160 | equemene | private MYFLOAT4 a0,v0,x0,a1,v1,x1,a2,v2,x2,a3,v3,x3,a4,v4,x4,xf,vf;
|
178 | 170 | equemene | MYFLOAT4 DT=dt*(MYFLOAT4)(1.e0f,1.e0f,1.e0f,1.e0f);
|
179 | 160 | equemene |
|
180 | 160 | equemene | a0=(MYFLOAT4)(0.e0f,0.e0f,0.e0f,0.e0f);
|
181 | 160 | equemene | v0=(MYFLOAT4)clDataInV[gid];
|
182 | 160 | equemene | x0=(MYFLOAT4)clDataInX[gid];
|
183 | 133 | equemene | int N = get_global_size(0);
|
184 | 133 | equemene |
|
185 | 170 | equemene | for (private int i=0;i<N;i++)
|
186 | 121 | equemene | {
|
187 | 121 | equemene | if (gid != i)
|
188 | 160 | equemene | a0+=Interaction(x0,clDataInX[i]);
|
189 | 121 | equemene | }
|
190 | 121 | equemene |
|
191 | 160 | equemene | a1=(MYFLOAT4)(0.e0f,0.e0f,0.e0f,0.e0f);
|
192 | 170 | equemene | v1=a0*dt+v0;
|
193 | 170 | equemene | x1=v0*dt+x0;
|
194 | 170 | equemene | for (private int j=0;j<N;j++)
|
195 | 121 | equemene | {
|
196 | 170 | equemene | if (gid != j)
|
197 | 170 | equemene | a1+=Interaction(x1,clDataInX[j]);
|
198 | 121 | equemene | }
|
199 | 121 | equemene |
|
200 | 160 | equemene | a2=(MYFLOAT4)(0.e0f,0.e0f,0.e0f,0.e0f);
|
201 | 170 | equemene | v2=a1*(MYFLOAT)(dt/2.e0f)+v0;
|
202 | 170 | equemene | x2=v1*(MYFLOAT)(dt/2.e0f)+x0;
|
203 | 170 | equemene | for (private int k=0;k<N;k++)
|
204 | 121 | equemene | {
|
205 | 170 | equemene | if (gid != k)
|
206 | 170 | equemene | a2+=Interaction(x2,clDataInX[k]);
|
207 | 121 | equemene | }
|
208 | 121 | equemene |
|
209 | 160 | equemene | a3=(MYFLOAT4)(0.e0f,0.e0f,0.e0f,0.e0f);
|
210 | 170 | equemene | v3=a2*(MYFLOAT)(dt/2.e0f)+v0;
|
211 | 170 | equemene | x3=v2*(MYFLOAT)(dt/2.e0f)+x0;
|
212 | 170 | equemene | for (private int l=0;l<N;l++)
|
213 | 121 | equemene | {
|
214 | 170 | equemene | if (gid != l)
|
215 | 170 | equemene | a3+=Interaction(x3,clDataInX[l]);
|
216 | 121 | equemene | }
|
217 | 121 | equemene |
|
218 | 160 | equemene | a4=(MYFLOAT4)(0.e0f,0.e0f,0.e0f,0.e0f);
|
219 | 170 | equemene | v4=a3*dt+v0;
|
220 | 170 | equemene | x4=v3*dt+x0;
|
221 | 170 | equemene | for (private int m=0;m<N;m++)
|
222 | 141 | equemene | {
|
223 | 170 | equemene | if (gid != m)
|
224 | 170 | equemene | a4+=Interaction(x4,clDataInX[m]);
|
225 | 141 | equemene | }
|
226 | 141 | equemene |
|
227 | 160 | equemene | xf=x0+dt*(v1+(MYFLOAT)2.e0f*(v2+v3)+v4)/(MYFLOAT)6.e0f;
|
228 | 160 | equemene | vf=v0+dt*(a1+(MYFLOAT)2.e0f*(a2+a3)+a4)/(MYFLOAT)6.e0f;
|
229 | 121 | equemene |
|
230 | 170 | equemene | return((MYFLOAT8)(xf.s0,xf.s1,xf.s2,0.e0f,vf.s0,vf.s1,vf.s2,0.e0f));
|
231 | 121 | equemene | }
|
232 | 121 | equemene |
|
233 | 160 | equemene | MYFLOAT8 AtomicHeun(__global MYFLOAT4* clDataInX,__global MYFLOAT4* clDataInV,int gid,MYFLOAT dt)
|
234 | 121 | equemene | {
|
235 | 170 | equemene | private MYFLOAT4 x0,v0,a0,x1,v1,a1,xf,vf;
|
236 | 170 | equemene | MYFLOAT4 Dt=dt*(MYFLOAT4)(1.e0f,1.e0f,1.e0f,1.e0f);
|
237 | 116 | equemene |
|
238 | 170 | equemene | x0=(MYFLOAT4)clDataInX[gid];
|
239 | 170 | equemene | v0=(MYFLOAT4)clDataInV[gid];
|
240 | 170 | equemene | a0=(MYFLOAT4)(0.e0f,0.e0f,0.e0f,0.e0f);
|
241 | 141 | equemene |
|
242 | 170 | equemene | for (private int i=0;i<get_global_size(0);i++)
|
243 | 116 | equemene | {
|
244 | 116 | equemene | if (gid != i)
|
245 | 170 | equemene | a0+=Interaction(x0,clDataInX[i]);
|
246 | 116 | equemene | }
|
247 | 141 | equemene |
|
248 | 170 | equemene | a1=(MYFLOAT4)(0.e0f,0.e0f,0.e0f,0.e0f);
|
249 | 170 | equemene | //v1=v0+dt*a0;
|
250 | 170 | equemene | //x1=x0+dt*v0;
|
251 | 170 | equemene | v1=dt*a0+v0;
|
252 | 170 | equemene | x1=dt*v0+x0;
|
253 | 141 | equemene |
|
254 | 170 | equemene | for (private int j=0;j<get_global_size(0);j++)
|
255 | 116 | equemene | {
|
256 | 170 | equemene | if (gid != j)
|
257 | 170 | equemene | a1+=Interaction(x1,clDataInX[j]);
|
258 | 116 | equemene | }
|
259 | 118 | equemene |
|
260 | 170 | equemene | vf=v0+dt*(a0+a1)/(MYFLOAT)2.e0f;
|
261 | 170 | equemene | xf=x0+dt*(v0+v1)/(MYFLOAT)2.e0f;
|
262 | 170 | equemene |
|
263 | 170 | equemene | return((MYFLOAT8)(xf.s0,xf.s1,xf.s2,0.e0f,vf.s0,vf.s1,vf.s2,0.e0f));
|
264 | 119 | equemene | }
|
265 | 119 | equemene |
|
266 | 160 | equemene | MYFLOAT8 AtomicImplicitEuler(__global MYFLOAT4* clDataInX,__global MYFLOAT4* clDataInV,int gid,MYFLOAT dt)
|
267 | 119 | equemene | {
|
268 | 170 | equemene | MYFLOAT4 x0,v0,a,xf,vf;
|
269 | 119 | equemene |
|
270 | 170 | equemene | x0=(MYFLOAT4)clDataInX[gid];
|
271 | 170 | equemene | v0=(MYFLOAT4)clDataInV[gid];
|
272 | 151 | equemene | a=(MYFLOAT4)(0.e0f,0.e0f,0.e0f,0.e0f);
|
273 | 160 | equemene |
|
274 | 170 | equemene | for (private int i=0;i<get_global_size(0);i++)
|
275 | 119 | equemene | {
|
276 | 119 | equemene | if (gid != i)
|
277 | 170 | equemene | a+=Interaction(x0,clDataInX[i]);
|
278 | 119 | equemene | }
|
279 | 133 | equemene |
|
280 | 170 | equemene | vf=v0+dt*a;
|
281 | 170 | equemene | xf=x0+dt*vf;
|
282 | 170 | equemene |
|
283 | 170 | equemene | return((MYFLOAT8)(xf.s0,xf.s1,xf.s2,0.e0f,vf.s0,vf.s1,vf.s2,0.e0f));
|
284 | 116 | equemene | }
|
285 | 116 | equemene |
|
286 | 160 | equemene | MYFLOAT8 AtomicExplicitEuler(__global MYFLOAT4* clDataInX,__global MYFLOAT4* clDataInV,int gid,MYFLOAT dt)
|
287 | 140 | equemene | {
|
288 | 170 | equemene | MYFLOAT4 x0,v0,a,xf,vf;
|
289 | 140 | equemene |
|
290 | 170 | equemene | x0=(MYFLOAT4)clDataInX[gid];
|
291 | 170 | equemene | v0=(MYFLOAT4)clDataInV[gid];
|
292 | 151 | equemene | a=(MYFLOAT4)(0.e0f,0.e0f,0.e0f,0.e0f);
|
293 | 160 | equemene |
|
294 | 170 | equemene | for (private int i=0;i<get_global_size(0);i++)
|
295 | 140 | equemene | {
|
296 | 140 | equemene | if (gid != i)
|
297 | 170 | equemene | a+=Interaction(x0,clDataInX[i]);
|
298 | 140 | equemene | }
|
299 | 140 | equemene |
|
300 | 170 | equemene | vf=v0+dt*a;
|
301 | 170 | equemene | xf=x0+dt*v0;
|
302 | 140 | equemene |
|
303 | 170 | equemene | return((MYFLOAT8)(xf.s0,xf.s1,xf.s2,0.e0f,vf.s0,vf.s1,vf.s2,0.e0f));
|
304 | 140 | equemene | }
|
305 | 140 | equemene |
|
306 | 170 | equemene | __kernel void InBallSplutterPoints(__global MYFLOAT4* clDataX,
|
307 | 170 | equemene | MYFLOAT diameter,uint seed_z,uint seed_w)
|
308 | 170 | equemene | {
|
309 | 170 | equemene | private int gid=get_global_id(0);
|
310 | 170 | equemene | private uint zmwc=seed_z+gid;
|
311 | 170 | equemene | private uint wmwc=seed_w+(gid+1)%2;
|
312 | 170 | equemene | private MYFLOAT Heat;
|
313 | 170 | equemene |
|
314 | 170 | equemene | for (int i=0;i<gid;i++)
|
315 | 170 | equemene | {
|
316 | 170 | equemene | Heat=MWCfp;
|
317 | 170 | equemene | }
|
318 | 170 | equemene |
|
319 | 170 | equemene | // More accurate distribution based on spherical coordonates
|
320 | 170 | equemene | // Disactivated because of AMD Oland GPU crash on launch
|
321 | 170 | equemene | // private MYFLOAT Radius,Theta,Phi,PosX,PosY,PosZ,SinTheta;
|
322 | 170 | equemene | // Radius=MWCfp*diameter/2.e0f;
|
323 | 170 | equemene | // Theta=(MYFLOAT)acos((float)(-2.e0f*MWCfp+1.0e0f));
|
324 | 170 | equemene | // Phi=(MYFLOAT)(2.e0f*PI*MWCfp);
|
325 | 170 | equemene | // SinTheta=sin((float)Theta);
|
326 | 170 | equemene | // PosX=cos((float)Phi)*Radius*SinTheta;
|
327 | 170 | equemene | // PosY=sin((float)Phi)*Radius*SinTheta;
|
328 | 170 | equemene | // PosZ=cos((float)Theta)*Radius;
|
329 | 170 | equemene | // clDataX[gid]=(MYFLOAT4)(PosX,PosY,PosZ,0.e0f);
|
330 | 170 | equemene |
|
331 | 170 | equemene | private MYFLOAT Radius=diameter/2.e0f;
|
332 | 170 | equemene | private MYFLOAT Length=diameter;
|
333 | 170 | equemene | private MYFLOAT4 Position;
|
334 | 170 | equemene | while (Length>Radius) {
|
335 | 170 | equemene | Position=(MYFLOAT4)((MWCfp-0.5e0f)*diameter,(MWCfp-0.5e0f)*diameter,(MWCfp-0.5e0f)*diameter,0.e0f);
|
336 | 170 | equemene | Length=(MYFLOAT)length((MYFLOAT4)Position);
|
337 | 170 | equemene | }
|
338 | 170 | equemene |
|
339 | 170 | equemene | clDataX[gid]=Position;
|
340 | 170 | equemene |
|
341 | 170 | equemene | barrier(CLK_GLOBAL_MEM_FENCE);
|
342 | 170 | equemene | }
|
343 | 170 | equemene |
|
344 | 170 | equemene | __kernel void InBoxSplutterPoints(__global MYFLOAT4* clDataX, MYFLOAT box,
|
345 | 139 | equemene | uint seed_z,uint seed_w)
|
346 | 116 | equemene | {
|
347 | 170 | equemene | int gid=get_global_id(0);
|
348 | 170 | equemene | uint zmwc=seed_z+gid;
|
349 | 170 | equemene | uint wmwc=seed_w-gid;
|
350 | 170 | equemene | private MYFLOAT Heat;
|
351 | 170 | equemene |
|
352 | 170 | equemene | for (int i=0;i<gid;i++)
|
353 | 170 | equemene | {
|
354 | 170 | equemene | Heat=MWCfp;
|
355 | 170 | equemene | }
|
356 | 137 | equemene |
|
357 | 170 | equemene | clDataX[gid]=(MYFLOAT4)((MWCfp-0.5e0f)*box,(MWCfp-0.5e0f)*box,(MWCfp-0.5e0f)*box,0.e0f);
|
358 | 170 | equemene |
|
359 | 170 | equemene | barrier(CLK_GLOBAL_MEM_FENCE);
|
360 | 116 | equemene | }
|
361 | 116 | equemene |
|
362 | 160 | equemene | __kernel void SplutterStress(__global MYFLOAT4* clDataX,__global MYFLOAT4* clDataV,__global MYFLOAT4* clCoM, MYFLOAT velocity,uint seed_z,uint seed_w)
|
363 | 139 | equemene | {
|
364 | 139 | equemene | int gid = get_global_id(0);
|
365 | 142 | equemene | MYFLOAT N = (MYFLOAT)get_global_size(0);
|
366 | 170 | equemene | uint zmwc=seed_z+(uint)gid;
|
367 | 170 | equemene | uint wmwc=seed_w-(uint)gid;
|
368 | 178 | equemene | MYFLOAT4 CrossVector,SpeedVector,FromCoM;
|
369 | 178 | equemene | MYFLOAT Heat,ThetaA,PhiA,ThetaB,PhiB,Length,tA,tB,Polar;
|
370 | 139 | equemene |
|
371 | 178 | equemene | for (int i=0;i<gid;i++)
|
372 | 178 | equemene | {
|
373 | 178 | equemene | Heat=MWCfp;
|
374 | 178 | equemene | }
|
375 | 178 | equemene |
|
376 | 178 | equemene | // cast to float for sin,cos are NEEDED by Mesa FP64 implementation!
|
377 | 178 | equemene | // Implemention on AMD Oland are probably broken in float
|
378 | 178 | equemene |
|
379 | 178 | equemene | FromCoM=(MYFLOAT4)(clDataX[gid]-clCoM[0]);
|
380 | 178 | equemene | Length=length(FromCoM);
|
381 | 178 | equemene | //Theta=acos(FromCoM.z/Length);
|
382 | 178 | equemene | //Phi=atan(FromCoM.y/FromCoM.x);
|
383 | 178 | equemene | // First tangential vector to sphere of length radius
|
384 | 178 | equemene | ThetaA=acos(FromCoM.x/Length)+5.e-1f*PI;
|
385 | 178 | equemene | PhiA=atan(FromCoM.y/FromCoM.z);
|
386 | 178 | equemene | // Second tangential vector to sphere of length radius
|
387 | 179 | equemene | ThetaB=acos((float)(FromCoM.x/Length));
|
388 | 179 | equemene | PhiB=atan((float)(FromCoM.y/FromCoM.z))+5.e-1f*PI;
|
389 | 178 | equemene | // (x,y) random coordonates to plane tangential to sphere
|
390 | 178 | equemene | Polar=MWCfp*2.e0f*PI;
|
391 | 179 | equemene | tA=cos((float)Polar);
|
392 | 179 | equemene | tB=sin((float)Polar);
|
393 | 178 | equemene |
|
394 | 178 | equemene | // Exception for 2 particules to ovoid shifting
|
395 | 171 | equemene | if (get_global_size(0)==2) {
|
396 | 171 | equemene | CrossVector=(MYFLOAT4)(1.e0f,1.e0f,1.e0f,0.e0f);
|
397 | 171 | equemene | } else {
|
398 | 179 | equemene | CrossVector.s0=tA*cos((float)ThetaA)+tB*cos((float)ThetaB);
|
399 | 179 | equemene | CrossVector.s1=tA*sin((float)ThetaA)*sin((float)PhiA)+tB*sin((float)ThetaB)*sin((float)PhiB);
|
400 | 179 | equemene | CrossVector.s2=tA*sin((float)ThetaA)*cos((float)PhiA)+tB*sin((float)ThetaB)*cos((float)PhiB);
|
401 | 178 | equemene | CrossVector.s3=0.e0f;
|
402 | 171 | equemene | }
|
403 | 171 | equemene |
|
404 | 139 | equemene | if (velocity<SMALL_NUM) {
|
405 | 178 | equemene | SpeedVector=(MYFLOAT4)normalize(cross(FromCoM,CrossVector))*sqrt((-AtomicPotential(clDataX,gid)/(MYFLOAT)2.e0f));
|
406 | 139 | equemene | }
|
407 | 139 | equemene | else
|
408 | 178 | equemene | {
|
409 | 170 | equemene |
|
410 | 176 | equemene | SpeedVector=(MYFLOAT4)((MWCfp-5e-1f)*velocity,(MWCfp-5e-1f)*velocity,
|
411 | 176 | equemene | (MWCfp-5e-1f)*velocity,0.e0f);
|
412 | 139 | equemene | }
|
413 | 170 | equemene | clDataV[gid]=SpeedVector;
|
414 | 170 | equemene | barrier(CLK_GLOBAL_MEM_FENCE);
|
415 | 139 | equemene | }
|
416 | 139 | equemene |
|
417 | 160 | equemene | __kernel void RungeKutta(__global MYFLOAT4* clDataX,__global MYFLOAT4* clDataV,MYFLOAT h)
|
418 | 116 | equemene | {
|
419 | 170 | equemene | private int gid = get_global_id(0);
|
420 | 170 | equemene | private MYFLOAT8 clDataGid;
|
421 | 116 | equemene |
|
422 | 170 | equemene | clDataGid=AtomicRungeKutta(clDataX,clDataV,gid,h);
|
423 | 116 | equemene | barrier(CLK_GLOBAL_MEM_FENCE);
|
424 | 170 | equemene | clDataX[gid]=clDataGid.s0123;
|
425 | 170 | equemene | clDataV[gid]=clDataGid.s4567;
|
426 | 116 | equemene | }
|
427 | 116 | equemene |
|
428 | 170 | equemene | __kernel void Heun(__global MYFLOAT4* clDataX,__global MYFLOAT4* clDataV,MYFLOAT h)
|
429 | 116 | equemene | {
|
430 | 170 | equemene | private int gid = get_global_id(0);
|
431 | 170 | equemene | private MYFLOAT8 clDataGid;
|
432 | 116 | equemene |
|
433 | 170 | equemene | clDataGid=AtomicHeun(clDataX,clDataV,gid,h);
|
434 | 116 | equemene | barrier(CLK_GLOBAL_MEM_FENCE);
|
435 | 170 | equemene | clDataX[gid]=clDataGid.s0123;
|
436 | 170 | equemene | clDataV[gid]=clDataGid.s4567;
|
437 | 116 | equemene | }
|
438 | 133 | equemene |
|
439 | 170 | equemene | __kernel void ImplicitEuler(__global MYFLOAT4* clDataX,__global MYFLOAT4* clDataV,MYFLOAT h)
|
440 | 141 | equemene | {
|
441 | 170 | equemene | private int gid = get_global_id(0);
|
442 | 170 | equemene | private MYFLOAT8 clDataGid;
|
443 | 141 | equemene |
|
444 | 170 | equemene | clDataGid=AtomicImplicitEuler(clDataX,clDataV,gid,h);
|
445 | 141 | equemene | barrier(CLK_GLOBAL_MEM_FENCE);
|
446 | 170 | equemene | clDataX[gid]=clDataGid.s0123;
|
447 | 170 | equemene | clDataV[gid]=clDataGid.s4567;
|
448 | 141 | equemene | }
|
449 | 141 | equemene |
|
450 | 160 | equemene | __kernel void ExplicitEuler(__global MYFLOAT4* clDataX,__global MYFLOAT4* clDataV,MYFLOAT h)
|
451 | 140 | equemene | {
|
452 | 170 | equemene | private int gid = get_global_id(0);
|
453 | 170 | equemene | private MYFLOAT8 clDataGid;
|
454 | 170 | equemene |
|
455 | 170 | equemene | clDataGid=AtomicExplicitEuler(clDataX,clDataV,gid,h);
|
456 | 140 | equemene | barrier(CLK_GLOBAL_MEM_FENCE);
|
457 | 170 | equemene | clDataX[gid]=clDataGid.s0123;
|
458 | 170 | equemene | clDataV[gid]=clDataGid.s4567;
|
459 | 140 | equemene | }
|
460 | 139 | equemene |
|
461 | 160 | equemene | __kernel void CoMPotential(__global MYFLOAT4* clDataX,__global MYFLOAT4* clCoM,__global MYFLOAT* clPotential)
|
462 | 133 | equemene | {
|
463 | 133 | equemene | int gid = get_global_id(0);
|
464 | 133 | equemene |
|
465 | 160 | equemene | clPotential[gid]=PairPotential(clDataX[gid],clCoM[0]);
|
466 | 139 | equemene | }
|
467 | 139 | equemene |
|
468 | 160 | equemene | __kernel void Potential(__global MYFLOAT4* clDataX,__global MYFLOAT* clPotential)
|
469 | 139 | equemene | {
|
470 | 139 | equemene | int gid = get_global_id(0);
|
471 | 139 | equemene |
|
472 | 155 | equemene | MYFLOAT potential=(MYFLOAT)0.e0f;
|
473 | 160 | equemene | MYFLOAT4 x=clDataX[gid];
|
474 | 133 | equemene |
|
475 | 133 | equemene | for (int i=0;i<get_global_size(0);i++)
|
476 | 133 | equemene | {
|
477 | 133 | equemene | if (gid != i)
|
478 | 160 | equemene | potential+=PairPotential(x,clDataX[i]);
|
479 | 133 | equemene | }
|
480 | 133 | equemene |
|
481 | 133 | equemene | barrier(CLK_GLOBAL_MEM_FENCE);
|
482 | 155 | equemene | clPotential[gid]=potential*(MYFLOAT)5.e-1f;
|
483 | 133 | equemene | }
|
484 | 133 | equemene |
|
485 | 160 | equemene | __kernel void CenterOfMass(__global MYFLOAT4* clDataX,__global MYFLOAT4* clCoM,int Size)
|
486 | 139 | equemene | {
|
487 | 160 | equemene | MYFLOAT4 CoM=clDataX[0];
|
488 | 142 | equemene |
|
489 | 139 | equemene | for (int i=1;i<Size;i++)
|
490 | 139 | equemene | {
|
491 | 160 | equemene | CoM+=clDataX[i];
|
492 | 139 | equemene | }
|
493 | 142 | equemene |
|
494 | 139 | equemene | barrier(CLK_GLOBAL_MEM_FENCE);
|
495 | 170 | equemene | clCoM[0]=(MYFLOAT4)(CoM.s0,CoM.s1,CoM.s2,0.e0f)/(MYFLOAT)Size;
|
496 | 139 | equemene | }
|
497 | 139 | equemene |
|
498 | 160 | equemene | __kernel void Kinetic(__global MYFLOAT4* clDataV,__global MYFLOAT* clKinetic)
|
499 | 133 | equemene | {
|
500 | 133 | equemene | int gid = get_global_id(0);
|
501 | 133 | equemene |
|
502 | 139 | equemene | barrier(CLK_GLOBAL_MEM_FENCE);
|
503 | 160 | equemene | MYFLOAT d=(MYFLOAT)length(clDataV[gid]);
|
504 | 155 | equemene | clKinetic[gid]=(MYFLOAT)5.e-1f*(MYFLOAT)(d*d);
|
505 | 133 | equemene | }
|
506 | 170 | equemene |
|
507 | 116 | equemene | """
|
508 | 116 | equemene | |
509 | 170 | equemene | def MainOpenCL(clDataX,clDataV,Step,Method): |
510 | 170 | equemene | time_start=time.time() |
511 | 170 | equemene | if Method=="RungeKutta": |
512 | 170 | equemene | CLLaunch=MyRoutines.RungeKutta(queue,(Number,1),None,clDataX,clDataV,Step) |
513 | 170 | equemene | elif Method=="ExplicitEuler": |
514 | 170 | equemene | CLLaunch=MyRoutines.ExplicitEuler(queue,(Number,1),None,clDataX,clDataV,Step) |
515 | 170 | equemene | elif Method=="Heun": |
516 | 170 | equemene | CLLaunch=MyRoutines.Heun(queue,(Number,1),None,clDataX,clDataV,Step) |
517 | 170 | equemene | else:
|
518 | 170 | equemene | CLLaunch=MyRoutines.ImplicitEuler(queue,(Number,1),None,clDataX,clDataV,Step) |
519 | 170 | equemene | CLLaunch.wait() |
520 | 170 | equemene | Elapsed=time.time()-time_start |
521 | 170 | equemene | return(Elapsed)
|
522 | 170 | equemene | |
523 | 170 | equemene | def display(*args): |
524 | 133 | equemene | |
525 | 170 | equemene | global MyDataX,MyDataV,clDataX,clDataV,Step,Method,Number,Iterations,Durations,Verbose,SpeedRendering
|
526 | 170 | equemene | |
527 | 170 | equemene | glClearColor(0.0, 0.0, 0.0, 0.0) |
528 | 170 | equemene | glClear(GL_COLOR_BUFFER_BIT) |
529 | 170 | equemene | glColor3f(1.0,1.0,1.0) |
530 | 170 | equemene | |
531 | 170 | equemene | Elapsed=MainOpenCL(clDataX,clDataV,Step,Method) |
532 | 170 | equemene | if SpeedRendering:
|
533 | 170 | equemene | cl.enqueue_copy(queue, MyDataV, clDataV) |
534 | 170 | equemene | MyDataV.reshape(Number,4)[:,3]=1 |
535 | 170 | equemene | glVertexPointerf(MyDataV.reshape(Number,4))
|
536 | 170 | equemene | else:
|
537 | 170 | equemene | cl.enqueue_copy(queue, MyDataX, clDataX) |
538 | 170 | equemene | MyDataX.reshape(Number,4)[:,3]=1 |
539 | 170 | equemene | glVertexPointerf(MyDataX.reshape(Number,4))
|
540 | 170 | equemene | |
541 | 170 | equemene | if Verbose:
|
542 | 170 | equemene | print("Positions for #%s iteration: %s" % (Iterations,MyDataX))
|
543 | 170 | equemene | else:
|
544 | 170 | equemene | sys.stdout.write('.')
|
545 | 170 | equemene | sys.stdout.flush() |
546 | 170 | equemene | Durations=np.append(Durations,MainOpenCL(clDataX,clDataV,Step,Method)) |
547 | 170 | equemene | glEnableClientState(GL_VERTEX_ARRAY) |
548 | 170 | equemene | glDrawArrays(GL_POINTS, 0, Number)
|
549 | 170 | equemene | glDisableClientState(GL_VERTEX_ARRAY) |
550 | 170 | equemene | glFlush() |
551 | 170 | equemene | Iterations+=1
|
552 | 170 | equemene | glutSwapBuffers() |
553 | 170 | equemene | |
554 | 170 | equemene | def halt(): |
555 | 170 | equemene | pass
|
556 | 170 | equemene | |
557 | 170 | equemene | def keyboard(k,x,y): |
558 | 174 | equemene | global ViewRZ,SpeedRendering
|
559 | 170 | equemene | LC_Z = as_8_bit( 'z' )
|
560 | 170 | equemene | UC_Z = as_8_bit( 'Z' )
|
561 | 170 | equemene | Plus = as_8_bit( '+' )
|
562 | 170 | equemene | Minus = as_8_bit( '-' )
|
563 | 170 | equemene | Switch = as_8_bit( 's' )
|
564 | 170 | equemene | |
565 | 170 | equemene | Zoom=1
|
566 | 175 | equemene | if k == LC_Z:
|
567 | 170 | equemene | ViewRZ += 1.0
|
568 | 170 | equemene | elif k == UC_Z:
|
569 | 170 | equemene | ViewRZ -= 1.0
|
570 | 170 | equemene | elif k == Plus:
|
571 | 170 | equemene | Zoom *= 2.0
|
572 | 170 | equemene | elif k == Minus:
|
573 | 170 | equemene | Zoom /= 2.0
|
574 | 170 | equemene | elif k == Switch:
|
575 | 170 | equemene | if SpeedRendering:
|
576 | 170 | equemene | SpeedRendering=False
|
577 | 170 | equemene | else:
|
578 | 170 | equemene | SpeedRendering=True
|
579 | 170 | equemene | elif ord(k) == 27: # Escape |
580 | 170 | equemene | glutLeaveMainLoop() |
581 | 170 | equemene | return(False) |
582 | 170 | equemene | else:
|
583 | 170 | equemene | return
|
584 | 170 | equemene | glRotatef(ViewRZ, 0.0, 0.0, 1.0) |
585 | 170 | equemene | glScalef(Zoom,Zoom,Zoom) |
586 | 170 | equemene | glutPostRedisplay() |
587 | 170 | equemene | |
588 | 170 | equemene | def special(k,x,y): |
589 | 174 | equemene | global ViewRX, ViewRY
|
590 | 170 | equemene | |
591 | 178 | equemene | Step=1.
|
592 | 170 | equemene | if k == GLUT_KEY_UP:
|
593 | 178 | equemene | ViewRX += Step |
594 | 170 | equemene | elif k == GLUT_KEY_DOWN:
|
595 | 178 | equemene | ViewRX -= Step |
596 | 170 | equemene | elif k == GLUT_KEY_LEFT:
|
597 | 178 | equemene | ViewRY += Step |
598 | 170 | equemene | elif k == GLUT_KEY_RIGHT:
|
599 | 178 | equemene | ViewRY -= Step |
600 | 170 | equemene | else:
|
601 | 170 | equemene | return
|
602 | 170 | equemene | glRotatef(ViewRX, 1.0, 0.0, 0.0) |
603 | 170 | equemene | glRotatef(ViewRY, 0.0, 1.0, 0.0) |
604 | 170 | equemene | glutPostRedisplay() |
605 | 170 | equemene | |
606 | 170 | equemene | def setup_viewport(): |
607 | 170 | equemene | global SizeOfBox
|
608 | 170 | equemene | glMatrixMode(GL_PROJECTION) |
609 | 170 | equemene | glLoadIdentity() |
610 | 170 | equemene | glOrtho(-SizeOfBox, SizeOfBox, -SizeOfBox, SizeOfBox, -SizeOfBox, SizeOfBox) |
611 | 170 | equemene | glutPostRedisplay() |
612 | 170 | equemene | |
613 | 170 | equemene | def reshape(w, h): |
614 | 170 | equemene | glViewport(0, 0, w, h) |
615 | 170 | equemene | setup_viewport() |
616 | 170 | equemene | |
617 | 116 | equemene | if __name__=='__main__': |
618 | 170 | equemene | |
619 | 170 | equemene | global Number,Step,clDataX,clDataV,MyDataX,MyDataV,Method,SizeOfBox,Iterations,Verbose,Durations
|
620 | 116 | equemene | |
621 | 132 | equemene | # ValueType
|
622 | 132 | equemene | ValueType='FP32'
|
623 | 132 | equemene | class MyFloat(np.float32):pass |
624 | 160 | equemene | # clType8=cl_array.vec.float8
|
625 | 116 | equemene | # Set defaults values
|
626 | 118 | equemene | np.set_printoptions(precision=2)
|
627 | 116 | equemene | # Id of Device : 1 is for first find !
|
628 | 160 | equemene | Device=0
|
629 | 170 | equemene | # Number of bodies is integer
|
630 | 160 | equemene | Number=2
|
631 | 170 | equemene | # Number of iterations (for standalone execution)
|
632 | 170 | equemene | Iterations=10
|
633 | 170 | equemene | # Size of shape
|
634 | 170 | equemene | SizeOfShape=MyFloat(1.)
|
635 | 116 | equemene | # Initial velocity of particules
|
636 | 132 | equemene | Velocity=MyFloat(1.)
|
637 | 116 | equemene | # Step
|
638 | 170 | equemene | Step=MyFloat(1./32) |
639 | 121 | equemene | # Method of integration
|
640 | 150 | equemene | Method='ImplicitEuler'
|
641 | 132 | equemene | # InitialRandom
|
642 | 132 | equemene | InitialRandom=False
|
643 | 132 | equemene | # RNG Marsaglia Method
|
644 | 132 | equemene | RNG='MWC'
|
645 | 139 | equemene | # Viriel Distribution of stress
|
646 | 139 | equemene | VirielStress=True
|
647 | 170 | equemene | # Verbose
|
648 | 170 | equemene | Verbose=False
|
649 | 170 | equemene | # OpenGL real time rendering
|
650 | 170 | equemene | OpenGL=False
|
651 | 170 | equemene | # Speed rendering
|
652 | 170 | equemene | SpeedRendering=False
|
653 | 171 | equemene | # Counter ArtEvasions Measures (artefact evasion)
|
654 | 171 | equemene | CoArEv='None'
|
655 | 170 | equemene | # Shape to distribute
|
656 | 170 | equemene | Shape='Ball'
|
657 | 170 | equemene | # Type of Interaction
|
658 | 172 | equemene | InterType='Force'
|
659 | 132 | equemene | |
660 | 175 | equemene | HowToUse='%s -h [Help] -r [InitialRandom] -g [OpenGL] -e [VirielStress] -o [Verbose] -p [Potential] -x <None|NegExp|CorRad> -d <DeviceId> -n <NumberOfParticules> -i <Iterations> -z <SizeOfBoxOrBall> -v <Velocity> -s <Step> -b <Ball|Box> -m <ImplicitEuler|RungeKutta|ExplicitEuler|Heun> -t <FP32|FP64>'
|
661 | 116 | equemene | |
662 | 116 | equemene | try:
|
663 | 175 | equemene | opts, args = getopt.getopt(sys.argv[1:],"rpgehod:n:i:z:v:s:m:t:b:x:",["random","potential","coarev","opengl","viriel","verbose","device=","number=","iterations=","size=","velocity=","step=","method=","valuetype=","shape="]) |
664 | 116 | equemene | except getopt.GetoptError:
|
665 | 128 | equemene | print(HowToUse % sys.argv[0])
|
666 | 116 | equemene | sys.exit(2)
|
667 | 116 | equemene | |
668 | 116 | equemene | for opt, arg in opts: |
669 | 116 | equemene | if opt == '-h': |
670 | 128 | equemene | print(HowToUse % sys.argv[0])
|
671 | 116 | equemene | |
672 | 128 | equemene | print("\nInformations about devices detected under OpenCL:")
|
673 | 116 | equemene | try:
|
674 | 132 | equemene | Id=0
|
675 | 116 | equemene | for platform in cl.get_platforms(): |
676 | 116 | equemene | for device in platform.get_devices(): |
677 | 170 | equemene | # Failed now because of POCL implementation
|
678 | 137 | equemene | #deviceType=cl.device_type.to_string(device.type)
|
679 | 149 | equemene | deviceType="xPU"
|
680 | 128 | equemene | print("Device #%i from %s of type %s : %s" % (Id,platform.vendor.lstrip(),deviceType,device.name.lstrip()))
|
681 | 116 | equemene | Id=Id+1
|
682 | 116 | equemene | sys.exit() |
683 | 116 | equemene | except ImportError: |
684 | 128 | equemene | print("Your platform does not seem to support OpenCL")
|
685 | 116 | equemene | sys.exit() |
686 | 116 | equemene | |
687 | 132 | equemene | elif opt in ("-t", "--valuetype"): |
688 | 132 | equemene | if arg=='FP64': |
689 | 132 | equemene | class MyFloat(np.float64): pass |
690 | 132 | equemene | else:
|
691 | 132 | equemene | class MyFloat(np.float32):pass |
692 | 132 | equemene | ValueType = arg |
693 | 116 | equemene | elif opt in ("-d", "--device"): |
694 | 116 | equemene | Device=int(arg)
|
695 | 121 | equemene | elif opt in ("-m", "--method"): |
696 | 121 | equemene | Method=arg |
697 | 170 | equemene | elif opt in ("-b", "--shape"): |
698 | 170 | equemene | Shape=arg |
699 | 175 | equemene | if Shape!='Ball' or Shape!='Box': |
700 | 175 | equemene | print('Wrong argument: set to Ball')
|
701 | 116 | equemene | elif opt in ("-n", "--number"): |
702 | 116 | equemene | Number=int(arg)
|
703 | 170 | equemene | elif opt in ("-i", "--iterations"): |
704 | 170 | equemene | Iterations=int(arg)
|
705 | 116 | equemene | elif opt in ("-z", "--size"): |
706 | 170 | equemene | SizeOfShape=MyFloat(arg) |
707 | 116 | equemene | elif opt in ("-v", "--velocity"): |
708 | 132 | equemene | Velocity=MyFloat(arg) |
709 | 139 | equemene | VirielStress=False
|
710 | 116 | equemene | elif opt in ("-s", "--step"): |
711 | 132 | equemene | Step=MyFloat(arg) |
712 | 132 | equemene | elif opt in ("-r", "--random"): |
713 | 132 | equemene | InitialRandom=True
|
714 | 133 | equemene | elif opt in ("-c", "--check"): |
715 | 133 | equemene | CheckEnergies=True
|
716 | 139 | equemene | elif opt in ("-e", "--viriel"): |
717 | 139 | equemene | VirielStress=True
|
718 | 170 | equemene | elif opt in ("-g", "--opengl"): |
719 | 170 | equemene | OpenGL=True
|
720 | 172 | equemene | elif opt in ("-p", "--potential"): |
721 | 172 | equemene | InterType='Potential'
|
722 | 175 | equemene | elif opt in ("-x", "--coarev"): |
723 | 175 | equemene | CoArEv=arg |
724 | 170 | equemene | elif opt in ("-o", "--verbose"): |
725 | 170 | equemene | Verbose=True
|
726 | 170 | equemene | |
727 | 175 | equemene | SizeOfShape=np.sqrt(MyFloat(SizeOfShape*Number)) |
728 | 132 | equemene | Velocity=MyFloat(Velocity) |
729 | 132 | equemene | Step=MyFloat(Step) |
730 | 132 | equemene | |
731 | 128 | equemene | print("Device choosed : %s" % Device)
|
732 | 128 | equemene | print("Number of particules : %s" % Number)
|
733 | 170 | equemene | print("Size of Shape : %s" % SizeOfShape)
|
734 | 160 | equemene | print("Initial velocity : %s" % Velocity)
|
735 | 170 | equemene | print("Step of iteration : %s" % Step)
|
736 | 160 | equemene | print("Number of iterations : %s" % Iterations)
|
737 | 160 | equemene | print("Method of resolution : %s" % Method)
|
738 | 160 | equemene | print("Initial Random for RNG Seed : %s" % InitialRandom)
|
739 | 160 | equemene | print("ValueType is : %s" % ValueType)
|
740 | 170 | equemene | print("Viriel distribution of stress : %s" % VirielStress)
|
741 | 170 | equemene | print("OpenGL real time rendering : %s" % OpenGL)
|
742 | 170 | equemene | print("Speed rendering : %s" % SpeedRendering)
|
743 | 170 | equemene | print("Interaction type : %s" % InterType)
|
744 | 171 | equemene | print("Counter Artevasion type : %s" % CoArEv)
|
745 | 116 | equemene | |
746 | 132 | equemene | # Create Numpy array of CL vector with 8 FP32
|
747 | 170 | equemene | MyCoM = np.zeros(4,dtype=MyFloat)
|
748 | 170 | equemene | MyDataX = np.zeros(Number*4, dtype=MyFloat)
|
749 | 170 | equemene | MyDataV = np.zeros(Number*4, dtype=MyFloat)
|
750 | 133 | equemene | MyPotential = np.zeros(Number, dtype=MyFloat) |
751 | 133 | equemene | MyKinetic = np.zeros(Number, dtype=MyFloat) |
752 | 132 | equemene | |
753 | 171 | equemene | Marsaglia,Computing,Interaction,Artevasion=DictionariesAPI() |
754 | 132 | equemene | |
755 | 132 | equemene | # Scan the OpenCL arrays
|
756 | 132 | equemene | Id=0
|
757 | 116 | equemene | HasXPU=False
|
758 | 116 | equemene | for platform in cl.get_platforms(): |
759 | 116 | equemene | for device in platform.get_devices(): |
760 | 116 | equemene | if Id==Device:
|
761 | 116 | equemene | PlatForm=platform |
762 | 116 | equemene | XPU=device |
763 | 128 | equemene | print("CPU/GPU selected: ",device.name.lstrip())
|
764 | 151 | equemene | print("Platform selected: ",platform.name)
|
765 | 116 | equemene | HasXPU=True
|
766 | 116 | equemene | Id+=1
|
767 | 116 | equemene | |
768 | 116 | equemene | if HasXPU==False: |
769 | 128 | equemene | print("No XPU #%i found in all of %i devices, sorry..." % (Device,Id-1)) |
770 | 116 | equemene | sys.exit() |
771 | 116 | equemene | |
772 | 132 | equemene | # Create Context
|
773 | 116 | equemene | try:
|
774 | 116 | equemene | ctx = cl.Context([XPU]) |
775 | 116 | equemene | queue = cl.CommandQueue(ctx,properties=cl.command_queue_properties.PROFILING_ENABLE) |
776 | 116 | equemene | except:
|
777 | 128 | equemene | print("Crash during context creation")
|
778 | 116 | equemene | |
779 | 132 | equemene | # Build all routines used for the computing
|
780 | 170 | equemene | |
781 | 170 | equemene | #BuildOptions="-cl-mad-enable -cl-kernel-arg-info -cl-fast-relaxed-math -cl-std=CL1.2 -DTRNG=%i -DTYPE=%i" % (Marsaglia[RNG],Computing[ValueType])
|
782 | 171 | equemene | BuildOptions="-cl-mad-enable -cl-fast-relaxed-math -DTRNG=%i -DTYPE=%i -DINTERACTION=%i -DARTEVASION=%i" % (Marsaglia[RNG],Computing[ValueType],Interaction[InterType],Artevasion[CoArEv])
|
783 | 170 | equemene | |
784 | 170 | equemene | if 'Intel' in PlatForm.name or 'Experimental' in PlatForm.name or 'Clover' in PlatForm.name or 'Portable' in PlatForm.name : |
785 | 151 | equemene | MyRoutines = cl.Program(ctx, BlobOpenCL).build(options = BuildOptions) |
786 | 151 | equemene | else:
|
787 | 151 | equemene | MyRoutines = cl.Program(ctx, BlobOpenCL).build(options = BuildOptions+" -cl-strict-aliasing")
|
788 | 170 | equemene | |
789 | 170 | equemene | mf = cl.mem_flags |
790 | 170 | equemene | # Read/Write approach for buffering
|
791 | 170 | equemene | clDataX = cl.Buffer(ctx, mf.READ_WRITE, MyDataX.nbytes) |
792 | 170 | equemene | clDataV = cl.Buffer(ctx, mf.READ_WRITE, MyDataV.nbytes) |
793 | 170 | equemene | clPotential = cl.Buffer(ctx, mf.READ_WRITE, MyPotential.nbytes) |
794 | 170 | equemene | clKinetic = cl.Buffer(ctx, mf.READ_WRITE, MyKinetic.nbytes) |
795 | 170 | equemene | clCoM = cl.Buffer(ctx, mf.READ_WRITE, MyCoM.nbytes) |
796 | 160 | equemene | |
797 | 170 | equemene | # Write/HostPointer approach for buffering
|
798 | 170 | equemene | # clDataX = cl.Buffer(ctx, mf.WRITE_ONLY|mf.COPY_HOST_PTR,hostbuf=MyDataX)
|
799 | 170 | equemene | # clDataV = cl.Buffer(ctx, mf.WRITE_ONLY|mf.COPY_HOST_PTR,hostbuf=MyDataV)
|
800 | 170 | equemene | # clPotential = cl.Buffer(ctx, mf.WRITE_ONLY|mf.COPY_HOST_PTR,hostbuf=MyPotential)
|
801 | 170 | equemene | # clKinetic = cl.Buffer(ctx, mf.WRITE_ONLY|mf.COPY_HOST_PTR,hostbuf=MyKinetic)
|
802 | 170 | equemene | # clCoM = cl.Buffer(ctx, mf.WRITE_ONLY|mf.COPY_HOST_PTR,hostbuf=MyCoM)
|
803 | 116 | equemene | |
804 | 134 | equemene | print('All particles superimposed.')
|
805 | 116 | equemene | |
806 | 132 | equemene | # Set particles to RNG points
|
807 | 132 | equemene | if InitialRandom:
|
808 | 170 | equemene | seed_w=np.uint32(nprnd(2**32)) |
809 | 170 | equemene | seed_z=np.uint32(nprnd(2**32)) |
810 | 132 | equemene | else:
|
811 | 170 | equemene | seed_w=np.uint32(19710211)
|
812 | 170 | equemene | seed_z=np.uint32(20081010)
|
813 | 170 | equemene | |
814 | 170 | equemene | if Shape=='Ball': |
815 | 170 | equemene | MyRoutines.InBallSplutterPoints(queue,(Number,1),None,clDataX,SizeOfShape,seed_w,seed_z) |
816 | 170 | equemene | else:
|
817 | 170 | equemene | MyRoutines.InBoxSplutterPoints(queue,(Number,1),None,clDataX,SizeOfShape,seed_w,seed_z) |
818 | 116 | equemene | |
819 | 132 | equemene | print('All particules distributed')
|
820 | 139 | equemene | |
821 | 160 | equemene | CLLaunch=MyRoutines.CenterOfMass(queue,(1,1),None,clDataX,clCoM,np.int32(Number)) |
822 | 160 | equemene | CLLaunch.wait() |
823 | 142 | equemene | cl.enqueue_copy(queue,MyCoM,clCoM) |
824 | 170 | equemene | print('Center Of Mass estimated: (%s,%s,%s)' % (MyCoM[0],MyCoM[1],MyCoM[2])) |
825 | 139 | equemene | |
826 | 139 | equemene | if VirielStress:
|
827 | 160 | equemene | CLLaunch=MyRoutines.SplutterStress(queue,(Number,1),None,clDataX,clDataV,clCoM,MyFloat(0.),np.uint32(110271),np.uint32(250173)) |
828 | 139 | equemene | else:
|
829 | 160 | equemene | CLLaunch=MyRoutines.SplutterStress(queue,(Number,1),None,clDataX,clDataV,clCoM,Velocity,np.uint32(110271),np.uint32(250173)) |
830 | 160 | equemene | CLLaunch.wait() |
831 | 139 | equemene | |
832 | 170 | equemene | print('All particules stressed')
|
833 | 170 | equemene | |
834 | 160 | equemene | CLLaunch=MyRoutines.Potential(queue,(Number,1),None,clDataX,clPotential) |
835 | 160 | equemene | CLLaunch=MyRoutines.Kinetic(queue,(Number,1),None,clDataV,clKinetic) |
836 | 133 | equemene | CLLaunch.wait() |
837 | 141 | equemene | cl.enqueue_copy(queue,MyPotential,clPotential) |
838 | 141 | equemene | cl.enqueue_copy(queue,MyKinetic,clKinetic) |
839 | 170 | equemene | print('Energy estimated: Viriel=%s Potential=%s Kinetic=%s\n'% (np.sum(MyPotential)+2*np.sum(MyKinetic),np.sum(MyPotential),np.sum(MyKinetic))) |
840 | 116 | equemene | |
841 | 170 | equemene | if SpeedRendering:
|
842 | 170 | equemene | SizeOfBox=max(2*MyKinetic) |
843 | 170 | equemene | else:
|
844 | 170 | equemene | SizeOfBox=SizeOfShape |
845 | 170 | equemene | |
846 | 174 | equemene | if OpenGL:
|
847 | 174 | equemene | print('\tTiny documentation to interact OpenGL rendering:\n')
|
848 | 174 | equemene | print('\t<Left|Right> Rotate around X axis')
|
849 | 174 | equemene | print('\t <Up|Down> Rotate around Y axis')
|
850 | 174 | equemene | print('\t <z|Z> Rotate around Z axis')
|
851 | 174 | equemene | print('\t <-|+> Unzoom/Zoom')
|
852 | 174 | equemene | print('\t <s> Toggle to display Positions or Velocities')
|
853 | 174 | equemene | print('\t <Esc> Quit\n')
|
854 | 174 | equemene | |
855 | 170 | equemene | wall_time_start=time.time() |
856 | 160 | equemene | |
857 | 170 | equemene | Durations=np.array([],dtype=MyFloat) |
858 | 170 | equemene | print('Starting!')
|
859 | 170 | equemene | if OpenGL:
|
860 | 170 | equemene | global ViewRX,ViewRY,ViewRZ
|
861 | 170 | equemene | Iterations=0
|
862 | 170 | equemene | ViewRX,ViewRY,ViewRZ = 0.,0.,0. |
863 | 170 | equemene | # Launch OpenGL Loop
|
864 | 170 | equemene | glutInit(sys.argv) |
865 | 170 | equemene | glutInitDisplayMode(GLUT_DOUBLE | GLUT_RGB) |
866 | 170 | equemene | glutSetOption(GLUT_ACTION_ON_WINDOW_CLOSE,GLUT_ACTION_CONTINUE_EXECUTION) |
867 | 170 | equemene | glutInitWindowSize(512,512) |
868 | 170 | equemene | glutCreateWindow(b'NBodyGL')
|
869 | 170 | equemene | setup_viewport() |
870 | 170 | equemene | glutReshapeFunc(reshape) |
871 | 170 | equemene | glutDisplayFunc(display) |
872 | 170 | equemene | glutIdleFunc(display) |
873 | 170 | equemene | # glutMouseFunc(mouse)
|
874 | 170 | equemene | glutSpecialFunc(special) |
875 | 170 | equemene | glutKeyboardFunc(keyboard) |
876 | 170 | equemene | glutMainLoop() |
877 | 170 | equemene | else:
|
878 | 170 | equemene | for iteration in range(Iterations): |
879 | 170 | equemene | Elapsed=MainOpenCL(clDataX,clDataV,Step,Method) |
880 | 170 | equemene | if Verbose:
|
881 | 170 | equemene | # print("Duration of #%s iteration: %s" % (iteration,Elapsed))
|
882 | 170 | equemene | cl.enqueue_copy(queue, MyDataX, clDataX) |
883 | 170 | equemene | print("Positions for #%s iteration: %s" % (iteration,MyDataX))
|
884 | 170 | equemene | else:
|
885 | 170 | equemene | sys.stdout.write('.')
|
886 | 170 | equemene | sys.stdout.flush() |
887 | 170 | equemene | Durations=np.append(Durations,Elapsed) |
888 | 133 | equemene | |
889 | 170 | equemene | print('\nEnding!')
|
890 | 139 | equemene | |
891 | 160 | equemene | MyRoutines.CenterOfMass(queue,(1,1),None,clDataX,clCoM,np.int32(Number)) |
892 | 160 | equemene | CLLaunch=MyRoutines.Potential(queue,(Number,1),None,clDataX,clPotential) |
893 | 160 | equemene | CLLaunch=MyRoutines.Kinetic(queue,(Number,1),None,clDataV,clKinetic) |
894 | 141 | equemene | CLLaunch.wait() |
895 | 160 | equemene | cl.enqueue_copy(queue,MyCoM,clCoM) |
896 | 141 | equemene | cl.enqueue_copy(queue,MyPotential,clPotential) |
897 | 141 | equemene | cl.enqueue_copy(queue,MyKinetic,clKinetic) |
898 | 170 | equemene | print('\nCenter Of Mass estimated: (%s,%s,%s)' % (MyCoM[0],MyCoM[1],MyCoM[2])) |
899 | 170 | equemene | print('Energy estimated: Viriel=%s Potential=%s Kinetic=%s\n'% (np.sum(MyPotential)+2.*np.sum(MyKinetic),np.sum(MyPotential),np.sum(MyKinetic))) |
900 | 135 | equemene | |
901 | 170 | equemene | print("Duration stats on device %s with %s iterations :\n\tMean:\t%s\n\tMedian:\t%s\n\tStddev:\t%s\n\tMin:\t%s\n\tMax:\t%s\n\n\tVariability:\t%s\n" % (Device,Iterations,np.mean(Durations),np.median(Durations),np.std(Durations),np.min(Durations),np.max(Durations),np.std(Durations)/np.median(Durations)))
|
902 | 170 | equemene | |
903 | 171 | equemene | # FPS: 1/Elapsed
|
904 | 171 | equemene | FPS=np.ones(len(Durations))
|
905 | 171 | equemene | FPS/=Durations |
906 | 171 | equemene | |
907 | 171 | equemene | print("FPS stats on device %s with %s iterations :\n\tMean:\t%s\n\tMedian:\t%s\n\tStddev:\t%s\n\tMin:\t%s\n\tMax:\t%s\n" % (Device,Iterations,np.mean(FPS),np.median(FPS),np.std(FPS),np.min(FPS),np.max(FPS)))
|
908 | 171 | equemene | |
909 | 170 | equemene | # Contraction of Square*Size*Hertz: Size*Size/Elapsed
|
910 | 170 | equemene | Squertz=np.ones(len(Durations))
|
911 | 170 | equemene | Squertz*=Number*Number |
912 | 170 | equemene | Squertz/=Durations |
913 | 170 | equemene | |
914 | 172 | equemene | print("Squertz in log10 & complete stats on device %s with %s iterations :\n\tMean:\t%s\t%s\n\tMedian:\t%s\t%s\n\tStddev:\t%s\t%s\n\tMin:\t%s\t%s\n\tMax:\t%s\t%s\n" % (Device,Iterations,np.log10(np.mean(Squertz)),np.mean(Squertz),np.log10(np.median(Squertz)),np.median(Squertz),np.log10(np.std(Squertz)),np.std(Squertz),np.log10(np.min(Squertz)),np.min(Squertz),np.log10(np.max(Squertz)),np.max(Squertz)))
|
915 | 170 | equemene | |
916 | 160 | equemene | clDataX.release() |
917 | 160 | equemene | clDataV.release() |
918 | 133 | equemene | clKinetic.release() |
919 | 133 | equemene | clPotential.release() |