root / ETSN / MyDFT_5.py @ 279
Historique | Voir | Annoter | Télécharger (7,22 ko)
1 | 271 | equemene | #!/usr/bin/env python3
|
---|---|---|---|
2 | 271 | equemene | |
3 | 271 | equemene | import numpy as np |
4 | 271 | equemene | import pyopencl as cl |
5 | 271 | equemene | from numpy import pi,cos,sin |
6 | 271 | equemene | |
7 | 271 | equemene | # Naive Discrete Fourier Transform
|
8 | 271 | equemene | def MyDFT(x,y): |
9 | 271 | equemene | size=x.shape[0]
|
10 | 271 | equemene | X=np.zeros(size).astype(np.float32) |
11 | 271 | equemene | Y=np.zeros(size).astype(np.float32) |
12 | 271 | equemene | for i in range(size): |
13 | 271 | equemene | for j in range(size): |
14 | 271 | equemene | X[i]=X[i]+x[j]*cos(2.*pi*i*j/size)-y[j]*sin(2.*pi*i*j/size) |
15 | 271 | equemene | Y[i]=Y[i]+x[j]*sin(2.*pi*i*j/size)+y[j]*cos(2.*pi*i*j/size) |
16 | 271 | equemene | return(X,Y)
|
17 | 271 | equemene | |
18 | 271 | equemene | # Numpy Discrete Fourier Transform
|
19 | 271 | equemene | def NumpyDFT(x,y): |
20 | 271 | equemene | size=x.shape[0]
|
21 | 271 | equemene | X=np.zeros(size).astype(np.float32) |
22 | 271 | equemene | Y=np.zeros(size).astype(np.float32) |
23 | 271 | equemene | nj=np.multiply(2.0*np.pi/size,np.arange(size)).astype(np.float32)
|
24 | 271 | equemene | for i in range(size): |
25 | 271 | equemene | X[i]=np.sum(np.subtract(np.multiply(np.cos(i*nj),x),np.multiply(np.sin(i*nj),y))) |
26 | 271 | equemene | Y[i]=np.sum(np.add(np.multiply(np.sin(i*nj),x),np.multiply(np.cos(i*nj),y))) |
27 | 271 | equemene | return(X,Y)
|
28 | 271 | equemene | |
29 | 271 | equemene | # Numba Discrete Fourier Transform
|
30 | 271 | equemene | import numba |
31 | 271 | equemene | @numba.njit(parallel=True) |
32 | 271 | equemene | def NumbaDFT(x,y): |
33 | 271 | equemene | size=x.shape[0]
|
34 | 271 | equemene | X=np.zeros(size).astype(np.float32) |
35 | 271 | equemene | Y=np.zeros(size).astype(np.float32) |
36 | 271 | equemene | nj=np.multiply(2.0*np.pi/size,np.arange(size)).astype(np.float32)
|
37 | 271 | equemene | for i in numba.prange(size): |
38 | 271 | equemene | X[i]=np.sum(np.subtract(np.multiply(np.cos(i*nj),x),np.multiply(np.sin(i*nj),y))) |
39 | 271 | equemene | Y[i]=np.sum(np.add(np.multiply(np.sin(i*nj),x),np.multiply(np.cos(i*nj),y))) |
40 | 271 | equemene | return(X,Y)
|
41 | 271 | equemene | |
42 | 271 | equemene | # OpenCL complete operation
|
43 | 271 | equemene | def OpenCLDFT(a_np,b_np): |
44 | 271 | equemene | |
45 | 271 | equemene | # Context creation
|
46 | 271 | equemene | ctx = cl.create_some_context() |
47 | 271 | equemene | # Every process is stored in a queue
|
48 | 271 | equemene | queue = cl.CommandQueue(ctx) |
49 | 271 | equemene | |
50 | 271 | equemene | TimeIn=time.time() |
51 | 271 | equemene | # Copy from Host to Device using pointers
|
52 | 271 | equemene | mf = cl.mem_flags |
53 | 271 | equemene | a_g = cl.Buffer(ctx, mf.READ_ONLY | mf.COPY_HOST_PTR, hostbuf=a_np) |
54 | 271 | equemene | b_g = cl.Buffer(ctx, mf.READ_ONLY | mf.COPY_HOST_PTR, hostbuf=b_np) |
55 | 271 | equemene | Elapsed=time.time()-TimeIn |
56 | 271 | equemene | print("Copy from Host 2 Device : %.3f" % Elapsed)
|
57 | 271 | equemene | |
58 | 271 | equemene | TimeIn=time.time() |
59 | 271 | equemene | # Definition of kernel under OpenCL
|
60 | 271 | equemene | prg = cl.Program(ctx, """
|
61 | 271 | equemene |
|
62 | 271 | equemene | #define PI 3.141592653589793
|
63 | 271 | equemene |
|
64 | 271 | equemene | __kernel void MyDFT(
|
65 | 271 | equemene | __global const float *a_g, __global const float *b_g, __global float *A_g, __global float *B_g)
|
66 | 271 | equemene | {
|
67 | 271 | equemene | int gid = get_global_id(0);
|
68 | 271 | equemene | uint size = get_global_size(0);
|
69 | 271 | equemene | float A=0.,B=0.;
|
70 | 271 | equemene | for (uint i=0; i<size;i++)
|
71 | 271 | equemene | {
|
72 | 271 | equemene | A+=a_g[i]*cos(2.*PI*(float)(gid*i)/(float)size)-b_g[i]*sin(2.*PI*(float)(gid*i)/(float)size);
|
73 | 271 | equemene | B+=a_g[i]*sin(2.*PI*(float)(gid*i)/(float)size)+b_g[i]*cos(2.*PI*(float)(gid*i)/(float)size);
|
74 | 271 | equemene | }
|
75 | 271 | equemene | A_g[gid]=A;
|
76 | 271 | equemene | B_g[gid]=B;
|
77 | 271 | equemene | }
|
78 | 271 | equemene | """).build()
|
79 | 271 | equemene | Elapsed=time.time()-TimeIn |
80 | 271 | equemene | print("Building kernels : %.3f" % Elapsed)
|
81 | 271 | equemene | |
82 | 271 | equemene | TimeIn=time.time() |
83 | 271 | equemene | # Memory allocation on Device for result
|
84 | 271 | equemene | A_ocl = np.empty_like(a_np) |
85 | 271 | equemene | B_ocl = np.empty_like(a_np) |
86 | 271 | equemene | Elapsed=time.time()-TimeIn |
87 | 271 | equemene | print("Allocation on Host for results : %.3f" % Elapsed)
|
88 | 271 | equemene | |
89 | 271 | equemene | A_g = cl.Buffer(ctx, mf.WRITE_ONLY, A_ocl.nbytes) |
90 | 271 | equemene | B_g = cl.Buffer(ctx, mf.WRITE_ONLY, B_ocl.nbytes) |
91 | 271 | equemene | Elapsed=time.time()-TimeIn |
92 | 271 | equemene | print("Allocation on Device for results : %.3f" % Elapsed)
|
93 | 271 | equemene | |
94 | 271 | equemene | TimeIn=time.time() |
95 | 271 | equemene | # Synthesis of function "sillysum" inside Kernel Sources
|
96 | 271 | equemene | knl = prg.MyDFT # Use this Kernel object for repeated calls
|
97 | 271 | equemene | Elapsed=time.time()-TimeIn |
98 | 271 | equemene | print("Synthesis of kernel : %.3f" % Elapsed)
|
99 | 271 | equemene | |
100 | 271 | equemene | TimeIn=time.time() |
101 | 271 | equemene | # Call of kernel previously defined
|
102 | 271 | equemene | CallCL=knl(queue, a_np.shape, None, a_g, b_g, A_g, B_g)
|
103 | 271 | equemene | #
|
104 | 271 | equemene | CallCL.wait() |
105 | 271 | equemene | Elapsed=time.time()-TimeIn |
106 | 271 | equemene | print("Execution of kernel : %.3f" % Elapsed)
|
107 | 271 | equemene | |
108 | 271 | equemene | TimeIn=time.time() |
109 | 271 | equemene | # Copy from Device to Host
|
110 | 271 | equemene | cl.enqueue_copy(queue, A_ocl, A_g) |
111 | 271 | equemene | cl.enqueue_copy(queue, B_ocl, B_g) |
112 | 271 | equemene | Elapsed=time.time()-TimeIn |
113 | 271 | equemene | print("Copy from Device 2 Host : %.3f" % Elapsed)
|
114 | 271 | equemene | |
115 | 275 | equemene | # Liberation of memory
|
116 | 275 | equemene | a_g.release() |
117 | 275 | equemene | b_g.release() |
118 | 275 | equemene | A_g.release() |
119 | 275 | equemene | B_g.release() |
120 | 275 | equemene | |
121 | 271 | equemene | return(A_ocl,B_ocl)
|
122 | 271 | equemene | |
123 | 271 | equemene | # CUDA Silly complete operation
|
124 | 271 | equemene | def CUDADFT(a_np,b_np): |
125 | 271 | equemene | import pycuda.autoinit |
126 | 271 | equemene | import pycuda.driver as drv |
127 | 271 | equemene | import numpy |
128 | 271 | equemene | |
129 | 271 | equemene | from pycuda.compiler import SourceModule |
130 | 271 | equemene | TimeIn=time.time() |
131 | 271 | equemene | mod = SourceModule("""
|
132 | 271 | equemene |
|
133 | 271 | equemene | #define PI 3.141592653589793
|
134 | 271 | equemene |
|
135 | 271 | equemene | __global__ void MyDFT(float *A_g, float *B_g, const float *a_g,const float *b_g)
|
136 | 271 | equemene | {
|
137 | 271 | equemene | const int gid = blockIdx.x;
|
138 | 271 | equemene | uint size = gridDim.x;
|
139 | 271 | equemene | float A=0.,B=0.;
|
140 | 271 | equemene | for (uint i=0; i<size;i++)
|
141 | 271 | equemene | {
|
142 | 271 | equemene | A+=a_g[i]*cos(2.*PI*(float)(gid*i)/(float)size)-b_g[i]*sin(2.*PI*(float)(gid*i)/(float)size);
|
143 | 271 | equemene | B+=a_g[i]*sin(2.*PI*(float)(gid*i)/(float)size)+b_g[i]*cos(2.*PI*(float)(gid*i)/(float)size);
|
144 | 271 | equemene | }
|
145 | 271 | equemene | A_g[gid]=A;
|
146 | 271 | equemene | B_g[gid]=B;
|
147 | 271 | equemene | }
|
148 | 271 | equemene |
|
149 | 271 | equemene | """)
|
150 | 271 | equemene | Elapsed=time.time()-TimeIn |
151 | 271 | equemene | print("Definition of kernel : %.3f" % Elapsed)
|
152 | 271 | equemene | |
153 | 271 | equemene | TimeIn=time.time() |
154 | 271 | equemene | MyDFT = mod.get_function("MyDFT")
|
155 | 271 | equemene | Elapsed=time.time()-TimeIn |
156 | 271 | equemene | print("Synthesis of kernel : %.3f" % Elapsed)
|
157 | 271 | equemene | |
158 | 271 | equemene | TimeIn=time.time() |
159 | 271 | equemene | A_np = numpy.zeros_like(a_np) |
160 | 271 | equemene | B_np = numpy.zeros_like(a_np) |
161 | 271 | equemene | Elapsed=time.time()-TimeIn |
162 | 271 | equemene | print("Allocation on Host for results : %.3f" % Elapsed)
|
163 | 271 | equemene | |
164 | 271 | equemene | TimeIn=time.time() |
165 | 271 | equemene | MyDFT(drv.Out(A_np), drv.Out(B_np), drv.In(a_np), drv.In(b_np), |
166 | 271 | equemene | block=(1,1,1), grid=(a_np.size,1)) |
167 | 271 | equemene | Elapsed=time.time()-TimeIn |
168 | 271 | equemene | print("Execution of kernel : %.3f" % Elapsed)
|
169 | 271 | equemene | return(A_np,B_np)
|
170 | 271 | equemene | |
171 | 271 | equemene | import sys |
172 | 271 | equemene | import time |
173 | 271 | equemene | |
174 | 271 | equemene | if __name__=='__main__': |
175 | 271 | equemene | |
176 | 271 | equemene | # Size of input vectors definition based on stdin
|
177 | 271 | equemene | import sys |
178 | 271 | equemene | try:
|
179 | 271 | equemene | SIZE=int(sys.argv[1]) |
180 | 271 | equemene | print("Size of vectors set to %i" % SIZE)
|
181 | 271 | equemene | except:
|
182 | 271 | equemene | SIZE=256
|
183 | 271 | equemene | print("Size of vectors set to default size %i" % SIZE)
|
184 | 271 | equemene | |
185 | 271 | equemene | a_np = np.ones(SIZE).astype(np.float32) |
186 | 271 | equemene | b_np = np.ones(SIZE).astype(np.float32) |
187 | 271 | equemene | |
188 | 271 | equemene | C_np = np.zeros(SIZE).astype(np.float32) |
189 | 271 | equemene | D_np = np.zeros(SIZE).astype(np.float32) |
190 | 271 | equemene | C_np[0] = np.float32(SIZE)
|
191 | 271 | equemene | D_np[0] = np.float32(SIZE)
|
192 | 271 | equemene | |
193 | 272 | equemene | # # Native & Naive Implementation
|
194 | 272 | equemene | # print("Performing naive implementation")
|
195 | 272 | equemene | # TimeIn=time.time()
|
196 | 272 | equemene | # c_np,d_np=MyDFT(a_np,b_np)
|
197 | 272 | equemene | # NativeElapsed=time.time()-TimeIn
|
198 | 272 | equemene | # NativeRate=int(SIZE/NativeElapsed)
|
199 | 272 | equemene | # print("NativeRate: %i" % NativeRate)
|
200 | 272 | equemene | # print("Precision: ",np.linalg.norm(c_np-C_np),np.linalg.norm(d_np-D_np))
|
201 | 271 | equemene | |
202 | 271 | equemene | # Native & Numpy Implementation
|
203 | 271 | equemene | print("Performing Numpy implementation")
|
204 | 271 | equemene | TimeIn=time.time() |
205 | 271 | equemene | e_np,f_np=NumpyDFT(a_np,b_np) |
206 | 271 | equemene | NumpyElapsed=time.time()-TimeIn |
207 | 271 | equemene | NumpyRate=int(SIZE/NumpyElapsed)
|
208 | 271 | equemene | print("NumpyRate: %i" % NumpyRate)
|
209 | 271 | equemene | print("Precision: ",np.linalg.norm(e_np-C_np),np.linalg.norm(f_np-D_np))
|
210 | 271 | equemene | |
211 | 271 | equemene | # Native & Numba Implementation
|
212 | 271 | equemene | print("Performing Numba implementation")
|
213 | 271 | equemene | TimeIn=time.time() |
214 | 271 | equemene | g_np,h_np=NumbaDFT(a_np,b_np) |
215 | 271 | equemene | NumbaElapsed=time.time()-TimeIn |
216 | 271 | equemene | NumbaRate=int(SIZE/NumbaElapsed)
|
217 | 271 | equemene | print("NumbaRate: %i" % NumbaRate)
|
218 | 271 | equemene | print("Precision: ",np.linalg.norm(g_np-C_np),np.linalg.norm(h_np-D_np))
|
219 | 271 | equemene | |
220 | 271 | equemene | # OpenCL Implementation
|
221 | 273 | equemene | print("Performing OpenCL implementation")
|
222 | 271 | equemene | TimeIn=time.time() |
223 | 271 | equemene | i_np,j_np=OpenCLDFT(a_np,b_np) |
224 | 271 | equemene | OpenCLElapsed=time.time()-TimeIn |
225 | 271 | equemene | OpenCLRate=int(SIZE/OpenCLElapsed)
|
226 | 271 | equemene | print("OpenCLRate: %i" % OpenCLRate)
|
227 | 271 | equemene | print("Precision: ",np.linalg.norm(i_np-C_np),np.linalg.norm(j_np-D_np))
|
228 | 271 | equemene | |
229 | 271 | equemene | # CUDA Implementation
|
230 | 273 | equemene | print("Performing CUDA implementation")
|
231 | 271 | equemene | TimeIn=time.time() |
232 | 271 | equemene | k_np,l_np=CUDADFT(a_np,b_np) |
233 | 271 | equemene | CUDAElapsed=time.time()-TimeIn |
234 | 271 | equemene | CUDARate=int(SIZE/CUDAElapsed)
|
235 | 271 | equemene | print("CUDARate: %i" % CUDARate)
|
236 | 271 | equemene | print("Precision: ",np.linalg.norm(k_np-C_np),np.linalg.norm(l_np-D_np))
|